重组蛋白的表达系统
- 格式:ppt
- 大小:1.05 MB
- 文档页数:67
细菌的重组蛋白质表达系统蛋白质是构成生物体及细胞的重要组成部分,也是细胞功能的核心执行者。
为了研究和应用不同类型的蛋白质,科学家发展出了各种蛋白质表达系统。
其中,细菌的重组蛋白质表达系统是最常用的一种方法之一。
本文将详细介绍细菌重组蛋白质表达系统的原理、优势和应用。
一、原理细菌重组蛋白质表达系统利用细菌作为宿主来表达外源蛋白质。
这个系统主要包括以下几个重要组成部分:表达载体、宿主菌株、诱导系统和纯化方法。
1. 表达载体表达载体是指带有外源蛋白质编码序列的质粒。
这些质粒通常包括启动子、反义密码子和终止子等参与蛋白质表达的元件。
其中,启动子通过结合转录因子来启动蛋白质合成的过程。
反义密码子则能够增强蛋白质的长效稳定性,并促进其在细菌中的高效表达。
2. 宿主菌株宿主菌株在蛋白质表达系统中起到重要的作用,通常选择大肠杆菌作为宿主,主要因为大肠杆菌具有较高的生长速度、易于培养和常用的遗传工具。
此外,大肠杆菌本身产生的内切酶活性较低,有利于保护外源蛋白质的稳定性。
3. 诱导系统诱导系统是细菌重组蛋白质表达系统中的一个重要组成部分。
通常使用化学诱导或者温度诱导来启动表达载体中蛋白质编码序列的转录和翻译。
化学诱导通常通过添加一种诱导剂,如异丙基-β-D-硫代半乳糖苷(IPTG),来激活载体中的启动子。
温度诱导则是通过改变培养温度来调节蛋白质表达。
4. 纯化方法纯化是细菌重组蛋白质表达系统中最关键的环节之一。
常用的纯化方法包括亲和纯化、碳水化合物基负载层析和凝胶过滤等。
这些方法能够根据蛋白质的特性和亲和性实现高效纯化。
二、优势与其他蛋白质表达系统相比,细菌重组蛋白质表达系统具有以下优势:1. 高效性细菌重组蛋白质表达系统是目前各种表达系统中最高效的一种方法之一。
通过优化表达条件和使用高效的诱导系统,可以实现高产量的蛋白质表达。
此外,细菌本身的生长速度也有助于高效表达。
2. 便捷性相比其他表达系统,细菌重组蛋白质表达系统的操作更为简便。
重组蛋白真核表达系统构建流程蛋白质是生物体内具有重要生物学功能的分子,它们由氨基酸组成,对细胞的结构和功能起着重要的调控作用。
在生物科学研究和生物制药工业中,重组蛋白质的生产和表达是一个重要的研究领域。
真核系统是重组蛋白质表达的一个重要平台,它具有许多优点,如能够实现复杂的蛋白修饰和折叠等。
因此,构建真核表达系统是生物科学研究和生物工程应用中的一个重要课题。
一、选取重组蛋白质的编码序列在构建真核表达系统之前,首先需要选取重组蛋白质的编码序列。
这一步骤通常是通过将目标蛋白质的编码基因进行克隆和序列分析来完成的。
在进行基因克隆过程中,需要选择适当的限制性内切酶和载体,构建一个含有目标基因的重组质粒。
同时,对目标基因的序列进行分析可以帮助确定转录和翻译起始位点、信号肽序列、保守结构域等信息,这些信息对于真核细胞的表达和翻译过程具有重要意义。
二、选择适当的真核表达宿主真核表达系统可以选择多种宿主来进行表达,包括哺乳动物细胞、昆虫细胞、酵母等。
在选择表达宿主时,需要考虑到宿主细胞的生长特性、表达能力、蛋白修饰能力等因素。
不同的宿主对于重组蛋白质的表达和折叠能力有所差异,因此需要根据目标蛋白质的性质和需求来选择合适的宿主。
通常来说,哺乳动物细胞系统是真核表达系统中最常用的宿主之一,它具有较高的蛋白修饰和折叠能力,适合用于表达复杂的蛋白质。
三、构建真核表达载体在选择了合适的宿主后,需要构建一个含有目标基因的真核表达载体。
真核表达载体通常包括启动子、转录终止子、筛选标记基因等功能元件。
通过将目标基因插入到表达载体中,可以实现对目标基因的调控和表达。
同时,表达载体还可以包括一些辅助元件,如信号肽、翻译起始位点、融合标签等,以提高重组蛋白质的表达水平和纯度。
四、转染或转化真核细胞在构建了真核表达载体后,需要将其转染或转化到真核细胞中。
转染是指将外源DNA通过化学方法导入到细胞内,而转化则是通过质粒介导的方式将外源DNA导入到细胞内。
研究高效蛋白质表达的技术和方法蛋白质是生物体内功能最为重要的分子之一,控制着细胞的生理过程。
研究蛋白质表达的技术和方法,对于深入了解蛋白质功能以及相关疾病治疗具有重要意义。
本文将介绍几种高效蛋白质表达的常用技术和方法。
一、刺激蛋白质表达的条件在进行蛋白质表达之前,首先需要确定适当的表达条件。
刺激蛋白质表达最常用的方法之一是通过诱导表达来增加蛋白质的合成量。
常用的诱导剂包括 IPTG、甘油和丙酮酸等。
此外,还可以根据表达蛋白的特性来选择合适的表达宿主和培养条件。
二、重组蛋白质表达系统重组蛋白质表达系统是一种常见的高效表达蛋白质的方法。
目前广泛应用的系统包括大肠杆菌表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。
1. 大肠杆菌表达系统大肠杆菌表达系统是最常用的蛋白质表达系统之一。
其优点在于操作简便、蛋白质产量高、成本低等。
大肠杆菌表达系统可以利用原核细胞内丰富的蛋白质合成机器进行表达,常见的载体系统包括pET、pGEX等。
2. 昆虫细胞表达系统昆虫细胞表达系统利用昆虫细胞进行外源蛋白质的表达。
此系统适合表达复杂、大型蛋白质,且具有较高的蛋白质折叠和翻译后修饰能力。
常用的昆虫细胞包括sf9和S2等。
3. 哺乳动物细胞表达系统哺乳动物细胞表达系统是表达重组蛋白质的黄金标准。
相比于其他表达系统,哺乳动物细胞能够正确地翻译和修饰蛋白质。
常见的哺乳动物细胞包括CHO、HEK293等。
三、蛋白质表达的改进方法除了选择适当的表达系统外,还可以通过一些改进方法来提高蛋白质表达的效率和产量。
1. 信号肽优化信号肽是控制蛋白质合成和定位的重要序列。
通过对信号肽序列的优化,可以提高目标蛋白质的合成量和稳定性。
2. 确定适当的宿主菌株不同的大肠杆菌宿主菌株对蛋白质表达效果有差异。
在进行蛋白质表达之前,选择合适的宿主菌株能够提高表达效率。
3. 调节表达体系中其他环境因素除了上述方法外,还可以通过调节表达体系中其他环境因素,如温度、基因拷贝数、培养基组成等来提高蛋白质表达效率和产量。
重组蛋白质的表达与纯化技术蛋白质是生命体活动的重要组成部分,对于生命体的生长、繁殖和免疫功能起着至关重要的作用。
而重组蛋白质则是利用基因工程技术,将人工合成的外源基因导入到特定的宿主细胞中,通过细胞表达和纯化技术得到的转录翻译产物。
这种技术不仅可以生产天然蛋白质,还可以生产人工合成的新型蛋白质,对于疾病的治疗和新药的研发有着重要的意义。
一、蛋白质表达技术蛋白质表达是获得大量重组蛋白质的重要方法。
选择适当的宿主细胞和表达载体是获得高水平表达的关键。
常用的宿主细胞包括大肠杆菌、酵母菌、昆虫细胞、哺乳动物细胞等。
1.大肠杆菌表达系统大肠杆菌表达系统具有生长快、表达量高等优点,广泛应用于重组蛋白质的表达和纯化。
其表达载体主要有pET和pBAD两种,pET系统一般用于产生可以形成包涵体的重组蛋白,pBAD系统用于在分泌表达中产生滞留蛋白。
2.昆虫细胞表达系统昆虫细胞表达系统包括SF9、Sf21、HighFive等细胞系,常用的表达载体为pIB/V5-His、pFastBac等。
昆虫细胞表达系统通常用于表达大分子蛋白质,如糖蛋白、膜蛋白等。
3.哺乳动物细胞表达系统哺乳动物细胞表达系统是目前表达规模最大、表达产物最接近人体蛋白质的一种表达系统。
其表达载体主要有pCDNA3.1、pCI 等,常用于表达与人体有关的蛋白质,如抗体、生长因子等。
二、蛋白质纯化技术蛋白纯化是重组蛋白质生产的重要环节,其目的是得到高质量的、纯度较高的蛋白质样品。
常见的纯化方法包括亲和层析法、离子交换层析法、凝胶过滤层析法、逆流式层析法等。
1.亲和层析法亲和层析法是指因与载体中固定的亲和剂相互结合而纯化目标蛋白质的一种方法。
亲和剂通常是与目标蛋白质有特异性结合作用的化合物,如亲和标签、酶底物、抗体等。
常见的亲和层析方法有亲和柱层析、亲和膜层析等。
2.离子交换层析法离子交换层析法是根据蛋白质带有正或负电荷的差异性进行分离的一种方法。
离子交换层析的柱填充物常为离子交换树脂,其一般分为阴离子交换树脂和阳离子交换树脂两种。
-重组蛋白疫苗的原理
重组蛋白疫苗是通过将病原体特定的蛋白质基因导入表达系统中,利
用表达系统产生的复制病原体表面抗原蛋白质来诱导机体产生刺激免疫应
答的新型疫苗。
其原理大致如下:
1.确定目标蛋白:针对某一种病原体,需要确定其特定的蛋白质。
2.基因克隆:获得并克隆目标蛋白的基因,进行基因测序等操作。
3.表达系统选择:选择一个合适的表达系统来生产目标蛋白,如细菌
表达系统、酵母表达系统、哺乳动物细胞表达系统等。
4.表达目标蛋白:将目标蛋白质的基因导入到表达系统中,促使表达
系统将其转录和翻译成蛋白质。
5.纯化目标蛋白:将表达系统中产生的蛋白质纯化出来,去除杂质。
6.制备疫苗:将纯化的目标蛋白质形成疫苗,如植入或注射到机体中,诱导机体产生针对这种蛋白质的免疫应答。
7.提高免疫性:可添加佐剂等物质提高免疫应答。
重组蛋白发展历程引言:重组蛋白是指通过基因工程技术将外源基因导入到宿主细胞中,并利用宿主细胞的生物合成系统来合成外源蛋白。
重组蛋白技术的发展为生物医药领域带来了革命性的变化,使得大量蛋白质药物得以生产和应用。
本文将从重组蛋白的起源开始,详细介绍重组蛋白的发展历程。
一、重组蛋白的起源20世纪70年代,科学家们发现,将外源基因导入到细菌中,可以通过细菌自身的生物合成系统合成外源蛋白。
这一发现引发了重组蛋白技术的诞生。
1978年,科学家Herbert Boyer和Stanley Cohen成功地将青霉素酶基因导入到大肠杆菌中,合成了第一种重组蛋白。
二、早期的重组蛋白技术早期的重组蛋白技术主要依赖于质粒载体。
质粒是一种环状DNA 分子,可以在细胞内自主复制。
科学家们将外源基因插入到质粒中,并将质粒导入宿主细胞中,通过宿主细胞的生物合成系统合成外源蛋白。
然而,早期的重组蛋白技术存在许多问题,如质粒稳定性差、表达效率低等。
三、重组蛋白技术的突破随着基因工程技术的不断发展,重组蛋白技术取得了重大突破。
1982年,美国食品药品监督管理局(FDA)批准了世界上第一种重组蛋白药物——人胰岛素。
这标志着重组蛋白技术正式进入临床应用阶段。
四、重组蛋白的表达系统为了提高重组蛋白的产量和纯度,科学家们不断探索新的表达系统。
除了细菌表达系统,还有酵母、昆虫细胞、哺乳动物细胞等表达系统。
每种表达系统都有其优缺点,科学家们选择合适的表达系统来生产目标蛋白。
五、重组蛋白技术的应用重组蛋白技术的应用范围越来越广泛。
除了生产蛋白质药物外,还可以应用于农业、工业等领域。
重组蛋白技术在农业领域的应用主要包括转基因作物和重组疫苗的开发。
在工业领域,重组蛋白技术可以用于生产酶、抗体等生物制剂。
六、重组蛋白技术的发展前景随着生物技术的不断发展,重组蛋白技术的发展前景非常广阔。
研究人员正在不断探索新的表达系统,提高重组蛋白的产量和纯度;同时,通过蛋白质工程技术,可以对重组蛋白进行改造,增强其药效或改善其稳定性。
利用原核和真核系统在重组蛋白质表达中的比较当今生物科学领域中,蛋白质表达技术的发展一直备受关注。
利用原核和真核系统来重组蛋白质,是常见的两种方法。
这两种系统在蛋白质表达中有着各自的优势和适用范围。
一、原核系统的蛋白质表达原核系统主要指大肠杆菌(Escherichia coli,简称E.coli)等细菌,并且是最常用的蛋白质表达系统之一。
原核细胞具有复制速度快、易于培养、表达量高等特点,使其成为研究人员的首选。
在原核系统中,通常使用表达载体质粒将目标基因插入到细菌细胞中,并利用细菌自身的转录、翻译系统来实现蛋白质的合成。
在表达载体上,一般包含启动子、转录终止子、选择性标记等功能元件,以控制目标基因的表达和纯化。
原核系统的蛋白质表达具有高效、简便、经济等优势。
然而,由于原核细胞的风险素材含量高,存在内源性的蛋白质翻译后修饰机制有限等局限,某些复杂蛋白质的表达可能会受到限制。
二、真核系统的蛋白质表达真核系统主要指哺乳动物细胞(如CHO细胞)、昆虫细胞(如Sf9细胞)等,相对于原核系统,真核系统具有更接近生物体内蛋白质表达的环境,更能实现复杂蛋白质的表达。
在真核系统中,常用的蛋白质表达包括稳定转染和瞬时转染两种方式。
稳定转染是将目标基因整合到宿主细胞的基因组中,从而实现长期稳定的表达。
而瞬时转染则是将目标基因引入宿主细胞的质粒中,通过短时间高表达来获得大量蛋白质。
真核系统的蛋白质表达能够实现更多的翻译后修饰,如糖基化、磷酸化、乙酰化等。
这些修饰对于某些蛋白质功能的发挥至关重要。
此外,真核细胞中包含更多复杂的蛋白翻译机制和分子伴侣蛋白,有利于蛋白正确折叠和纯化。
然而,真核系统的蛋白质表达过程更为复杂,所需时间和成本也相对较高。
此外,真核细胞具有更严格的质控机制和蛋白降解系统,蛋白质的表达稳定性较差。
三、原核与真核系统的比较原核和真核系统的选择应根据具体的研究目的和需求。
如果目标是表达小分子量、水溶性和结构简单的蛋白质,原核系统是较好的选择。
pET经典质粒pET系统是有史以来在大肠杆菌中表达重组蛋白的功能最强大的系统,也是现今原核表达方面使用最广泛的系统。
该系统中,目的基因被克隆到pET质粒载体上,受强噬菌体T7转录及翻译信号控制;表达由宿主细胞提供的T7 RNA聚合酶诱导。
T7 RNA聚合酶机制十分有效:充分诱导时,几乎所有的细胞资源都用于表达目的蛋白;诱导表达后仅几个小时,目的蛋白通常可以占到细胞总蛋白的50%以上。
尽管该系统极为强大,却仍能很容易地通过改变诱导物的浓度来降低表达水平。
降低表达水平常用以提高某些目的蛋白的可溶部分产量。
该系统的另一个重要优点是在非诱导条件下,可以使目的基因完全处于沉默状态而不转录。
用不含有T7 RNA聚合酶的宿主菌克隆目的基因,即可解决免因目的蛋白表达对宿主细胞的毒性造成的质粒不稳定难题。
两种T7启动子以及多种拥有不同抑制本底表达水平的宿主细胞共同构成了一个极为灵活而有效的系统,使各种目的蛋白都能得以最优化表达。
可选质粒最经典的pET-28a, pET-30a和pET-32a质粒,应用最广,参考文献最多。
下表列出三个经典系列载体主要特性。
其中命名后带有(+)的载体含有f1复制区,可以制备单链DNA,适合突变及测序等应用。
pET-28a: T7lac启动子,高效及严谨型控制表达水平;N端His.Tag/T7.Tag融合标签,可利用His.Tag进行金属离子螯合层析纯化表达蛋白,也可利用T7.T ag融合标签进行基于抗体结合的亲和纯化;含凝血酶(Thrombin)蛋白酶切位点;pET-30a:T7lac启动子;N端His.Tag/S.Tag融合标签,可利用His.Tag进行金属离子螯合层析纯化表达蛋白,也可利用S.Tag融合标签进行亲和纯化及高灵敏度定量检测;含凝血酶(Thrombin)及肠激酶(Enterokinase)蛋白酶切位点;pET-32a:T7lac启动子;Trx融合蛋白表达载体,帮助表达蛋白形成二硫键,增加蛋白溶解性及活性;His.Tag/S.Tag融合标签。
重组蛋白的高效表达及纯化技术研究随着生物技术的发展,蛋白表达与纯化技术在医疗、工业以及科学研究等领域中扮演着越来越重要的角色。
其中,重组蛋白的高效表达及纯化技术是蛋白质学研究的关键环节之一。
本文旨在探讨目前被广泛应用的几种重组蛋白表达及纯化技术,以及它们的新进展与应用前景。
一、背景介绍重组蛋白指的是通过基因重组技术将人工合成的DNA片段引导到细胞中,使其在受到特定刺激后大量表达特定功能蛋白的一种新型蛋白质。
由于其具有高度专一性、易制备性以及更高的效力和安全性,越来越多的药物被开发为基于重组蛋白的生物制剂。
二、重组蛋白表达技术1. 原核表达系统原核表达系统是将DNA片段导入大肠杆菌等细菌中,在其形成菌落的过程中进行表达。
该系统的优点在于表达速度快、操作简便、表达产量高。
但同时,由于原核表达与真核细胞中的表达相比,它对于蛋白翻译辅助因子和蛋白修饰等生物特征的模拟程度较差,不利于蛋白的正确折叠,因此该系统表达的蛋白质通常需要经过重新折叠处理。
2. 原核表达系统与原核表达系统相比,真核表达系统更接近真实情况中的表达方式,对于全长的蛋白大多数时候能够实现正确的折叠。
在真核表达系统中,常用的系统包括昆虫细胞、哺乳动物细胞以及酵母菌表达系统等。
其中,哺乳动物细胞表达系统能够实现高产量、高质量的蛋白质表达,因此被广泛应用于蛋白质制备。
三、重组蛋白纯化技术1. 亲和层析法亲和层析法是一种将目标蛋白质从混合物中分离出来的技术。
该技术的依据是一种特定的与目标蛋白质具有相互作用的配体分离柱。
在该技术中,目标蛋白质与配体分离柱上的特定功能团结合,非特异性的蛋白质能够在洗脱过程中被去除。
2. 总体分离法总体分离法是将目标蛋白从混合物中分离出来,采用离心、可溶性和非可溶性的分离方法。
其中,在采用可溶性分离的方式时,常用的方法有两相法、分配层析等。
四、新兴技术及应用前景近年来,3D打印技术的应用逐渐渗透到生物医疗领域,并开始用于制备组织工程器官和人造蛋白质等领域。
重组蛋白的表达与纯化技术研究随着基因工程和生物技术的发展,重组蛋白的表达及纯化技术在生物医药领域得到了广泛应用。
重组蛋白是通过将目标基因转移到宿主表达系统中,利用宿主细胞表达并合成特定蛋白的技术。
表达后的蛋白需要经过纯化、鉴定和活性分析,以确保获得高纯度和高活性的蛋白。
本文将介绍重组蛋白的表达与纯化技术研究的相关内容。
重组蛋白表达技术是通过将目标基因克隆到表达载体中,然后将表达载体转入宿主细胞中进行表达。
常用的表达系统包括大肠杆菌、酿酒酵母、昆虫细胞和哺乳动物细胞等。
在选择表达载体时,需要考虑载体的复制数、启动子的强度和宿主细胞的适应性。
而在选择宿主细胞时,需要考虑宿主细胞的生长特性、表达能力以及宿主细胞的酶切位点等因素。
表达载体和宿主细胞的选择将直接影响重组蛋白的表达水平和纯化效果。
在重组蛋白的表达过程中,除了选择适合的表达系统外,还需要优化培养条件和表达工艺。
培养基的组成、培养温度、培养时间、诱导条件等因素都会影响蛋白的表达水平和纯度。
常见的优化方法包括调整培养基的成分、优化培养条件和诱导条件、构建工程菌株以及使用辅助因子等。
通过合理的优化,可以提高蛋白的表达水平和纯度,为后续的纯化工作奠定基础。
重组蛋白的纯化是确保蛋白质高纯度和高活性的关键步骤。
常见的纯化方法包括亲和层析、离子交换层析、凝胶过滤层析、逆流色谱和层流洗脱等技术。
亲和层析是通过目标蛋白与特异性结合剂之间的亲和力选择性地捕获目标蛋白。
离子交换层析是利用蛋白质与带电离子交换剂间的相互作用进行纯化。
凝胶过滤层析则是根据蛋白分子大小进行分离纯化。
逆流色谱和层流洗脱则是利用目标蛋白与静电荷间的相互作用进行分离。
通过合理选择和组合这些方法,可以获得高纯度和高活性的重组蛋白。
在纯化过程中,还需要进行蛋白质的结构鉴定和活性分析。
结构鉴定可以通过质谱分析、核磁共振、X射线晶体学等技术来实现。
活性分析则是通过特定的活性测定方法来验证蛋白的功能和活性。
哺乳动物细胞表达系统的特点
哺乳动物细胞表达系统是一种常用的重组蛋白表达系统,具有以下特点:
1. 表达的蛋白具有正确的翻译后修饰:哺乳动物细胞能够对表达的蛋白进行正确的翻译后修饰,如糖基化、磷酸化、乙酰化等,使表达的蛋白更接近天然蛋白的结构和功能。
2. 蛋白表达量较高:相对于其他表达系统,哺乳动物细胞表达系统能够产生较高水平的重组蛋白。
3. 适用于分泌型蛋白的表达:哺乳动物细胞具有完善的内质网和高尔基体等细胞器,可以将表达的蛋白分泌到细胞外,适用于分泌型蛋白的表达。
4. 产物易于纯化:哺乳动物细胞表达的重组蛋白通常具有较高的纯度,因为它们可以被分泌到细胞外,从而简化了纯化过程。
5. 适合治疗性蛋白的生产:由于哺乳动物细胞表达的蛋白具有与人体自身蛋白相似的结构和功能,因此适合用于生产治疗性蛋白,如单克隆抗体、细胞因子等。
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。
关于重组人血白蛋白的系统性表述人血白蛋白(HSA)作为一种重要的临床急救药物及重要的药物辅料,在医药,科研及化妆品生产等领域应用广泛。
随着国内医疗水平及居民收入水平的提升和对血液制品认知度的提高,血液制品的临床使用量不断增加,市场容量不断增长,行业快速发展。
根据国家医药管理局的报告,2010年全国16城市医院血液系统用药金额约62亿元,其中白蛋白类药物占据了血液制品的主要份额(大于50%)。
但作为一种血液制品,HSA同时也面临原料短缺及病毒污染等缺陷的影响。
用基因工程重组人血清白蛋白(rHSA)替代HSA是国际上公认的最有前途的高新技术途径。
一.什么是重组人血白蛋白1.定义通过基因重组的技术将目的蛋白的基因克隆后,将该基因插入到某种生物(如细菌、酵母、植物,哺乳动物细胞等)中进行复制,然后收集的白蛋白称为重组人血白蛋白。
2.rHSA的等级分类按不同的质量标准分为了培养基级、药用辅料级和药用注射级(药用级)三类,三类级别的重组人血白蛋白生产工艺相同,但最终控制参数不同,药用级白蛋白质量标准最高。
3.rHSA的表达系统分类白蛋白(Human Serum Albumin,HSA)是一组复杂的大分子蛋白质,必须经过正确的折叠、组装和翻译后修饰,才能赋予其特定的结构和功能,表达系统是重组人血白蛋白生产过程中极其重要的环节。
(1)原核表达系统HSA基因最早就是在原核生物大肠杆菌(E.coli)中表达成功的,Lawn等于1981年首次报道了rHSA的cDNA序列并首次构建了第一个表达rHSA的表达载体pHSA,然后在E.coli中表达成功,表达量为细胞总蛋白的7%,但E.coli表达系统体外很难正确折叠和组装结构复杂的HAS,缺乏翻译后的修饰和加工,表达的蛋白多形成包涵体,且纯化较难,所以未能得到有生物功能的蛋白,细菌细胞壁脂多糖还会造成热反应。
因为HSA在原核生物中表达量不高且分泌效果不够理想,所以研究的重点转向其在真核生物细胞中的表达。