现代控制技术基础习题
- 格式:doc
- 大小:547.00 KB
- 文档页数:20
《现代控制技术基础》一、单选题1. 自动控制系统按输入量变化与否来分类,可分为( A )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统2. 自动控制系统按系统中信号的特点来分类,可分为( C )A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统3. 普通机床的自动加工过程是( C )A 、闭环控制B 、伺服控制C 、开环控制D 、离散控制4. 形成反馈的测量元器件的精度对闭环控制系统的精度影响( B)A 、等于零B 、很大C 、很小D 、可以忽略5. 自动控制系统需要分析的问题主要有( A )A 、稳定性、稳态响应、暂态响应B 、很大C 、很小D 、可以忽略6. 对积分环节进行比例负反馈,则变为( D )A 、比例环节B 、微分环节C 、比例积分环节D 、惯性环节7. 惯性环节的传递函数是( A )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(8. 比例环节的传递函数是( B )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(9. 微分环节的传递函数是( D )A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(=D 、Ts s G =)(10. 积分环节的传递函数是( C )A 、1)(+=Ts K s G B 、K s G =)( C 、Ts s G 1)(= D 、Ts s G =)(11. 对于物理可实现系统,传递函数分子最高阶次m 与分母最高阶次n 应保持( C )A 、n m <B 、n m >C 、n m ≤D 、n m ≥12. f (t )=0.5t +1,则L [f (t )]=( B )A 、s s 15.02+ B 、s s 1212+C 、25.0sD 、s s +22113. f (t )=2t +1,则L [f (t )]=( B )A 、s s 122+B 、s s 122+C 、22sD 、s s +22114. 通常把反馈信号与偏差信号的拉普拉斯变换式之比,定义为( C )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数15. 在闭环控制中,把从系统输入到系统输出的传递函数称为( A )A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数16. 单位脉冲信号的拉氏变换为( B )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 317. 单位阶跃信号的拉氏变换为( A )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 318. 单位斜坡信号的拉氏变换为( C )A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 319. 对于稳定的系统,时间响应中的暂态分量随时间增长趋于( D )A 、1B 、无穷大C 、稳态值D 、零20. 当稳定系统达到稳态后,稳态响应的期望值与实际值之间的误差,称为(B )A 、扰动误差B 、稳态误差C 、暂态误差D 、给定偏差21. 对一阶系统的单位阶跃响应,当误差范围取2%时,调整时间为( A )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ22. 对一阶系统的单位阶跃响应,当误差范围取5%时,调整时间为( B )A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ23. 根据线性定常系统稳定的充要条件,必须全部位于s 平面左半部的为系统全部的( C )A 、零点B 、临界点C 、极点D 、零点和极点24. 对二阶系统当10<<ξ时,其为( B )A 、过阻尼系统B 、欠阻尼系统C 、零阻尼系统D 、临界阻尼系统25. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(A ) A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数26. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素(B ) A 、符号改变的次数 B 、为负值的个数C 、为正值的个数D 、为零的次数27. 典型二阶系统的开环传递函数为( C )A 、阻尼振荡角频率B 、阻尼特性C 、时间常数D 、无阻尼固有频率28. 时间常数T 的大小反映了一阶系统的( A )A 、惯性的大小B 、输入量的大小C 、输出量的大小D 、准确性29. 典型二阶系统的特征方程为( C )A 、022=+s s n ξωB 、0222=++n n s ωξωC 、0222=++n n s s ωξωD 、022=++n n s s ωξω30. 调整时间t s 表示系统暂态响应持续的时间,从总体上反映系统的( C )A 、稳态误差B 、瞬态过程的平稳性C 、快速性D 、阻尼特性31. 伯德图低频段渐近线是34dB 的水平直线,传递函数是( A )A 、1250+sB 、5500+sC 、s 50D 、225s32. 过40=c ω且斜率为-20dB/dec 的频率特性是( C )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(402+-ωωj33. 在ω=10 rad/s 处,相角滞后90° 的传递函数是( D )A 、1020+s B 、20500+sC 、11010502++s sD 、11.001.0502++s s34. 放大器的对数增益为14dB ,其增益K 为( B )A 、2B 、5C 、10D 、5035. 过40=c ω且斜率为-40dB/dec 的频率特性是( D )A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(16002+-ωωj36. 下列传递函数中不是..最小相位系统的是( C )A 、1020+s B 、20500+-sC 、156502--s sD 、451502+++s s s37. 伯德图低频段渐近线是20dB 的水平直线,传递函数是( D)A 、12100+sB 、5500+sC 、250+s D 、110+s38. 在ω=20 rad/s 处,相角滞后45° 的传递函数是( B )A 、1220+sB 、20500+sC 、12050+s D 、110+s39. 系统的截止频率愈大,则( B )A 、对高频噪声滤除性能愈好B 、上升时间愈小C 、快速性愈差D 、稳态误差愈小40. 进行频率特性分析时,对系统的输入信号为( B )A 、阶跃信号B 、正弦信号C 、脉冲信号D 、速度信号41. 积分环节的相角为( A )A 、-90ºB 、90ºC 、-180ºD 、180º42. 系统开环奈氏曲线与负实轴相交时的频率称为( B )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量43. 在具有相同幅频特性的情况下,相角变化范围最小的是( C )A 、快速响应系统B 、非最小相位系统C 、最小相位系统D 、高精度控制系统44. 微分环节的相角为( B )A 、-90ºB 、90ºC 、-180ºD 、180º45. 系统开环奈氏曲线与单位圆相交时的频率称为( A )A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量46. 串联校正装置11)(21++=sT s T s G c ,若其为滞后校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 247. 若在系统的前向通路上串联比例-微分(PD )校正装置,可使( A) A 、相位超前 B 、相位滞后C 、相位不变D 、快速性变差48. 硬反馈指的是反馈校正装置的主体是( C )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节49. 串联校正装置11)(21++=s T s T s G c ,若其为超前校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 250. 若在系统的前向通路上串联比例-积分(PI )校正装置,可使( B )A 、相位超前B 、相位滞后C 、相位不变D 、快速性变好51. 软反馈指的是反馈校正装置的主体是( D )A 、积分环节B 、惯性环节C 、比例环节D 、微分环节52. 校正装置的传递函数是101.011.0++s s ,该校正是( A ) A 、比例微分校正 B 、近似比例积分校正C 、比例积分校正D 、比例积分微分校正53. 比例-积分(PI )校正能够改善系统的( C )A 、快速性B 、动态性能C 、稳态性能D 、相对稳定性54. 硬反馈在系统的动态和稳态过程中都起( D )A 、超前校正作用B 、滞后校正作用C 、滞后-超前校正作用D 、反馈校正作用55. PD 校正器又称为( B )A 、比例-积分校正B 、比例-微分校正C 、微分-积分校正D 、比例-微分-积分校正56. 闭环采样系统的稳定的充分必要条件为:系统特征方程的所有根均在Z 平面的( D )A 、左半平面B 、右半平面C 、单位圆外D 、单位圆内57. 采样控制系统中增加的特殊部件是( A )A 、采样开关和采样信号保持器B 、采样开关和模数转换器C 、采样信号保持器和数模转换器D 、采样开关和信号发生器58. 采样系统的闭环脉冲传递函数的极点位于单位圆内的正实轴上,则其暂态分量( B )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢59. 单位阶跃函数的Z 变换是( C )A 、1B 、z 1C 、1-z zD 、zz 1- 60. 采样信号保持器的作用是将采样信号恢复为( A )A 、连续信号B 、离散信号C 、输出信号D 、偏差信号61. 采样系统的闭环脉冲传递函数的极点位于单位圆内的负实轴上,则其暂态分量( A )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢62. 单位脉冲函数的Z 变换是( A )A 、1B 、z 1C 、1-z zD 、zz 1- 63. 采样控制系统的闭环脉冲传递函数的极点距z 平面坐标原点越近,则衰减速度( B )A 、越慢B 、越快C 、变化越慢D 、变化越快64. 为了使采样控制系统具有比较满意的暂态响应性能,闭环极点最好分布在( D )A 、单位圆外的左半部B 、单位圆外的右半部C 、单位圆内的左半部D 、单位圆内的右半部65. 在工程实际中,为了保证采样过程有足够的精确度,常取ωs 为( C )A 、2~4ωmaxB 、3~5ωmaxC 、5~10ωmaxD 、8~12ωmax66. 状态变量描述法不仅能反映系统输入和输出的关系,而且还能提供系统( D )A 、全部变量的信息B 、外部各个变量的信息C 、线性关系D 、内部各个变量的信息67. 能观标准型的系统矩阵是能控标准型系统矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵68. 约当标准型的系统矩阵是对角线阵,对角线元素依次为( C )A 、零点B 、开环极点C 、系统特征根D 、各部分分式的系数69. 在现代控制理论中采用的状态变量描述法,又称为( D )A 、全部变量描述法B 、外部描述法C 、线性描述法D 、内部描述法70. 能观标准型的控制矩阵是能控标准型输出矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵71. 线性定常系统状态能控的充分必要条件是,其能控性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n72. 系统状态变量的个数等于系统( C )A 、全部变量的个数B 、外部变量的个数C 、独立变量的个数D 、内部变量的个数73. 能观标准型的输出矩阵是能控标准型控制矩阵的( C )A 、对称矩阵B 、逆阵C 、转置D 、单位阵74. 线性定常系统状态完全能观的充分和必要条件是,其能观性矩阵的( B )A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n75. 一个状态变量为n 维的单输入,单输出系统,下面说法正确的是( A )A 、系数阵A 为n ×n 维B 、控制阵B 为1×n 维C 、输出阵C 为n ×1维D 、A ,B ,C 三个阵均为n ×n 维二、计算题76. 求如图所示系统的微分方程,图中x(t)为输入位移,y(t)为输出位移。
计算机控制技术练习题1. 数据传输和处理1.1. 数据传输计算机控制技术中最基本的任务之一是实现数据传输。
请回答以下问题:1.简要解释什么是数据传输。
数据传输是指将数据从一个地方传送到另一个地方的过程。
在计算机控制技术中,数据传输通常指在计算机内部或计算机与外部设备之间传输数据。
2.列举一些常见的数据传输接口。
–USB(通用串行总线)–HDMI(高清晰度多媒体接口)–Ethernet(以太网)–SATA(串行ATA)–PCI(外部组件互连)1.2. 数据处理计算机控制技术中的另一个重要任务是数据处理。
请回答以下问题:1.简要解释什么是数据处理。
数据处理是指对输入的数据进行操作、转换、计算、存储和输出的过程。
数据处理的目的是根据特定的需求和算法,对数据进行加工处理,得到最终的结果。
2.列举一些常见的数据处理技术。
–数据压缩:将数据编码为更紧凑的形式,减少存储和传输的需求。
–数据加密:对数据进行加密,以保护其安全性。
–数据转换:将数据从一种格式转换为另一种格式,以适应不同的应用需求。
–数据过滤:根据规则或条件,筛选和提取所需的数据。
–数据聚合:将多个数据源的数据合并成一个集合。
2. 控制系统设计2.1. 控制系统基础控制系统是计算机控制技术中的核心概念。
请回答以下问题:1.简要解释什么是控制系统。
控制系统是由传感器、执行器、控制器和反馈环路等组成的一种系统,用于监测和调节一个或多个输出变量,以实现对系统行为的控制。
2.列举一些常见的控制系统应用。
–自动化生产线控制–温度控制系统–机器人控制系统–汽车自动驾驶系统–航空航天控制系统2.2. 控制系统设计方法设计控制系统时,需要采用一定的方法和技巧来确保系统的稳定性和性能。
请回答以下问题:1.简要解释什么是PID控制器。
PID控制器是一种常用的控制器设计方法,它基于比例、积分和微分三个部分对误差信号进行调节,以实现对系统的控制。
PID控制器具有简单、稳定性好等优点,在许多工业应用中得到广泛使用。
现代电气控制及PLC应用技术习题(第2版)编著:王永华第1章、《电器控制系统常用器件》思考题与练习题1.01、电磁式电器主要由哪几部分组成?各部分的作用是什么?答:电磁式的低压电器。
就其结构而言,大都由三个主要部分组成,即触头、灭弧装置和电磁机构。
触头:触头是一切有触点电器的执行部件。
电器通过触头的动作来接通或断开被控制电路。
触头通常由动、静触点组合而成。
灭弧装置:保护触头系统,降低损伤,提高分断能力,保证电器工作安全可靠。
电磁机构:电磁机构是电磁式低压电器的感测部件,它的作用是将电磁能量转换成机械能量,带动触头动作使之闭合或断开,从而实现电路的接通或分断。
1.02、何谓电磁机构的吸力特性与反力特性?吸力特性与反力特性之间应满足怎样的配合关系?答:电磁机构的工作原理常用吸力特性和反力特性来表征。
吸力特性:电磁机构使衔铁吸合的力与气隙长度的关系曲线称做吸力特性;反力特性:电磁机构使衔铁释放(复位)的力与气隙长度的关系曲线称做反力特性。
电磁机构欲使衔铁吸合,在整个吸合过程中,吸力都必须大于反力。
但也不能过大,否则衔铁吸合时运动速度过大,会产生很大的冲击力,使衔铁与铁芯柱端面造成严重的机械磨损。
此外,过大的冲击力有可能使触点产生弹跳现象,导致触点的熔焊或磨损,降低触点的使用寿命。
反映在特性图上就是要保持吸力特性在反力特性的上方且彼此靠近,如图1-8所示。
1、直流电磁机构吸力特性;2、交流电磁机构吸力特性;3、反力特性;4、剩磁吸力特性1-8吸力特性和反力特性对于直流电磁机构,当切断激磁电流以释放衔铁时,其反力特性必须大于剩磁吸力,才能保证衔铁可靠释放。
1.03、单相交流电磁铁的短路环断裂或脱落后,在工作中会出现什么现象?为什么?答:短路环的作用是把铁芯中的磁通分为两部分,即不穿过短路环的Φ1和穿过短路环的Φ2,Φ2为原磁通与短路环中感生电流产生的磁通的叠加,且相位上也滞后Φ1,电磁机构的吸力F为它们产生的吸力F1、F2的合力。
现代控制技术基础复习题参考答案一、单项选择题1. C2. A3. D4.D5. C6. A7. A8. B9.B 10. C 11.A 12. C 13. D 14.B 15. B16. A 17. B 18. C 19.B 20. C 21. B 22. D 23. A 24. C 25. B 26. C 27. B 28. A 29. C 30. A二、判断改错题1. 正确。
2. 错误,改为:闭环传递函数是输出信号与输入信号的拉普拉斯变换之比。
3. 正确。
4. 错误,改为:0型系统开环对数幅频渐近特性的低频段斜率为0。
5. 正确。
6. 正确。
7. 错误,改为:G1(S)和G2(S)为串联连接则等效后的结构为G1(S)·G2(S)。
8. 错误,改为:系统的稳态误差与输入信号有关。
三、名词解释题1.答:通过对系统输入的操作使得输出达到指定的目标。
2.答:一个稳定的系统对正弦输入信号的稳态响应特性。
3.答:主反馈信号与输出量相等的系统。
4.答:检测系统输出并参与系统控制的元件。
5.答:控制系统在典型输入信号作用下,输出量随时间变化的情况。
6.答:以二阶微分方程或传递函数分母中s的最高次幂为2的系统。
三、简答题1. 答:画框图及标出各环节2. 答:暂态响应;稳态响应。
3. 答:系统闭环特征方程的全部根必须都位于s平面左半部;或者全部闭环特征根具有负实部。
4. 答:对被控对象的数学模型要求不高;调节方便;适用面广。
5. 答:系统极点实部为正实数根的数目等于劳斯表中第一列的系数符号改变的次数,系统稳定的充分必要条件是特征方程各项系数全部为正值,并且劳斯表的第一列都为正。
6. 答:离散系统所有闭环极点均分布在z 平面上以原点为圆心的单位圆内。
或离散系统所有特征根的模均小于1。
五. 计算题1. 解:列出劳斯表:3s 1 5 2s 6 K1s630K- 0s K根据劳斯判据有:0,030>>-K K , 所以有030>>K 。
现代控制技术根底?一、单项选择题1. 自动控制系统按输入量变化与否来分类,可分为〔A 〕A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统2. 自动控制系统按系统号的特点来分类,可分为〔C 〕A 、随动系统与自动调整系统B 、线性系统与非线性系统C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统3. 普通机床的自动加工过程是〔C 〕A 、闭环控制B 、伺服控制C 、开环控制D 、离散控制4. 形成反应的测量元器件的精度对闭环控制系统的精度影响〔B 〕A 、等于零B 、很大C 、很小D 、可以忽略5. 自动控制系统需要分析的问题主要有〔A 〕A 、稳定性、稳态响应、暂态响应B 、很大C 、很小D 、可以忽略6. 对积分环节进展比例负反应,则变为〔D 〕A 、比例环节B 、微分环节C 、比例积分环节D 、惯性环节7. 惯性环节的传递函数是〔A 〕A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(8. 比例环节的传递函数是〔B 〕A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(= D 、Ts s G =)(9. 微分环节的传递函数是〔D 〕A 、1)(+=Ts Ks G B 、K s G =)(C 、Ts s G 1)(=D 、Ts s G =)(10. 积分环节的传递函数是〔C 〕A 、1)(+=Ts K s G B 、K s G =)( C 、Ts s G 1)(= D 、Ts s G =)( 11. 对于物理可实现系统,传递函数分子最高阶次m 与分母最高阶次n 应保持〔C 〕A 、n m <B 、n m >C 、n m ≤D 、n m ≥12. f 〔t 〕=0.5t +1,则L [f 〔t 〕]=〔B 〕A 、s s 15.02+B 、s s1212+ C 、25.0s D 、s s +221 13. f 〔t 〕=2t +1,则L [f 〔t 〕]=〔B 〕A 、s s 122+B 、s s122+ C 、22s D 、s s +221 14. 通常把反应信号与偏差信号的拉普拉斯变换式之比,定义为〔C 〕A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数15. 在闭环控制中,把从系统输入到系统输出的传递函数称为〔A 〕A 、闭环传递函数B 、前向通道传递函数C 、开环传递函数D 、误差传递函数16. 单位脉冲信号的拉氏变换为〔B 〕A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 317. 单位阶跃信号的拉氏变换为〔A 〕A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 318. 单位斜坡信号的拉氏变换为〔C 〕A 、L [1(t )]=1/sB 、L [δ(t )]=1C 、L [t •1(t )]=1/s 2D 、L [t 2/2]=1/s 319. 对于稳定的系统,时间响应中的暂态分量随时间增长趋于〔D 〕A 、1B 、无穷大C 、稳态值D 、零20. 当稳定系统到达稳态后,稳态响应的期望值与实际值之间的误差,称为〔B 〕A 、扰动误差B 、稳态误差C 、暂态误差D 、给定偏差21. 对一阶系统的单位阶跃响应,当误差围取2%时,调整时间为〔A 〕A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ22. 对一阶系统的单位阶跃响应,当误差围取5%时,调整时间为〔B 〕A 、t s =4τB 、t s =3τC 、t s =2τD 、t s =τ23. 根据线性定常系统稳定的充要条件,必须全部位于s 平面左半部的为系统全部的〔C 〕A 、零点B 、临界点C 、极点D 、零点和极点24. 对二阶系统当10<<ξ时,其为〔B 〕A 、过阻尼系统B 、欠阻尼系统C 、零阻尼系统D 、临界阻尼系统25. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素〔A 〕A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数26. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素〔B 〕A 、符号改变的次数B 、为负值的个数C 、为正值的个数D 、为零的次数27. 典型二阶系统的开环传递函数为〔C 〕A 、阻尼振荡角频率B 、阻尼特性C 、时间常数D 、无阻尼固有频率28. 时间常数T 的大小反映了一阶系统的〔A 〕A 、惯性的大小B 、输入量的大小C 、输出量的大小D 、准确性29. 典型二阶系统的特征方程为〔C 〕A 、022=+s s n ξωB 、0222=++n n s ωξωC 、0222=++n n s s ωξω D 、022=++n n s s ωξω 30. 调整时间t s 表示系统暂态响应持续的时间,从总体上反映系统的〔C 〕A 、稳态误差B 、瞬态过程的平稳性C 、快速性D 、阻尼特性31. 伯德图低频段渐近线是34dB 的水平直线,传递函数是〔A 〕A 、1250+sB 、5500+sC 、s 50D 、225s32. 过40=c ω且斜率为-20dB/dec 的频率特性是〔C 〕A 、4040+ωjB 、)40(40+ωωj jC 、)101.0(40+ωωj j D 、)101.0(402+-ωωj33. 在ω=10 rad/s 处,相角滞后90° 的传递函数是〔D 〕A 、1020+s B 、20500+sC 、11010502++s s D 、11.001.0502++s s34. 放大器的对数增益为14dB ,其增益K 为〔B 〕A 、2B 、5C 、10D 、5035. 过40=c ω且斜率为-40dB/dec 的频率特性是〔D 〕A 、4040+ωj B 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(16002+-ωωj36. 以下传递函数中不是..最小相位系统的是〔C 〕A 、1020+sB 、20500+-sC 、156502--s sD 、451502+++s s s37. 伯德图低频段渐近线是20dB 的水平直线,传递函数是〔D 〕A 、12100+s B 、5500+sC 、250+sD 、110+s38. 在ω=20 rad/s 处,相角滞后45° 的传递函数是〔B 〕A 、1220+s B 、20500+sC 、12050+sD 、110+s 39. 系统的截止频率愈大,则〔B 〕A 、对高频噪声滤除性能愈好B 、上升时间愈小C 、快速性愈差D 、稳态误差愈小40. 进展频率特性分析时,对系统的输入信号为〔B 〕A 、阶跃信号B 、正弦信号C 、脉冲信号D 、速度信号41. 积分环节的相角为〔A 〕A 、-90ºB 、90ºC 、-180ºD 、180º42. 系统开环奈氏曲线与负实轴相交时的频率称为〔B 〕A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量43. 在具有一样幅频特性的情况下,相角变化围最小的是〔C 〕A 、快速响应系统B 、非最小相位系统C 、最小相位系统D 、高精度控制系统44. 微分环节的相角为〔B 〕A 、-90ºB 、90ºC 、-180ºD 、180º45. 系统开环奈氏曲线与单位圆相交时的频率称为〔A 〕A 、幅值交界频率B 、相位交界频率C 、幅值裕量D 、相位裕量46. 串联校正装置11)(21++=s T s T s G c ,假设其为滞后校正,则应该〔B 〕 A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 247. 假设在系统的前向通路上串联比例-微分〔PD 〕校正装置,可使〔A 〕A 、相位超前B 、相位滞后C 、相位不变D 、快速性变差48. 硬反应指的是反应校正装置的主体是〔C 〕A 、积分环节B 、惯性环节C 、比例环节D 、微分环节49. 串联校正装置11)(21++=s T s T s G c ,假设其为超前校正,则应该〔B 〕 A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 250. 假设在系统的前向通路上串联比例-积分〔PI 〕校正装置,可使〔B 〕A 、相位超前B 、相位滞后C 、相位不变D 、快速性变好51. 软反应指的是反应校正装置的主体是〔D 〕A 、积分环节B 、惯性环节C 、比例环节D 、微分环节52. 校正装置的传递函数是101.011.0++s s ,该校正是〔A 〕 A 、比例微分校正 B 、近似比例积分校正C 、比例积分校正D 、比例积分微分校正53. 比例-积分〔PI 〕校正能够改善系统的〔C 〕A 、快速性B 、动态性能C 、稳态性能D 、相对稳定性54. 硬反应在系统的动态和稳态过程中都起〔D 〕A 、超前校正作用B 、滞后校正作用C 、滞后-超前校正作用D 、反应校正作用55. PD 校正器又称为〔B 〕A 、比例-积分校正B 、比例-微分校正C 、微分-积分校正D 、比例-微分-积分校正56. 闭环采样系统的稳定的充分必要条件为:系统特征方程的所有根均在Z 平面的〔D 〕A 、左半平面B 、右半平面C 、单位圆外D 、单位圆57. 采样控制系统中增加的特殊部件是〔A 〕A 、采样开关和采样信号保持器B 、采样开关和模数转换器C 、采样信号保持器和数模转换器D 、采样开关和信号发生器58. 采样系统的闭环脉冲传递函数的极点位于单位圆的正实轴上,则其暂态分量〔B 〕A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢59. 单位阶跃函数的Z 变换是〔C 〕A 、1B 、z 1C 、1-z zD 、zz 1- 60. 采样信号保持器的作用是将采样信号恢复为〔A 〕A 、连续信号B 、离散信号C 、输出信号D 、偏差信号61. 采样系统的闭环脉冲传递函数的极点位于单位圆的负实轴上,则其暂态分量〔A 〕A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢62. 单位脉冲函数的Z 变换是〔A 〕A 、1B 、z 1C 、1-z zD 、zz 1- 63. 采样控制系统的闭环脉冲传递函数的极点距z 平面坐标原点越近,则衰减速度〔B 〕A 、越慢B 、越快C 、变化越慢D 、变化越快64. 为了使采样控制系统具有比拟满意的暂态响应性能,闭环极点最好分布在〔D 〕A 、单位圆外的左半部B 、单位圆外的右半部C 、单位圆的左半部D 、单位圆的右半部65. 在工程实际中,为了保证采样过程有足够的准确度,常取ωs 为〔C 〕A 、2~4ωma*B 、3~5ωma*C 、5~10ωma*D 、8~12ωma*66. 状态变量描述法不仅能反映系统输入和输出的关系,而且还能提供系统〔D 〕A 、全部变量的信息B 、外部各个变量的信息C 、线性关系D 、部各个变量的信息67. 能观标准型的系统矩阵是能控标准型系统矩阵的〔C 〕A 、对称矩阵B 、逆阵C 、转置D 、单位阵68. 约当标准型的系统矩阵是对角线阵,对角线元素依次为〔C 〕A 、零点B 、开环极点C 、系统特征根D 、各局部分式的系数69. 在现代控制理论中采用的状态变量描述法,又称为〔D 〕A 、全部变量描述法B 、外部描述法C 、线性描述法D 、部描述法70. 能观标准型的控制矩阵是能控标准型输出矩阵的〔C 〕A 、对称矩阵B 、逆阵C 、转置D 、单位阵71. 线性定常系统状态能控的充分必要条件是,其能控性矩阵的〔B 〕A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n72. 系统状态变量的个数等于系统〔C 〕A 、全部变量的个数B 、外部变量的个数C 、独立变量的个数D 、部变量的个数73. 能观标准型的输出矩阵是能控标准型控制矩阵的〔C 〕A 、对称矩阵B 、逆阵C 、转置D 、单位阵74. 线性定常系统状态完全能观的充分和必要条件是,其能观性矩阵的〔B 〕A 、行数为nB 、秩为nC 、列数为nD 、行列式值为n75. 一个状态变量为n 维的单输入,单输出系统,下面说确的是〔A 〕A 、系数阵A 为n ×n 维B 、控制阵B 为1×n 维C 、输出阵C 为n ×1维D 、A ,B ,C 三个阵均为n ×n 维二、计算题76. 求如下图系统的微分方程,图中*(t)为输入位移,y(t)为输出位移。
现代控制理论刘豹课后习题答案现代控制理论刘豹课后习题答案现代控制理论是控制工程中的重要学科,它研究了如何通过数学模型和控制算法来实现对系统的稳定性、响应速度和鲁棒性等性能指标的优化。
刘豹是现代控制理论领域的著名学者,他的课后习题是学习该学科的重要组成部分。
本文将为大家提供一些现代控制理论刘豹课后习题的答案,希望能帮助读者更好地理解和掌握这门学科。
1. 请简述现代控制理论的基本概念和主要内容。
现代控制理论是在传统控制理论的基础上发展起来的,它采用了更加先进的数学模型和控制算法,旨在提高系统的控制性能。
其基本概念包括状态空间模型、传递函数和控制器设计等。
主要内容包括系统建模、系统分析和系统设计等方面。
2. 什么是状态空间模型?请简要介绍其基本形式和特点。
状态空间模型是现代控制理论中常用的一种数学模型,它通过描述系统的状态变量和输入输出关系来表示系统的动态行为。
其基本形式为:x(t+1) = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)为系统的状态向量,u(t)为系统的输入向量,y(t)为系统的输出向量,A、B、C和D为系统的参数矩阵。
状态空间模型具有直观、灵活和适用于复杂系统的特点。
3. 请简述传递函数的定义和性质。
传递函数是描述系统输入输出关系的一种数学表达式,它是输出变量与输入变量的比值。
传递函数的定义为:G(s) = Y(s) / U(s)其中,G(s)为传递函数,Y(s)为系统的输出变量的拉普拉斯变换,U(s)为系统的输入变量的拉普拉斯变换。
传递函数具有线性、时不变和因果性等性质。
4. 请简述控制器设计的基本原则和方法。
控制器设计的基本原则是通过调节系统的输入信号来实现对系统的稳定性和性能的优化。
常用的控制器设计方法包括比例控制、积分控制和微分控制等。
其中,比例控制通过调节输入信号与误差之间的比例关系来实现对系统的稳定性和响应速度的调节;积分控制通过调节输入信号与误差的积分关系来消除系统的稳态误差;微分控制通过调节输入信号与误差的微分关系来提高系统的响应速度和鲁棒性。
第2章《电气控制线路基础》思考题与练习题、三相笼型异步电动机在什么条件下可直接启动?试设计带有短路、过载、失压保护的三相笼型异步电动机直接启动的主电路和控制电路,对所设计的电路进行简要说明,并指出哪些元器件在电路中完成了哪些保护功能?答:三相笼型异步电动机在小于10KW的条件下可直接启动。
题、单向全压启动控制线路、某三相笼型异步电动机单向运转,要求采用自耦变压器降压启动。
试设计主电路和控制电路,并要求有必要的保护措施。
、自耦变压器降压启动控制线路、某三相笼型异步电动机单向运转,要求启动电流不能过大,制动时要快速停车。
试设计主电路和控制电路,并要求有必要的保护。
L1L2FA2QA1SF2BBQA2QA3BSSF1QA1QA1QA3nQA3FA1控制电路L13M1L2L3FA0QA0QA3BB1QA1QA2RBS主电路MA、某三相笼型异步电动机可正反向运转,要求降压启动。
试设计主电路和控制电路,并要求有必要的保护。
、星形-三角形降压启动方法有什么特点并说明其适用场合?答:正常运行时定子绕组接成三角形的笼型异步电动机,可采用星形-三角形降压启动方式来限制启动电流。
星形-三角形降压启动的特点:1、启动时将电动机定子绕组接成星形,当转速接近额定转速时,定子绕组改接成三角形,使电动机在额定电压下正常运转。
2、启动时将电动机定子绕组接成星形,加到电动机的每相绕组上的电压为额定值的31。
3、星形启动电流降为原来三角形接法直接启动时的1/3,启动电流约为电动机额定电流的2倍左右,从而减小了启动电流对电网的影响。
4、启动转矩也相应下降为原来三角形直接启动时的1/3,转矩特性差。
星形-三角形降压启动线路适用于电动机空载或轻载启动的场合。
、软启动器的启动和停车控制方式一般有哪些?与其他的启动方式相比有什么优点?答:(1)、斜坡升压启动方式(2)、转矩控制及启动电流限制启动方式软启动装置采用电子启动方法,其主要特点是:具有软启动和软停车功能,启动电流、启动转矩可调节,另外还具有电动机过载保护等功能。
自动控制理论第三版课后练习题含答案前言自动控制理论是现代自动控制技术的基础课程,课后练习题是巩固理论知识和巩固实践技能最重要的方法之一。
本文档整理了自动控制理论第三版的课后习题,提供了详细的解题思路和答案,希望能够帮助读者更好地掌握自动控制理论。
1. 第一章课后习题1.1 第一章习题1题目已知一个系统的开环传递函数为$G(s)=\\frac{1}{s(s+1)(s+2)}$,求该系统的稳定性。
解答该系统的零点为0。
该系统的极点为−1和−2。
因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。
1.2 第一章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{(s+2)(s+3)}$,求该系统的单位阶跃响应。
解答该系统的传递函数可以表示为$G(s)=\\frac{A}{s+2}+\\frac{B}{s+3}$的形式,解得$A=\\frac{1}{s+3}$,$B=-\\frac{1}{s+2}$。
所以,该系统的单位阶跃响应为y(t)=1−e−2t−e−3t1.3 第一章习题3题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+5s+6}$,求该系统的单位阶跃响应。
解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+2)(s+3)}$的形式。
所以,该系统的单位阶跃响应为$$ y(t)=1-\\frac{1}{2}e^{-2t}-\\frac{1}{3}e^{-3t} $$2. 第二章课后习题2.1 第二章习题1题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的稳定性。
解答该系统的极点为−1和−3。
因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。
2.2 第二章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的单位冲击响应。
解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+1)(s+3)}$的形式。
控制工程基础试题
理解和掌握控制工程的基础是确保在该领域成功的关键。
以下是一些可能涉及到的控制工程基础试题:
什么是控制系统?
定义控制系统,并解释其基本组成部分。
什么是反馈控制?
描述反馈控制原理,以及它在系统中的作用。
什么是控制系统的目标?
讨论控制系统的一般目标和设计目标。
什么是开环和闭环控制?
解释开环和闭环控制系统的概念,以及它们之间的区别。
PID控制器是什么?
描述PID(比例-积分-微分)控制器的原理和用途。
如何分析控制系统的稳定性?
讨论用于分析控制系统稳定性的方法,如根轨迹、Nyquist图和Bode图。
什么是传递函数?
定义传递函数,并说明其在控制系统中的重要性。
解释根轨迹分析的目的。
描述根轨迹分析的原理,并解释它如何用于评估系统的稳定性。
什么是系统的超调和峰值过渡时间?
解释超调和峰值过渡时间,以及它们如何反映控制系统的性能。
如何设计一个PID控制器?
说明设计PID控制器的基本步骤和考虑因素。
什么是状态空间分析?
描述状态空间分析的基本原理和用途。
第一周绪论1、我国人民哪些发明属于在经典控制理论萌芽阶段的发明?(AB)A指南车B水运仪象台C指南针D印刷术2、经典控制理论也可以称为(BD)A现代控制理论B自动控制理论C近代控制理论D古典控制理论3、以下哪些内容属于现代控制理论基础的内容?(AB)A李雅普诺夫稳定性理论B极小值原理C频率响应法D根轨迹法4、传递函数模型假设模型初值不为零。
(X)5、传递函数描述的是单输入单输出的外部描述模型。
(X)6、线性系统理论属于现代控制理论的知识体系中数学模型部分。
(,)7、最优控制理论属于现代控制理论的知识体系中估计方法部分。
(X)8、控制科学的意义下,现代控制理论主要研究(数学建模)和(控制理论方法)的科学问题。
9、现代控制理论在整个控制理论发展中起到了(承上启下)的作用。
10、除了稳定性外,现代控制理论基础还考虑系统(能控性)和(能观测性)两个内部特性。
一、现代控制理论作为一门科学技术,已经得到了广泛的运用。
你还知道现代控制理论具体应用到哪些具体实际的例子么?第二周状态空间描述下的动态方程1、关于输出方程,下列哪些说法是正确的?(BD)A输出方程中状态变量必须是一阶的B输出方程中不含输入的任何阶倒数C输出方程中输入变量可以是任意阶的D输出方程中不含状态变量的任何阶倒数2、关于系统的动态方程,下列哪些说法是正确的?(AB)A系统的状态方程的状态变量的个数是惟一的B系统输出方程的输入输出变量是惟一的C系统输出方程的输入输出变量是不惟一的D系统的状态方程的状态变量是惟一的3、对于一个有多个动态方程表示的系统,下列说法正确的是?(AC)A这些动态方程一定是等价的B这些动态方程经过线性变化后,不能转化为一个动态方程C这些动态方程经过线性变化后,可以转化为一个动态方程D这些动态方程不一定是等价的4、选取的状态向量是线性相关的(X)5、状态向量的选取是不唯一的(/)6、状态向量的个数是不唯一的(X)7、输出方程的选取是不唯一的(/)8、(系统的输出量与状态变量、输入变量关系的数学表达式)称为输出方程。
《现代控制技术基础》一、单选题1. 自动控制系统按输入量变化与否来分类,可分为( A ) A 、随动系统与自动调整系统 B 、线性系统与非线性系统 C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统2. 自动控制系统按系统中信号的特点来分类,可分为( C ) A 、随动系统与自动调整系统 B 、线性系统与非线性系统 C 、连续系统与离散系统D 、单输入-单输出系统与多输入-多输出系统 3. 普通机床的自动加工过程是( C ) A 、闭环控制 B 、伺服控制 C 、开环控制 D 、离散控制4. 形成反馈的测量元器件的精度对闭环控制系统的精度影响( B ) A 、等于零 B 、很大 C 、很小 D 、可以忽略5. 自动控制系统需要分析的问题主要有( A ) A 、稳定性、稳态响应、暂态响应 B 、很大 C 、很小 D 、可以忽略6. 对积分环节进行比例负反馈,则变为( D ) A 、比例环节 B 、微分环节 C 、比例积分环节 D 、惯性环节7. 惯性环节的传递函数是( A )A 、1)(+=Ts Ks G B 、K s G =)( C 、Tss G 1)(=D 、Ts s G =)(8. 比例环节的传递函数是( B )A 、1)(+=Ts Ks G B 、K s G =)( C 、Tss G 1)(=D 、Ts s G =)(9. 微分环节的传递函数是( D )A 、1)(+=Ts Ks G B 、K s G =)(C 、Tss G 1)(=D 、Ts s G =)(10. 积分环节的传递函数是( C )A 、1)(+=Ts Ks G B 、K s G =)( C 、Tss G 1)(=D 、Ts s G =)(11. 对于物理可实现系统,传递函数分子最高阶次m 与分母最高阶次n 应保持( C ) A 、n m < B 、n m > C 、n m ≤ D 、n m ≥12. f (t )=0.5t +1,则L [f (t )]=( B ) A 、ss 15.02+ B 、s s1212+ C 、25.0sD 、s s +22113. f (t )=2t +1,则L [f (t )]=( B ) A 、ss 122+ B 、ss 122+ C 、22sD 、s s+22114. 通常把反馈信号与偏差信号的拉普拉斯变换式之比,定义为( C ) A 、闭环传递函数 B 、前向通道传递函数 C 、开环传递函数 D 、误差传递函数15. 在闭环控制中,把从系统输入到系统输出的传递函数称为( A ) A 、闭环传递函数 B 、前向通道传递函数 C 、开环传递函数 D 、误差传递函数 16. 单位脉冲信号的拉氏变换为( B ) A 、L [1(t )]=1/s B 、L [δ(t )]=1 C 、L [t •1(t )]=1/s 2 D 、L [t 2/2]=1/s 317. 单位阶跃信号的拉氏变换为( A ) A 、L [1(t )]=1/s B 、L [δ(t )]=1 C 、L [t •1(t )]=1/s 2 D 、L [t 2/2]=1/s 318. 单位斜坡信号的拉氏变换为( C ) A 、L [1(t )]=1/s B 、L [δ(t )]=1 C 、L [t •1(t )]=1/s 2 D 、L [t 2/2]=1/s 319. 对于稳定的系统,时间响应中的暂态分量随时间增长趋于( D ) A 、1 B 、无穷大 C 、稳态值 D 、零20. 当稳定系统达到稳态后,稳态响应的期望值与实际值之间的误差,称为( B ) A 、扰动误差 B 、稳态误差C 、暂态误差D 、给定偏差21. 对一阶系统的单位阶跃响应,当误差范围取2%时,调整时间为( A ) A 、t s =4τ B 、t s =3τ C 、t s =2τ D 、t s =τ22. 对一阶系统的单位阶跃响应,当误差范围取5%时,调整时间为( B ) A 、t s =4τ B 、t s =3τ C 、t s =2τ D 、t s =τ23. 根据线性定常系统稳定的充要条件,必须全部位于s 平面左半部的为系统全部的( C )A 、零点B 、临界点C 、极点D 、零点和极点 24. 对二阶系统当10<<ξ时,其为( B )A 、过阻尼系统B 、欠阻尼系统C 、零阻尼系统D 、临界阻尼系统 25. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素( A ) A 、符号改变的次数 B 、为负值的个数 C 、为正值的个数 D 、为零的次数 26. 根据劳斯稳定判据,系统具有正实部极点的个数应等于劳斯表中第1列元素( B ) A 、符号改变的次数 B 、为负值的个数 C 、为正值的个数 D 、为零的次数27. 典型二阶系统的开环传递函数为( C ) A 、阻尼振荡角频率 B 、阻尼特性 C 、时间常数 D 、无阻尼固有频率28. 时间常数T 的大小反映了一阶系统的( A ) A 、惯性的大小 B 、输入量的大小 C 、输出量的大小 D 、准确性29. 典型二阶系统的特征方程为( C )A 、022=+s s n ξωB 、0222=++n n s ωξωC 、0222=++n n s s ωξω D 、022=++n n s s ωξω30. 调整时间t s 表示系统暂态响应持续的时间,从总体上反映系统的( C ) A 、稳态误差 B 、瞬态过程的平稳性 C 、快速性 D 、阻尼特性31. 伯德图低频段渐近线是34dB 的水平直线,传递函数是( A ) A 、1250+s B 、5500+sC 、s50 D 、225s32. 过40=c ω且斜率为-20dB/dec 的频率特性是( C ) A 、4040+ωjB 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(402+-ωωj 33. 在ω=10 rad/s 处,相角滞后90° 的传递函数是( D )A 、1020+s B 、20500+s C 、11010502++s s D 、11.001.0502++s s 34. 放大器的对数增益为14dB ,其增益K 为( B ) A 、2 B 、5 C 、10 D 、50 35. 过40=c ω且斜率为-40dB/dec 的频率特性是( D ) A 、4040+ωjB 、)40(40+ωωj jC 、)101.0(40+ωωj jD 、)101.0(16002+-ωωj36. 下列传递函数中不是..最小相位系统的是( C ) A 、1020+s B 、20500+-s C 、156502--s s D 、451502+++s s s37. 伯德图低频段渐近线是20dB 的水平直线,传递函数是( D )A 、12100+s B 、5500+s C 、250+sD 、110+s38. 在ω=20 rad/s 处,相角滞后45° 的传递函数是( B )A 、1220+sB 、20500+sC 、12050+sD 、110+s 39. 系统的截止频率愈大,则( B )A 、对高频噪声滤除性能愈好B 、上升时间愈小C 、快速性愈差D 、稳态误差愈小40. 进行频率特性分析时,对系统的输入信号为( B ) A 、阶跃信号 B 、正弦信号 C 、脉冲信号 D 、速度信号 41. 积分环节的相角为( A ) A 、-90º B 、90º C 、-180º D 、180º42. 系统开环奈氏曲线与负实轴相交时的频率称为( B ) A 、幅值交界频率 B 、相位交界频率 C 、幅值裕量 D 、相位裕量43. 在具有相同幅频特性的情况下,相角变化范围最小的是( C ) A 、快速响应系统 B 、非最小相位系统 C 、最小相位系统 D 、高精度控制系统 44. 微分环节的相角为( B ) A 、-90º B 、90º C 、-180º D 、180º45. 系统开环奈氏曲线与单位圆相交时的频率称为( A ) A 、幅值交界频率 B 、相位交界频率 C 、幅值裕量 D 、相位裕量 46. 串联校正装置11)(21++=s T s T s G c ,若其为滞后校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 247. 若在系统的前向通路上串联比例-微分(PD )校正装置,可使( A ) A 、相位超前 B 、相位滞后 C 、相位不变 D 、快速性变差48. 硬反馈指的是反馈校正装置的主体是( C ) A 、积分环节 B 、惯性环节 C 、比例环节 D 、微分环节 49. 串联校正装置11)(21++=s T s T s G c ,若其为超前校正,则应该( B )A 、T 1>T 2B 、T 1<T 2C 、T 1=T 2D 、T 1≠T 250. 若在系统的前向通路上串联比例-积分(PI )校正装置,可使( B )A 、相位超前B 、相位滞后C 、相位不变D 、快速性变好51. 软反馈指的是反馈校正装置的主体是( D ) A 、积分环节 B 、惯性环节 C 、比例环节 D 、微分环节 52. 校正装置的传递函数是101.011.0++s s ,该校正是( A )A 、比例微分校正B 、近似比例积分校正C 、比例积分校正D 、比例积分微分校正53. 比例-积分(PI )校正能够改善系统的( C ) A 、快速性 B 、动态性能 C 、稳态性能 D 、相对稳定性54. 硬反馈在系统的动态和稳态过程中都起( D ) A 、超前校正作用 B 、滞后校正作用C 、滞后-超前校正作用D 、反馈校正作用 55. PD 校正器又称为( B ) A 、比例-积分校正 B 、比例-微分校正 C 、微分-积分校正 D 、比例-微分-积分校正56. 闭环采样系统的稳定的充分必要条件为:系统特征方程的所有根均在Z 平面的( D ) A 、左半平面 B 、右半平面 C 、单位圆外 D 、单位圆内57. 采样控制系统中增加的特殊部件是( A )A 、采样开关和采样信号保持器B 、采样开关和模数转换器C 、采样信号保持器和数模转换器D 、采样开关和信号发生器58. 采样系统的闭环脉冲传递函数的极点位于单位圆内的正实轴上,则其暂态分量( B )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢59. 单位阶跃函数的Z 变换是( C ) A 、1B 、z1 C 、1-z zD 、zz 1- 60. 采样信号保持器的作用是将采样信号恢复为( A ) A 、连续信号 B 、离散信号 C 、输出信号 D 、偏差信号61. 采样系统的闭环脉冲传递函数的极点位于单位圆内的负实轴上,则其暂态分量( A )A 、为衰减振荡函数B 、按指数规律衰减C 、是发散的D 、衰减越慢62. 单位脉冲函数的Z 变换是( A ) A 、1B 、z1 C 、1-z zD 、zz 1- 63. 采样控制系统的闭环脉冲传递函数的极点距z 平面坐标原点越近,则衰减速度( B ) A 、越慢 B 、越快 C 、变化越慢 D 、变化越快64. 为了使采样控制系统具有比较满意的暂态响应性能,闭环极点最好分布在( D ) A 、单位圆外的左半部 B 、单位圆外的右半部 C 、单位圆内的左半部 D 、单位圆内的右半部65. 在工程实际中,为了保证采样过程有足够的精确度,常取ωs 为( C ) A 、2~4ωmax B 、3~5ωmax C 、5~10ωmax D 、8~12ωmax66. 状态变量描述法不仅能反映系统输入和输出的关系,而且还能提供系统( D ) A 、全部变量的信息 B 、外部各个变量的信息 C 、线性关系 D 、内部各个变量的信息67. 能观标准型的系统矩阵是能控标准型系统矩阵的( C ) A 、对称矩阵 B 、逆阵 C 、转置 D 、单位阵68. 约当标准型的系统矩阵是对角线阵,对角线元素依次为( C ) A 、零点 B 、开环极点 C 、系统特征根 D 、各部分分式的系数69. 在现代控制理论中采用的状态变量描述法,又称为( D ) A 、全部变量描述法 B 、外部描述法 C 、线性描述法 D 、内部描述法70. 能观标准型的控制矩阵是能控标准型输出矩阵的( C ) A 、对称矩阵 B 、逆阵 C 、转置 D 、单位阵71. 线性定常系统状态能控的充分必要条件是,其能控性矩阵的( B ) A 、行数为n B 、秩为n C 、列数为n D 、行列式值为n72. 系统状态变量的个数等于系统( C ) A 、全部变量的个数 B 、外部变量的个数 C 、独立变量的个数 D 、内部变量的个数73. 能观标准型的输出矩阵是能控标准型控制矩阵的( C ) A 、对称矩阵 B 、逆阵 C 、转置 D 、单位阵74. 线性定常系统状态完全能观的充分和必要条件是,其能观性矩阵的( B ) A 、行数为n B 、秩为n C 、列数为n D 、行列式值为n75. 一个状态变量为n 维的单输入,单输出系统,下面说法正确的是( A ) A 、系数阵A 为n ×n 维 B 、控制阵B 为1×n 维 C 、输出阵C 为n ×1维 D 、A ,B ,C 三个阵均为n ×n 维二、计算题76. 求如图所示系统的微分方程,图中x(t)为输入位移,y(t)为输出位移。