高等代数教案 北大版 第五章
- 格式:doc
- 大小:522.00 KB
- 文档页数:18
第五章 矩 阵教学目的:1. 掌握矩阵的加法,乘法及数与矩阵的乘法运算法则。
及其基本性质,并熟练地对矩阵进行运算。
2. 了解几种特殊矩阵的性质。
教学内容:矩阵的运算1 矩阵相等我们将在一个数域上来讨论。
令F 是一个数域。
用F 的元素a ij 作成的一个m 行n 列矩阵A= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a aa aa a a a a mn m m n n212222111211 叫做F 上一个矩阵。
A 也简记作(a ij )。
为了指明 A 的行数和列数,有时也把它记作A mn 或 (a ij )mn 。
一个 m 行n 列矩阵简称为一个m*n 矩阵。
特别,把一个n*n 矩阵叫做一个 n 阶正方阵,或n 阶矩阵。
F 上两个矩阵,只有在它们有相同的行数和列数,并且对应位置上的 元素都相等时,才认为上相等的。
以下提到矩阵时,都指的是数域F 上的矩阵。
我们将引进三种运算:数与矩阵的乘法,矩阵的加法以及矩阵的乘法。
先引入前两种运算。
2 矩阵的线性运算定义 1 数域F 的数 a 与F 上一个m*n 矩阵A=(a ij ) 的乘法aA 指的是m*n 矩阵(aa ij )定义 2 两个m*n 矩阵A=(a ij ),B=(b ij ) 的和A+B 指的是m*n 矩阵(a ij +b ij )。
注意 ,我们只能把行数相同,列数相同的两个矩阵相加。
以上两种运算的一个重要特例是数列的运算。
现在回到一般的矩阵。
我们把元素全是零的矩阵叫做零矩阵,记作0。
如果矩阵 A=(a ij ),我们就把矩阵(- a ij ),叫做A 的负矩阵,记作—A 。
3 矩阵线性运输的规律A+B=B+A ;(A+B)+C=A+(B+C); 0+A=A ; A+(-A)=0; a(A+B)=Aa+Ab ; (a+b)A=Aa+Ba ; a(bA)=(ab)A ;这里A,B 和 C 表示任意m*n 矩阵,而a 和 b 表示 F 中的任意数。
利用负矩阵,我们如下定义矩阵的减法:A —B=A+(—B )。
高等代数北大版教案-第5章二次型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN48第五章 二次型§1 二次型的矩阵表示一 授课内容:§1 二次型的矩阵表示二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性替换和矩阵的合同.三 教学重点:矩阵表示二次型四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程:定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式++++=n n n x x a x x a x a x x x f 11211221112122),,,(+++n n x x a x a 2222222 (2)n nn x a + (3)称为数域P 上的一个n 元二次型,或者,简称为二次型.例如:2332223121213423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型.定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4)称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的.二次型的矩阵表示:49令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为++++=n n n x x a x x a x a x x x f 112112211121),,,(++++n n x x a x a x x a 2222221221 …+22211n nn n n n n x a x x a x x a +++∑∑===n i nj j i ij x x a 11(5)把(5)的系数排成一个n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以A A ='.我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的.令⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来,()n x x x AX X 21='⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21()⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 22112222121121211121∑∑===ni nj j i ij x x a 11.50故 AX X x x x f n '=),,,(21 .显然,二次型和它的矩阵是相互唯一决定的.由此还能得到,若二次型BX X AX X x x x f n '='=),,,(21且 B B A A ='=',,则,B A = 线性替换的矩阵表示令⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c cc c c C 212222111211,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y 21,那么,线性替换(4)可以写成, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c cc c c c c c212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n y y y 21 或者CY X =.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设 AX X x x x f n '=),,,(21 ,A A =', (7) 是一个二次型,作非退化的线性替换CY X = (8) 得到一个n y y y ,,,21 的二次型BY Y '.现在来看矩阵B 与矩阵A 的关系 把(8)代入(7)有AX X x x x f n '=),,,(21 ACY C Y CY A CY ''='=)()(BY Y Y AC C Y '=''=)(.51容易看出,矩阵AC C '也是对称的,事实上,AC C C A C AC C '=''''='')(.由此,即得AC C B '=.定义2 数域P 上n n ⨯矩阵B A ,称为合同的,如果有数域P 上可逆的n n ⨯矩阵C ,使AC C B '=.合同是矩阵之间的一个关系,不难看出,合同关系具有 (1)反身性 AE E A '=.(2)对称性 由 AC C B '=,即得)()(11--'=C B C A .(3)传递性 由111AC C A '=,2122C A C A '=,即得)()(21212C C A C C A '=.因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§2 标准形一 授课内容:§2 标准形二 教学目的:通过定理的证明掌握二次型化为标准形的配方法. 三 教学重点:化普通的二次型为标准形.四 教学难点:化普通的二次形为标准形的相应矩阵表示.52五 教学过程:I 导入可以认为,在二次型中最简单的一种是只含有平方项的二次型2222211n n x d x d x d +++ (1)II 讲授新课定理1 二次型都可以经过非退化的线性替换变为平方和(1)的形式. 不难看出,二次型(1)的.2222211n n x d x d x d +++ =()n x x x 21⎪⎪⎪⎪⎪⎭⎫⎝⎛n d d d00000021⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21. 反过来,矩阵是对角形的二次型就只含有平方项.定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定义 二次型),,,(21n x x x f 经过非退化的线性替换所变成的平方和称为),,,(21n x x x f 的一个标准形.例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:作非退化的线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x53则3213212121321)(2)(6))((2),,(y y y y y y y y y y x x x f ++---+=323122218422y y y y y y +--=322223231822)(2y y y y y y +---=再令 ⎪⎩⎪⎨⎧==-=3322311y z y z y y z 或⎪⎩⎪⎨⎧==+=3322311zy z y z z y则),,(321x x x f 233222212822z z z z z -+-=23232216)2(22z z z z +--=.最后令 ⎪⎩⎪⎨⎧=-==33322112z w z z w z w 或⎪⎩⎪⎨⎧=+==33322112wz w w z w z则 ),,(321x x x f 232221622w w w +-=是平方和,而这几次线性替换的结果相当于作一个总的线性替换,⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛100011011321x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321100210001100010101w w w ⎪⎪⎪⎭⎫ ⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w . 用矩阵的方法来解 例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=031301110A .取⎪⎪⎪⎭⎫⎝⎛-=1000110111C ,则111AC C A '=54⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛--031301110⎪⎪⎪⎭⎫ ⎝⎛-100011011⎪⎪⎪⎭⎫ ⎝⎛---=042420202. 再取⎪⎪⎪⎭⎫ ⎝⎛=1000101012C ,则2122C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=101010001⎪⎪⎪⎭⎫ ⎝⎛---042420202⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛--=240420002. 再取⎪⎪⎪⎭⎫ ⎝⎛=1002100013C ,则3233C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=120010001⎪⎪⎪⎭⎫ ⎝⎛--240420002⎪⎪⎪⎭⎫ ⎝⎛100210001 3A 是对角矩阵,因此令321C C C C =⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛100210001⎪⎪⎪⎭⎫ ⎝⎛--=100111311,就有AC C '⎪⎪⎪⎭⎫⎝⎛-=600020002.作非退化的线性替换CY X =即得),,(321x x x f 232221622y y y +-=.55§3 唯一性一 授课内容:§3 唯一性二 教学目的: 通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差.三 教学重点:复二次型,实二次型的规范形的区别及唯一性的区别. 四 教学难点:实二次型的唯一性 五 教学过程:在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关.二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的.例 二次型313221321262),,(x x x x x x x x x f +-=经过非退化的线性替换⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎭⎫⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w 得到标准形232221622w w w +-.而经过非退化的线性替换56⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3100312111211⎪⎪⎪⎭⎫ ⎝⎛321y y y 就得到另一个标准形23222132212y y y +-. 这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关.下面只就复数域与实数域的情形来进一步讨论唯一性的问题. 对于复数域的情形设),,,(21n x x x f 是一个复系数的二次型,则经过一个适当的非退化的线性替换后,),,,(21n x x x f 变为标准形,不妨设标准形为2222211r r y d y d y d +++ ,0≠i d ,r i ,,2,1 = (1)易知,r 就是),,,(21n x x x f 的矩阵的秩.因为复数总可以开平方,我们再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++nn r r rrr z y z y z d y z d y 1111111 (2) (1)就变为22221r z z z +++ (3) (3)称为复二次型),,,(21n x x x f 的规范形.显然,规范形完全被原二次型的矩阵的秩所决定.定理3 任意一个复系数的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0011的对角矩阵.从而有,两个复对称矩阵合同的充分必要条件是它们的秩相等.对于实数域的情形设),,,(21n x x x f 是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使),,,(21n x x x f 变为标准形,2211p p y d y d ++ 2211r r p p y d y d ---++ (4)0>i d r i ,,2,1 = ,r 就是),,,(21n x x x f 的矩阵的秩.因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++n n r r rrr z y z y z d y z d y 1111111 (5) (4)就变为221p z z ++ 221r p z z ---+ (6)(6)称为实二次型),,,(21n x x x f 的规范形.显然,规范形完全被p r ,这两个数所决定.定理4(惯性定理) 任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3 在实二次型),,,(21n x x x f 的规范形中,正平方项的个数p 称为),,,(21n x x x f 的正惯性指数,负平方项的个数p r -称为),,,(21n x x x f 的负惯性指数,它们的差r p p r p -=--2)(称为),,,(21n x x x f 的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数.§4 正定二次型一 授课内容:§4 正定二次型二 教学目的:通过本节的学习,让学生掌握正定(负定,半正定,半负定,不定)二次型或矩阵.(顺序)主子式的定义,掌握各种类型的判别法.三 教学重点:正定二次型. 四 教学难点:判别方法 五 教学过程:定义4 实二次型),,,(21n x x x f 称为正定的,如果对于任意一组不全为零的实数n c c c ,,,21 都有0),,,(21>n c c c f .显然,二次型),,,(21n x x x f 221n x x ++=是正定的,因为只有在021====n c c c 时,221n c c ++ 才为零.一般的,实二次型),,,(21n x x x f 2222211n n x d x d x d +++=是正定的,当且仅当0>i d n i ,,2,1 =.可以证明,非退化的实线性替换保持正定性不变.定理5 n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于n .定理5说明,正定二次型),,,(21n x x x f 的规范形为221n y y ++ (5)定义5 实对称矩阵A 称为正定的,如果二次型AX X '正定. 因为二次型(5)的矩阵是单位矩阵E ,所以一个实对称矩阵是正定的,当且仅当它与单位矩阵合同.推论 正定矩阵的行列式大于零. 定义6 子式iii i iii a a a a a a a a a P 212222111211=),,2,1(n i =称为矩阵nn ij a A )(=的顺序主子式.定理6 实二次型),,,(21n x x x f ∑∑===ni nj j i ij x x a 11AX X '=是正定的充分必要条件为矩阵A 的顺序主子式全大于零.例 判断二次型3231212322213214845),,(x x x x x x x x x x x x f +-+++=是否正定.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----524212425它的顺序主子式05> ,01225> , 0524212425>---- 因之,),,(321x x x f 正定. 与正定性平行,还有下面的概念.定义7 设),,,(21n x x x f 是一实二次型,对于任意一组不全为零的实数n c c c ,,,21 ,如果都有0),,,(21<n c c c f ,那么),,,(21n x x x f 称为负定的;如果都有0),,,(21≥n c c c f ,那么),,,(21n x x x f 称为半正定的;如果都有0),,,(21≤n c c c f ,那么),,,(21n x x x f 称为半负定的;如果它既不是半正定又不是半负定,那么),,,(21n x x x f 就称为不定的.对于半正定,我们有定理7 对于实二次型),,,(21n x x x f AX X '=,其中A 是实对称的,下面条件等价:(1)),,,(21n x x x f 是半正定的. (2)它的正惯性指数与秩相等. (3)有可逆实矩阵C ,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n d d d AC C21,其中,0≥i d n i ,,2,1 =. (4)有实矩阵C 使C C A '=.(5)A 的所有主子式皆大于或等于零.注意:在(5)中,仅有顺序主子式大于或等于零是不能保证半正定性的.比如,()⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=-=212122211000),(x x x x x x x f 就是一个反例.。
北大版高等数学教材第五章第五章导数与微分高等数学是一门应用广泛的学科,内容丰富而繁杂。
其中,导数与微分是其中一个重要且基础的章节。
本文将带您了解北大版高等数学教材第五章的主要内容。
1. 导数的概念与性质在数学中,导数是描述函数变化率的重要指标。
本章首先介绍了导数的概念,并详细解释了导数的几何意义。
随后,文章展示了导数的一些基本性质,如导数的运算法则、导数存在的条件等。
这些性质对于我们理解导数的本质以及后续的学习都具有重要意义。
2. 基本初等函数的导数刚刚学过导数的我们,自然要从最基本的函数开始研究其导数。
本章对常见的初等函数如幂函数、指数函数、对数函数以及三角函数的导数进行了详细的讲解。
通过具体的例子和推导过程,读者将更加深入地理解这些函数的变化规律及其导数的计算方法。
3. 利用导数解题导数不仅是一种用来描述函数变化率的工具,更是解决实际问题的有力武器。
在本章中,我们将学习如何利用导数解题。
通过具体的实例,文章展示了如何根据题目要求建立函数模型,并利用导数性质进行求解。
这一部分内容将帮助读者将抽象的数学理论与实际问题相结合,培养解决实际问题的能力。
4. 高阶导数与导数的应用在本章后半部分,我们将深入讨论高阶导数及其应用。
首先,文章介绍了高阶导数的计算方法,并给出了一些高阶导数的具体例子。
随后,我们将学习导数在近似计算、曲线研究以及最值问题中的应用。
这些应用将帮助读者更好地理解导数与实际问题的关系,以及导数在数学建模中的重要性。
5. 微分的基本概念微分是导数的重要应用之一,也是后续学习微积分的基础。
在本章最后,文章将重点介绍微分的基本概念。
我们将学习微分的定义、微分的计算以及微分在几何问题中的应用。
这一部分内容将为读者进一步学习微积分打下坚实的基础。
总结:北大版高等数学教材第五章主要介绍了导数与微分的概念、性质以及应用。
通过学习该章节,读者将对导数的定义和几何意义有更深入的理解,掌握基本初等函数的导数计算方法,了解导数在实际问题中的应用,以及为后续的微积分学习做好铺垫。
221221r p p u u u u ---+++L L 其中.r p ≤≤0现在证规范型的唯一性。
规范型中的r 等于f 的秩,是唯一确定的,我们只需证明正平方项的个数p 也是唯一确定的就可以了。
设f 有两个规范型221221r p p u u u u ---+++L L 221221rq q v v v v ---+++L L 按命题2.2的推论,这表明在R 上n 维线性空间V 内存在一组基,使n 21ηηη,,,⋯当时n n u u ηηα++=L 11 =)(αf Q 221221rp p u u u u ---+++L L 在V 内又存在一组基,使当时,n 21ϖϖϖ,,,⋯n n v v ϖϖα++=L 11 =)(αf Q 221221r q q v v v v ---+++L L 现令M=L(),则当时,p ηη,,L 10,≠∈ααM (不全为零)。
p p u u ηηα++=L 11i u 于是。
又令N =L ()。
则当时,有=)(αf Q 0221>++p u u L n q ϖϖ,,1L +N ∈α nn q q v v ϖϖα++=++L 11于是。
这表明。
按维数公式,我们有=)(αf Q 0221≤---+r q v v L {}0=⋂N M )(dim dim )dim(dim q n p N M N M V n -+=+=+≥=这表明,即。
由于p ,q 地位对称,同理应有,于是p =q 。
0≤-q p q p ≤p q ≤第二学期第二次课2.正定二次型:正惯性指数等于变元个数的实二次型称为正定二次型;正定二次型的(实对称)矩阵称为正定矩阵;设A =()为n 阶实对称矩阵,称A 的r 阶子式ij a ⎭⎬⎫⎩⎨⎧r r A LL2121为方阵的顺序主子式。
定理 设是实二次型,则下述四条等价:f (i ) 正定;f (ii ) 的矩阵,其中为可逆阵;f T T A '=T(iii ) 对应的二次型函数R ;f ∈∀>αα(0)(f Q )0,≠αn(iv )的矩阵的所有顺序主子式都大于0.f 证明 由命题2.2知(i )与(ii )等价。
第五章 二次型§1 二次型的矩阵表示一 授课内容:§1 二次型的矩阵表示二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性替换和矩阵的合同.三 教学重点:矩阵表示二次型四 教学难点:二次型在非退化下的线性替换下的变化情况.五 教学过程:定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式++++=n n n x x a x x a x a x x x f 11211221112122),,,(+++n n x x a x a 2222222 …2nnn x a + (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型.例如:2332223121213423x x x x x x x x x +++++ 就是有理数域上的一个3元二次型.定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0≠ij c ,那么线性替换(4)就称为非退化的.二次型的矩阵表示:令 ji ij a a = ,j i < 由于 i j j i x x x x =,那么二次型(3)就可以写为++++=n n n x x a x x a x a x x x f 112112211121),,,(++++n n x x a x a x x a 2222221221 (22211)nn n n n n x a x x a x x a +++ ∑∑===n i nj j i ij x x a 11(5)把(5)的系数排成一个n n ⨯矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 它称为二次型(5)的矩阵.因为ji ij a a =,n j i ,,2,1, =,所以A A ='.我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的.令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, ()n x x x AX X 21='⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a a a a a 212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21 ()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++++++=n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 22112222121121211121 ∑∑===n i nj j i ij x x a 11.故 AX X x x x f n '=),,,(21 .显然,二次型和它的矩阵是相互唯一决定的.由此还能得到,若二次型BX X AX X x x x f n '='=),,,(21且 B B A A ='=',,则,B A =线性替换的矩阵表示令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n c c c c c c c c c C 212222111211,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y Y 21,那么,线性替换(4)可以写成, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n c c c c c c c c c 212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y 21 或者CY X =.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设 AX X x x x f n '=),,,(21 ,A A =', (7) 是一个二次型,作非退化的线性替换CY X = (8) 得到一个n y y y ,,,21 的二次型BY Y '.现在来看矩阵B 与矩阵A 的关系把(8)代入(7)有AX X x x x f n '=),,,(21 ACY C Y CY A CY ''='=)()(BY Y Y AC C Y '=''=)(. 容易看出,矩阵AC C '也是对称的,事实上,AC C C A C AC C '=''''='')(.由此,即得AC C B '=.定义2 数域P 上n n ⨯矩阵B A ,称为合同的,如果有数域P 上可逆的n n ⨯矩阵C ,使AC C B '=.合同是矩阵之间的一个关系,不难看出,合同关系具有(1)反身性 AE E A '=.(2)对称性 由 AC C B '=,即得)()(11--'=C B C A .(3)传递性 由111AC C A '=,2122C A C A '=,即得)()(21212C C A C C A '=.因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§2 标准形一 授课内容:§2 标准形二 教学目的:通过定理的证明掌握二次型化为标准形的配方法.三 教学重点:化普通的二次型为标准形.四 教学难点:化普通的二次形为标准形的相应矩阵表示.五 教学过程:I 导入可以认为,在二次型中最简单的一种是只含有平方项的二次型2222211nn x d x d x d +++ (1) II 讲授新课定理1 二次型都可以经过非退化的线性替换变为平方和(1)的形式. 不难看出,二次型(1)的.2222211n n x d x d x d +++ =()n x x x 21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n d d d 00000021⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21. 反过来,矩阵是对角形的二次型就只含有平方项.定理2 在数域P 上,任意一个对称矩阵都合同于一对角矩阵. 定义 二次型),,,(21n x x x f 经过非退化的线性替换所变成的平方和称为),,,(21n x x x f 的一个标准形.例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:作非退化的线性替换⎪⎩⎪⎨⎧=-=+=33212211y x y y x y y x则3213212121321)(2)(6))((2),,(y y y y y y y y y y x x x f ++---+=323122218422y y y y y y +--=322223231822)(2y y y y y y +---=再令 ⎪⎩⎪⎨⎧==-=3322311y z y z y y z 或⎪⎩⎪⎨⎧==+=3322311z y z y z z y则),,(321x x x f 233222212822z z z z z -+-=23232216)2(22z z z z +--=. 最后令 ⎪⎩⎪⎨⎧=-==33322112z w z z w z w 或⎪⎩⎪⎨⎧=+==33322112w z w w z w z则 ),,(321x x x f 232221622w w w +-= 是平方和,而这几次线性替换的结果相当于作一个总的线性替换,⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛100011011321x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321100210001100010101w w w ⎪⎪⎪⎭⎫ ⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w .用矩阵的方法来解例 化二次型313221321262),,(x x x x x x x x x f +-=为标准形.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=031301110A .取⎪⎪⎪⎭⎫ ⎝⎛-=1000110111C ,则111AC C A '=⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛--031301110⎪⎪⎪⎭⎫ ⎝⎛-100011011⎪⎪⎪⎭⎫ ⎝⎛---=042420202.再取⎪⎪⎪⎭⎫ ⎝⎛=1000101012C ,则2122C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=101010001⎪⎪⎪⎭⎫ ⎝⎛---042420202⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛--=240420002.再取⎪⎪⎪⎭⎫ ⎝⎛=1002100013C ,则3233C A C A '=⎪⎪⎪⎭⎫ ⎝⎛=120010001⎪⎪⎪⎭⎫ ⎝⎛--240420002⎪⎪⎪⎭⎫ ⎝⎛1002100013A 是对角矩阵,因此令321C C C C =⎪⎪⎪⎭⎫ ⎝⎛-=100011011⎪⎪⎪⎭⎫ ⎝⎛100010101⎪⎪⎪⎭⎫ ⎝⎛100210001⎪⎪⎪⎭⎫ ⎝⎛--=100111311,就有AC C '⎪⎪⎪⎭⎫ ⎝⎛-=600020002.作非退化的线性替换CY X =即得),,(321x x x f 232221622y y y +-=.§3 唯一性一 授课内容:§3 唯一性二 教学目的: 通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差.三 教学重点:复二次型,实二次型的规范形的区别及唯一性的区别.四 教学难点:实二次型的唯一性五 教学过程:在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关.二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的.例 二次型313221321262),,(x x x x x x x x x f +-=经过非退化的线性替换⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎭⎫ ⎝⎛--=100110311⎪⎪⎪⎭⎫ ⎝⎛321w w w得到标准形232221622w w w +-. 而经过非退化的线性替换⎪⎪⎪⎭⎫ ⎝⎛321x x x ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=3100312111211⎪⎪⎪⎭⎫ ⎝⎛321y y y 就得到另一个标准形23222132212y y y +-. 这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化的线性替换有关.下面只就复数域与实数域的情形来进一步讨论唯一性的问题. 对于复数域的情形设),,,(21n x x x f 是一个复系数的二次型,则经过一个适当的非退化的线性替换后,),,,(21n x x x f 变为标准形,不妨设标准形为2222211r r y d y d y d +++ ,0≠i d ,r i ,,2,1 = (1)易知,r 就是),,,(21n x x x f 的矩阵的秩.因为复数总可以开平方,我们再作一非退化的线性替换⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++nn r r r r r z y z y z d y z d y1111111 (2) (1)就变为22221r z z z +++ (3)(3)称为复二次型),,,(21n x x x f 的规范形.显然,规范形完全被原二次型的矩阵的秩所决定.定理3 任意一个复系数的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0011 的对角矩阵.从而有,两个复对称矩阵合同的充分必要条件是它们的秩相等.对于实数域的情形设),,,(21n x x x f 是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使),,,(21n x x x f 变为标准形,2211p p y d y d ++ 2211r r p p y d y d ---++(4) 0>i d r i ,,2,1 = ,r 就是),,,(21n x x x f 的矩阵的秩.因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++nn r r r r r z y z y z d y z d y1111111 (5) (4)就变为221p z z ++ 221r p z z ---+ (6)(6)称为实二次型),,,(21n x x x f 的规范形.显然,规范形完全被p r ,这两个数所决定.定理4(惯性定理) 任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3 在实二次型),,,(21n x x x f 的规范形中,正平方项的个数p 称为),,,(21n x x x f 的正惯性指数,负平方项的个数p r -称为),,,(21n x x x f 的负惯性指数,它们的差r p p r p -=--2)(称为),,,(21n x x x f 的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数.§4 正定二次型一 授课内容:§4 正定二次型二 教学目的:通过本节的学习,让学生掌握正定(负定,半正定,半负定,不定)二次型或矩阵.(顺序)主子式的定义,掌握各种类型的判别法.三 教学重点:正定二次型.四 教学难点:判别方法五 教学过程:定义4 实二次型),,,(21n x x x f 称为正定的,如果对于任意一组不全为零的实数n c c c ,,,21 都有0),,,(21>n c c c f .显然,二次型),,,(21n x x x f 221nx x ++= 是正定的,因为只有在021====n c c c 时,221n c c ++ 才为零.一般的,实二次型),,,(21n x x x f 2222211nn x d x d x d +++= 是正定的,当且仅当0>i d n i ,,2,1 =.可以证明,非退化的实线性替换保持正定性不变.定理5 n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于n .定理5说明,正定二次型),,,(21n x x x f 的规范形为221n y y ++ (5)定义5 实对称矩阵A 称为正定的,如果二次型AX X '正定.因为二次型(5)的矩阵是单位矩阵E ,所以一个实对称矩阵是正定的,当且仅当它与单位矩阵合同.推论 正定矩阵的行列式大于零.定义6 子式iii i i i i a a a a a a a a a P212222111211= ),,2,1(n i = 称为矩阵nn ij a A )(=的顺序主子式.定理6 实二次型),,,(21n x x x f ∑∑===n i nj j i ij x x a 11AX X '=是正定的充分必要条件为矩阵A 的顺序主子式全大于零.例 判断二次型3231212322213214845),,(x x x x x x x x x x x x f +-+++=是否正定.解:),,(321x x x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----524212425它的顺序主子式05> , 01225> , 0524212425>---- 因之,),,(321x x x f 正定.与正定性平行,还有下面的概念.定义7 设),,,(21n x x x f 是一实二次型,对于任意一组不全为零的实数n c c c ,,,21 ,如果都有0),,,(21<n c c c f ,那么),,,(21n x x x f 称为负定的;如果都有0),,,(21≥n c c c f ,那么),,,(21n x x x f 称为半正定的;如果都有0),,,(21≤n c c c f ,那么),,,(21n x x x f 称为半负定的;如果它既不是半正定又不是半负定,那么),,,(21n x x x f 就称为不定的.对于半正定,我们有定理7 对于实二次型),,,(21n x x x f AX X '=,其中A 是实对称的,下面条件等价:(1)),,,(21n x x x f 是半正定的.(2)它的正惯性指数与秩相等.(3)有可逆实矩阵C ,使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='n d d d AC C 21,其中,0≥i d n i ,,2,1 =. (4)有实矩阵C 使C C A '=.(5)A 的所有主子式皆大于或等于零.注意:在(5)中,仅有顺序主子式大于或等于零是不能保证半正定性的.比如,()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-=212122211000),(x x x x x x x f 就是一个反例.。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高等代数北京大学第三版北京大学精品课程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一学期第一次课第一章代数学的经典课题§1 若干准备知识代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
数域的定义定义(数域)设是某些复数所组成的集合。
如果K中至少包含两个不同的复数,且对复数的加、减、乘、除四则运算是封闭的,即对内任意两个数、(可以等于),必有,则称K为一个数域。
例1.1 典型的数域举例:复数域C;实数域R;有理数域Q;Gauss数域:Q (i) = {i |∈Q},其中i =。
命题任意数域K都包括有理数域Q。
证明设为任意一个数域。
由定义可知,存在一个元素。
于是。
进而Z,。
最后,Z,,。
这就证明了Q。
证毕。
集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与的公共元素所组成的集合成为与的交集,记作;把和B中的元素合并在一起组成的集合成为与的并集,记做;从集合中去掉属于的那些元素之后剩下的元素组成的集合成为与B的差集,记做。
定义(集合的映射)设、为集合。
如果存在法则,使得中任意元素在法则下对应中唯一确定的元素(记做),则称是到的一个映射,记为如果,则称为在下的像,称为在下的原像。
的所有元素在下的像构成的的子集称为在下的像,记做,即。
若都有则称为单射。
若都存在,使得,则称为满射。
如果既是单射又是满射,则称为双射,或称一一对应。
1.1.4 求和号与求积号1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。
第五章矩阵教课目标:1.掌握矩的加法,乘法及数与矩的乘法运算法。
及其基天性,并熟地矩行运算。
2.认识几种特别矩的性。
教课内容:矩的运算1矩相等我将在一个数域上来。
令 F 是一个数域。
用 F 的元素 a ij作成的一个 m行 n 列矩a11a12a1nA=a21a22a2 na m1 a m 2a mn叫做 F 上一个矩。
A 也作( a ij)。
了指明 A 的行数和列数,有也把它作A mn或( a ij) mn。
一个 m行 n 列矩称一个m*n 矩。
特,把一个 n*n矩叫做一个n 正方,或 n 矩。
F上两个矩,只有在它有同样的行数和列数,而且地点上的元素都相等,才上相等的。
以下提到矩,都指的是数域 F 上的矩。
我将引三种运算:数与矩的乘法,矩的加法以及矩的乘法。
先引入前两种运算。
2矩的性运算定 1数域F的数a与F上一个m*n矩A=(a ij)的乘法( aa ij)aA 指的是m*n矩定 2两个m*n矩A=(a ij),B=(b ij)的和A+B指的是注意,我只好把行数同样,列数同样的两个矩相加。
以上两种运算的一个重要特例是数列的运算。
在回到一般的矩。
我把元素全部是零的矩叫做零矩,作A=(a ij ) ,m*n 矩( a ij +b ij)。
0。
假如矩我就把矩(- a ij),叫做 A 的矩,作—A。
3矩性运的律A+B=B+A;(A+B)+C=A+(B+C) ;0+A=A;A+(-A)=0 ;a(A+B)=Aa+Ab ;(a+b)A=Aa+Ba;a(bA)=(ab)A;里 A,B 和 C表示随意m*n 矩,而 a 和 b表示F中的随意数。
利用矩,我以下定矩的减法:A— B=A+(— B)。
于是有A+B=C A=C— B。
因为数列是矩的特例,以上运算律于数列也建立。
4乘法定3数域F上的m*n矩A=(a ij)与n*p矩B=(b ij m*p 矩。
个矩的第I 行第 j 列( I=1,2,⋯,m; j=1,2,行的元素与 B 的第 j 列的元素的乘的和:)的乘 AB 指的是的一个⋯ p)的元素 c ij等于 A 的第Ic ij=a i1 b1j +a i2 b2j+ ⋯ +a in b nj。