ACM协会培训资料
- 格式:doc
- 大小:1.92 MB
- 文档页数:38
ACM培训资料目录第一篇入门篇 (3)第1章新手入门 (5)1ACM国际大学生程序设计竞赛简介 (5)2ACM竞赛需要的知识 (8)3团队配合 (14)4练习、练习、再练习 (15)5对新手的一些建议 (16)第2章C++语言介绍 (22)1C++简介 (22)2变量 (23)3C++数据类型 (25)4C++操作符 (30)5数组 (35)6字符数组 (38)7字串操作函数 (41)8过程控制 (45)9C++中的函数 (54)10函数规则 (59)第3章STL简介 (61)1泛型程序设计 (61)2STL 的组成 (67)第二篇算法篇 (102)第1章基本算法 (103)1算法初步 (103)2分治算法 (115)3搜索算法 (124)4贪婪算法 (135)第2章进阶算法 (165)1数论基础 (165)2图论算法 (180)3计算几何基础 (222)第三篇实践篇 (246)第1章《多边形》 (247)第2章《灌溉问题》 (255)第3章《L GAME》 (263)第4章《NUMBER》解题报告 (271)第5章《J OBS》解题报告 (275)第6章《包裹运送》 (283)第7章《桶的摆放》 (290)第一篇入门篇练就坚实的基础,总有一天……我们可以草木皆兵!第1章新手入门1ACM国际大学生程序设计竞赛简介1.1背景与历史1970年在美国TexasA&M大学举办了首次区域竞赛,从而拉开了国际大学生程序设计竞赛的序幕。
1977年,该项竞赛被分为两个级别,即区域赛和总决赛,这便是现代ACM竞赛的开始。
在亚洲、美国、欧洲、太平洋地区均设有区域赛点。
1995至1996年,来自世界各地的一千多支高校的代表队参加了ACM区域竞赛。
ACM 大学生程序设计竞赛由美国计算机协会(ACM)举办,旨在向全世界的大学生提供一个展示和锻炼其解决问题和运用计算机能力的机会,现已成为全世界范围内历史最悠久、规模最大的大学生程序设计竞赛。
acm培训计划导言ACM (Association for Computing Machinery) 是一个国际性的计算机学会,旨在为计算机专业人士提供交流学习和培训的平台。
ACM 培训计划旨在帮助学生提升他们的算法和编程能力,从而更好地参与 ACM 竞赛。
本培训计划将围绕算法与数据结构、编程语言、数学及竞赛技巧展开,以帮助学生提升专业知识、提高团队合作能力和竞赛技能。
一、培训目标1. 提升学生算法和数据结构基础知识,使其能够灵活运用于解决实际问题。
2. 培养学生对编程语言的深刻理解和应用能力。
3. 加强学生的数学基础,提高解决问题的抽象能力。
4. 提高学生的 ACM 竞赛技巧,培养解决问题的思考和团队合作能力。
二、培训内容1. 算法与数据结构1.1. 基本算法:递归、分治、贪心、动态规划1.2. 基本数据结构:栈、队列、链表、树、图1.3. 高级算法:最短路径、最小生成树、网络流、字符串算法1.4. 算法分析与设计:时间复杂度、空间复杂度和算法优化2. 编程语言2.1. C/C++/Java/Python 等主流编程语言的基本语法和特性2.2. 编程范例分析和练习2.3. 算法实现与调试技巧3. 数学基础3.1. 离散数学基础知识3.2. 数论、组合数学和图论基础3.3. 动态规划数学建模4. ACM 竞赛技巧4.1. ACM 竞赛规则和常见题型分析4.2. 模拟训练和解题技巧分享4.3. 队伍协作与策略分享三、培训方式1. 理论授课1.1. 定期组织专家授课,系统讲解培训内容,由资深ACM 竞赛选手分享解题技巧和经验。
1.2. 组织学习交流会,鼓励学生积极提问和讨论。
2. 实践训练2.1. 组织编程实践训练,引导学生独立完成算法实现和调试。
2.2. 选派导师进行一对一指导,帮助学生解决练习中遇到的难点问题。
3. 竞赛准备3.1. 组织模拟 ACM 竞赛,帮助学生提前适应竞赛环境和节奏。
3.2. 参与区域赛和国际赛前的模拟训练,为学生提供更加真实的竞赛体验。
1、几何1.1 注意 (4)1.2 几何公式 (4)1.3 多边形 (6)1.4 多边形切割 (9)1.5 浮点函数 (10)1.6 面积 (15)1.7 球面 (16)1.8 三角形 (17)1.9 三维几何 (19)1.10 凸包 (26)1.11 网格 (28)1.12 圆 (29)1.13 整数函数 (30)2、组合2.1 组合公式 (33)2.2 排列组合生成 (33)2.3 生成gray码 (35)2.4 置换(polya) (35)2.5 字典序全排列 (36)2.6 字典序组合 (36)3、结构3.1 并查集 (37)3.2 堆 (38)3.3 线段树 (39)3.4 子段和 (44)3.5 子阵和 (44)4、数论4.1 阶乘最后非0位 (45)4.2 模线性方程组 (46)4.3 素数 (47)4.4 欧拉函数 (48)5、数值计算5.1 定积分计算(Romberg) (49)5.2 多项式求根(牛顿法) (51)5.3 周期性方程(追赶法) (52)6、图论—NP搜索6.1 最大团 (53)6.2 最大团(n<64)(faster) (54)7、图论—连通性7.1 无向图关键点(dfs邻接阵) (56)7.2 无向图关键边(dfs邻接阵) (57)7.3 无向图的块(bfs邻接阵) (58)7.4 无向图连通分支(dfs/bfs邻接阵) (59)7.5 有向图强连通分支(dfs/bfs邻接阵) (60)7.6 有向图最小点基(邻接阵) (61)8、图论—匹配8.1 二分图最大匹配(hungary邻接表) (62)8.2 二分图最大匹配(hungary邻接阵) (63)8.3 二分图最大匹配(hungary正向表) (63)8.4二分图最佳匹配(kuhn_munkras邻接阵) (64)8.5 一般图匹配(邻接表) (65)8.6 一般图匹配(邻接阵) (66)8.7 一般图匹配(正向表) (66)9、图论—网络流9.1 最大流(邻接阵) (67)9.2 上下界最大流(邻接阵) (68)9.3 上下界最小流(邻接阵) (69)9.4 最大流无流量(邻接阵) (70)9.5 最小费用最大流(邻接阵) (70)10、图论—应用10.1 欧拉回路(邻接阵) (71)10.2 树的前序表转化 (72)10.3 树的优化算法 (73)10.4 拓扑排序(邻接阵) (74)10.5 最佳边割集 (75)10.6 最佳点割集 (76)10.7 最小边割集 (77)10.8 最小点割集 (78)10.9 最小路径覆盖 (80)11、图论—支撑树11.1 最小生成树(kruskal邻接表) (80)11.2 最小生成树(kruskal正向表) (82)11.3 最小生成树(prim+binary_heap邻接表) (83)11.4 最小生成树(prim+binary_heap正向表) (84)11.5 最小生成树(prim+mapped_heap邻接表) (85)11.6 最小生成树(prim+mapped_heap正向表) (87)11.7 最小生成树(prim邻接阵) (88)11.8 最小树形图(邻接阵) (88)12、图论—最短路径12.1 最短路径(单源bellman_ford邻接阵) (90)12.2 最短路径(单源dijkstra+bfs邻接表) (90)12.3 最短路径(单源dijkstra+bfs正向表) (91)12.4 最短路径(单源dijkstra+binary_heap邻接表) (92)12.5 最短路径(单源dijkstra+binary_heap正向表) (93)12.6 最短路径(单源dijkstra+mapped_heap邻接表) (94)12.7 最短路径(单源dijkstra+mapped_heap正向表) (95)12.8 最短路径(单源dijkstra邻接阵) (96)12.9 最短路径(多源floyd_warshall邻接阵) (97)13、应用13.1 Joseph问题 (97)13.2 N皇后构造解 (98)13.3 布尔母函数 (99)13.4 第k元素 (99)13.5 幻方构造 (100)13.6 模式匹配(kmp) (101)13.7 逆序对数 (102)13.8 字符串最小表示 (102)13.9 最长公共单调子序列 (103)13.10 最长子序列 (104)13.11 最大子串匹配 (105)13.12 最大子段和 (106)13.13 最大子阵和 (106)14、其它14.1 大数(只能处理正数) (107)14.2 分数 (113)14.3 矩阵 (115)14.4 线性方程组 (117)14.5 线性相关 (119)14.6 日期 (120)1、几何1.1注意1. 注意舍入方式(0.5的舍入方向);防止输出-0.2. 几何题注意多测试不对称数据.3. 整数几何注意xmult和dmult是否会出界;符点几何注意eps的使用.4. 避免使用斜率;注意除数是否会为0.5. 公式一定要化简后再代入.6. 判断同一个2*PI域内两角度差应该是abs(a1-a2)<beta||abs(a1-a2)>pi+pi-beta;相等应该是abs(a1-a2)<eps||abs(a1-a2)>pi+pi-eps;7. 需要的话尽量使用atan2,注意:atan2(0,0)=0,atan2(1,0)=pi/2,atan2(-1,0)=-pi/2,atan2(0,1)=0,atan2(0,-1)=pi.8. cross product = |u|*|v|*sin(a)dot product = |u|*|v|*cos(a)9. (P1-P0)x(P2-P0)结果的意义:正: <P0,P1>在<P0,P2>顺时针(0,pi)内负: <P0,P1>在<P0,P2>逆时针(0,pi)内0 : <P0,P1>,<P0,P2>共线,夹角为0或pi10. 误差限缺省使用1e-8!1.2几何公式三角形:1. 半周长P=(a+b+c)/22. 面积S=aHa/2=absin(C)/2=sqrt(P(P-a)(P-b)(P-c))3. 中线Ma=sqrt(2(b^2+c^2)-a^2)/2=sqrt(b^2+c^2+2bccos(A))/24. 角平分线Ta=sqrt(bc((b+c)^2-a^2))/(b+c)=2bccos(A/2)/(b+c)5. 高线Ha=bsin(C)=csin(B)=sqrt(b^2-((a^2+b^2-c^2)/(2a))^2)6. 内切圆半径r=S/P=asin(B/2)sin(C/2)/sin((B+C)/2)=4Rsin(A/2)sin(B/2)sin(C/2)=sqrt((P-a)(P-b)(P-c)/P)=Ptan(A/2)tan(B/2)tan(C/2)7. 外接圆半径R=abc/(4S)=a/(2sin(A))=b/(2sin(B))=c/(2sin(C))四边形:D1,D2为对角线,M对角线中点连线,A为对角线夹角1. a^2+b^2+c^2+d^2=D1^2+D2^2+4M^22. S=D1D2sin(A)/2(以下对圆的内接四边形)3. ac+bd=D1D24. S=sqrt((P-a)(P-b)(P-c)(P-d)),P为半周长正n边形:R为外接圆半径,r为内切圆半径1. 中心角A=2PI/n2. 内角C=(n-2)PI/n3. 边长a=2sqrt(R^2-r^2)=2Rsin(A/2)=2rtan(A/2)4. 面积S=nar/2=nr^2tan(A/2)=nR^2sin(A)/2=na^2/(4tan(A/2))圆:1. 弧长l=rA2. 弦长a=2sqrt(2hr-h^2)=2rsin(A/2)3. 弓形高h=r-sqrt(r^2-a^2/4)=r(1-cos(A/2))=atan(A/4)/24. 扇形面积S1=rl/2=r^2A/25. 弓形面积S2=(rl-a(r-h))/2=r^2(A-sin(A))/2棱柱:1. 体积V=Ah,A为底面积,h为高2. 侧面积S=lp,l为棱长,p为直截面周长3. 全面积T=S+2A棱锥:1. 体积V=Ah/3,A为底面积,h为高(以下对正棱锥)2. 侧面积S=lp/2,l为斜高,p为底面周长3. 全面积T=S+A棱台:1. 体积V=(A1+A2+sqrt(A1A2))h/3,A1.A2为上下底面积,h为高(以下为正棱台)2. 侧面积S=(p1+p2)l/2,p1.p2为上下底面周长,l为斜高3. 全面积T=S+A1+A2圆柱:1. 侧面积S=2PIrh2. 全面积T=2PIr(h+r)3. 体积V=PIr^2h圆锥:1. 母线l=sqrt(h^2+r^2)2. 侧面积S=PIrl3. 全面积T=PIr(l+r)4. 体积V=PIr^2h/3圆台:1. 母线l=sqrt(h^2+(r1-r2)^2)2. 侧面积S=PI(r1+r2)l3. 全面积T=PIr1(l+r1)+PIr2(l+r2)4. 体积V=PI(r1^2+r2^2+r1r2)h/3球:1. 全面积T=4PIr^22. 体积V=4PIr^3/3球台:1. 侧面积S=2PIrh2. 全面积T=PI(2rh+r1^2+r2^2)3. 体积V=PIh(3(r1^2+r2^2)+h^2)/6球扇形:1. 全面积T=PIr(2h+r0),h为球冠高,r0为球冠底面半径2. 体积V=2PIr^2h/31.3多边形#include <stdlib.h>#include <math.h>#define MAXN 1000#define offset 10000#define eps 1e-8#define zero(x) (((x)>0?(x):-(x))<eps)#define _sign(x) ((x)>eps?1:((x)<-eps?2:0))struct point{double x,y;};struct line{point a,b;};double xmult(point p1,point p2,point p0){return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);}//判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线int is_convex(int n,point* p){int i,s[3]={1,1,1};for (i=0;i<n&&s[1]|s[2];i++)s[_sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0;return s[1]|s[2];}//判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线int is_convex_v2(int n,point* p){int i,s[3]={1,1,1};for (i=0;i<n&&s[0]&&s[1]|s[2];i++)s[_sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0;return s[0]&&s[1]|s[2];}//判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出int inside_convex(point q,int n,point* p){int i,s[3]={1,1,1};for (i=0;i<n&&s[1]|s[2];i++)s[_sign(xmult(p[(i+1)%n],q,p[i]))]=0;return s[1]|s[2];}//判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回0int inside_convex_v2(point q,int n,point* p){int i,s[3]={1,1,1};for (i=0;i<n&&s[0]&&s[1]|s[2];i++)s[_sign(xmult(p[(i+1)%n],q,p[i]))]=0;return s[0]&&s[1]|s[2];}//判点在任意多边形内,顶点按顺时针或逆时针给出//on_edge表示点在多边形边上时的返回值,offset为多边形坐标上限int inside_polygon(point q,int n,point* p,int on_edge=1){point q2;int i=0,count;while (i<n)for (count=i=0,q2.x=rand()+offset,q2.y=rand()+offset;i<n;i++)if(zero(xmult(q,p[i],p[(i+1)%n]))&&(p[i].x-q.x)*(p[(i+1)%n].x-q.x)<eps&&(p[i].y-q.y)*(p[(i+1)% n].y-q.y)<eps)return on_edge;else if (zero(xmult(q,q2,p[i])))break;else if (xmult(q,p[i],q2)*xmult(q,p[(i+1)%n],q2)<-eps&&xmult(p[i],q,p[(i+1)%n])*xmult(p[i],q2,p[(i+1) %n])<-eps)count++;return count&1;}inline int opposite_side(point p1,point p2,point l1,point l2){return xmult(l1,p1,l2)*xmult(l1,p2,l2)<-eps;}inline int dot_online_in(point p,point l1,point l2){return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;}//判线段在任意多边形内,顶点按顺时针或逆时针给出,与边界相交返回1int inside_polygon(point l1,point l2,int n,point* p){point t[MAXN],tt;int i,j,k=0;if (!inside_polygon(l1,n,p)||!inside_polygon(l2,n,p))return 0;for (i=0;i<n;i++)if (opposite_side(l1,l2,p[i],p[(i+1)%n])&&opposite_side(p[i],p[(i+1)%n],l1,l2)) return 0;else if (dot_online_in(l1,p[i],p[(i+1)%n]))t[k++]=l1;else if (dot_online_in(l2,p[i],p[(i+1)%n]))t[k++]=l2;else if (dot_online_in(p[i],l1,l2))t[k++]=p[i];for (i=0;i<k;i++)for (j=i+1;j<k;j++){tt.x=(t[i].x+t[j].x)/2;tt.y=(t[i].y+t[j].y)/2;if (!inside_polygon(tt,n,p))return 0;}return 1;}point intersection(line u,line v){point ret=u.a;double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x)) /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));ret.x+=(u.b.x-u.a.x)*t;ret.y+=(u.b.y-u.a.y)*t;return ret;}point barycenter(point a,point b,point c){line u,v;u.a.x=(a.x+b.x)/2;u.a.y=(a.y+b.y)/2;u.b=c;v.a.x=(a.x+c.x)/2;v.a.y=(a.y+c.y)/2;v.b=b;return intersection(u,v);}//多边形重心point barycenter(int n,point* p){point ret,t;double t1=0,t2;int i;ret.x=ret.y=0;for (i=1;i<n-1;i++)if (fabs(t2=xmult(p[0],p[i],p[i+1]))>eps){t=barycenter(p[0],p[i],p[i+1]);ret.x+=t.x*t2;ret.y+=t.y*t2;t1+=t2;}if (fabs(t1)>eps)ret.x/=t1,ret.y/=t1;return ret;}1.4多边形切割//多边形切割//可用于半平面交#define MAXN 100#define eps 1e-8#define zero(x) (((x)>0?(x):-(x))<eps)struct point{double x,y;};double xmult(point p1,point p2,point p0){return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);}int same_side(point p1,point p2,point l1,point l2){return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;}point intersection(point u1,point u2,point v1,point v2){point ret=u1;double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));ret.x+=(u2.x-u1.x)*t;ret.y+=(u2.y-u1.y)*t;return ret;}//将多边形沿l1,l2确定的直线切割在side侧切割,保证l1,l2,side不共线void polygon_cut(int& n,point* p,point l1,point l2,point side){point pp[100];int m=0,i;for (i=0;i<n;i++){if (same_side(p[i],side,l1,l2))pp[m++]=p[i];if(!same_side(p[i],p[(i+1)%n],l1,l2)&&!(zero(xmult(p[i],l1,l2))&&zero(xmult(p[(i+1)%n],l1,l2)))) pp[m++]=intersection(p[i],p[(i+1)%n],l1,l2);}for (n=i=0;i<m;i++)if (!i||!zero(pp[i].x-pp[i-1].x)||!zero(pp[i].y-pp[i-1].y))p[n++]=pp[i];if (zero(p[n-1].x-p[0].x)&&zero(p[n-1].y-p[0].y))n--;if (n<3)n=0;}1.5浮点函数//浮点几何函数库#include <math.h>#define eps 1e-8#define zero(x) (((x)>0?(x):-(x))<eps)struct point{double x,y;};struct line{point a,b;};//计算cross product (P1-P0)x(P2-P0)double xmult(point p1,point p2,point p0){return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);}double xmult(double x1,double y1,double x2,double y2,double x0,double y0){ return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);}//计算dot product (P1-P0).(P2-P0)double dmult(point p1,point p2,point p0){return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);}double dmult(double x1,double y1,double x2,double y2,double x0,double y0){ return (x1-x0)*(x2-x0)+(y1-y0)*(y2-y0);}//两点距离double distance(point p1,point p2){return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));}double distance(double x1,double y1,double x2,double y2){return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));}//判三点共线int dots_inline(point p1,point p2,point p3){return zero(xmult(p1,p2,p3));}int dots_inline(double x1,double y1,double x2,double y2,double x3,double y3){ return zero(xmult(x1,y1,x2,y2,x3,y3));}//判点是否在线段上,包括端点int dot_online_in(point p,line l){return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps; }int dot_online_in(point p,point l1,point l2){return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;}int dot_online_in(double x,double y,double x1,double y1,double x2,double y2){return zero(xmult(x,y,x1,y1,x2,y2))&&(x1-x)*(x2-x)<eps&&(y1-y)*(y2-y)<eps;}//判点是否在线段上,不包括端点int dot_online_ex(point p,line l){returndot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y)); }int dot_online_ex(point p,point l1,point l2){returndot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y))&&(!zero(p.x-l2.x)||!zero(p.y-l2.y)); }int dot_online_ex(double x,double y,double x1,double y1,double x2,double y2){ returndot_online_in(x,y,x1,y1,x2,y2)&&(!zero(x-x1)||!zero(y-y1))&&(!zero(x-x2)||!zero(y-y2));}//判两点在线段同侧,点在线段上返回0int same_side(point p1,point p2,line l){return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps;}int same_side(point p1,point p2,point l1,point l2){return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;}//判两点在线段异侧,点在线段上返回0int opposite_side(point p1,point p2,line l){return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps;}int opposite_side(point p1,point p2,point l1,point l2){return xmult(l1,p1,l2)*xmult(l1,p2,l2)<-eps;}//判两直线平行int parallel(line u,line v){return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));}int parallel(point u1,point u2,point v1,point v2){return zero((u1.x-u2.x)*(v1.y-v2.y)-(v1.x-v2.x)*(u1.y-u2.y));}//判两直线垂直int perpendicular(line u,line v){return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y));int perpendicular(point u1,point u2,point v1,point v2){return zero((u1.x-u2.x)*(v1.x-v2.x)+(u1.y-u2.y)*(v1.y-v2.y));}//判两线段相交,包括端点和部分重合int intersect_in(line u,line v){if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u); }int intersect_in(point u1,point u2,point v1,point v2){if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);returndot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u 2);}//判两线段相交,不包括端点和部分重合int intersect_ex(line u,line v){return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);}int intersect_ex(point u1,point u2,point v1,point v2){return opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);}//计算两直线交点,注意事先判断直线是否平行!//线段交点请另外判线段相交(同时还是要判断是否平行!)point intersection(line u,line v){point ret=u.a;double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));ret.x+=(u.b.x-u.a.x)*t;ret.y+=(u.b.y-u.a.y)*t;return ret;}point intersection(point u1,point u2,point v1,point v2){point ret=u1;double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));ret.x+=(u2.x-u1.x)*t;ret.y+=(u2.y-u1.y)*t;return ret;//点到直线上的最近点point ptoline(point p,line l){point t=p;t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;return intersection(p,t,l.a,l.b);}point ptoline(point p,point l1,point l2){point t=p;t.x+=l1.y-l2.y,t.y+=l2.x-l1.x;return intersection(p,t,l1,l2);}//点到直线距离double disptoline(point p,line l){return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);}double disptoline(point p,point l1,point l2){return fabs(xmult(p,l1,l2))/distance(l1,l2);}double disptoline(double x,double y,double x1,double y1,double x2,double y2){ return fabs(xmult(x,y,x1,y1,x2,y2))/distance(x1,y1,x2,y2);}//点到线段上的最近点point ptoseg(point p,line l){point t=p;t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)return distance(p,l.a)<distance(p,l.b)?l.a:l.b;return intersection(p,t,l.a,l.b);}point ptoseg(point p,point l1,point l2){point t=p;t.x+=l1.y-l2.y,t.y+=l2.x-l1.x;if (xmult(l1,t,p)*xmult(l2,t,p)>eps)return distance(p,l1)<distance(p,l2)?l1:l2;return intersection(p,t,l1,l2);}//点到线段距离double disptoseg(point p,line l){point t=p;t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)return distance(p,l.a)<distance(p,l.b)?distance(p,l.a):distance(p,l.b);return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);}double disptoseg(point p,point l1,point l2){point t=p;t.x+=l1.y-l2.y,t.y+=l2.x-l1.x;if (xmult(l1,t,p)*xmult(l2,t,p)>eps)return distance(p,l1)<distance(p,l2)?distance(p,l1):distance(p,l2);return fabs(xmult(p,l1,l2))/distance(l1,l2);}//矢量V以P为顶点逆时针旋转angle并放大scale倍point rotate(point v,point p,double angle,double scale){point ret=p;v.x-=p.x,v.y-=p.y;p.x=scale*cos(angle);p.y=scale*sin(angle);ret.x+=v.x*p.x-v.y*p.y;ret.y+=v.x*p.y+v.y*p.x;return ret;}1.6面积#include <math.h>struct point{double x,y;};//计算cross product (P1-P0)x(P2-P0)double xmult(point p1,point p2,point p0){return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);}double xmult(double x1,double y1,double x2,double y2,double x0,double y0){ return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);}//计算三角形面积,输入三顶点double area_triangle(point p1,point p2,point p3){return fabs(xmult(p1,p2,p3))/2;}double area_triangle(double x1,double y1,double x2,double y2,double x3,double y3){ return fabs(xmult(x1,y1,x2,y2,x3,y3))/2;}//计算三角形面积,输入三边长double area_triangle(double a,double b,double c){double s=(a+b+c)/2;return sqrt(s*(s-a)*(s-b)*(s-c));}//计算多边形面积,顶点按顺时针或逆时针给出double area_polygon(int n,point* p){double s1=0,s2=0;int i;for (i=0;i<n;i++)s1+=p[(i+1)%n].y*p[i].x,s2+=p[(i+1)%n].y*p[(i+2)%n].x;return fabs(s1-s2)/2;}1.7球面#include <math.h>const double pi=acos(-1);//计算圆心角lat表示纬度,-90<=w<=90,lng表示经度//返回两点所在大圆劣弧对应圆心角,0<=angle<=pidouble angle(double lng1,double lat1,double lng2,double lat2){ double dlng=fabs(lng1-lng2)*pi/180;while (dlng>=pi+pi)dlng-=pi+pi;if (dlng>pi)dlng=pi+pi-dlng;lat1*=pi/180,lat2*=pi/180;return acos(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2));}//计算距离,r为球半径double line_dist(double r,double lng1,double lat1,double lng2,double lat2){ double dlng=fabs(lng1-lng2)*pi/180;while (dlng>=pi+pi)dlng-=pi+pi;if (dlng>pi)dlng=pi+pi-dlng;lat1*=pi/180,lat2*=pi/180;return r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2))); }//计算球面距离,r为球半径inline double sphere_dist(double r,double lng1,double lat1,double lng2,double lat2){ return r*angle(lng1,lat1,lng2,lat2);}1.8三角形#include <math.h>struct point{double x,y;};struct line{point a,b;};double distance(point p1,point p2){return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));}point intersection(line u,line v){point ret=u.a;double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));ret.x+=(u.b.x-u.a.x)*t;ret.y+=(u.b.y-u.a.y)*t;return ret;}//外心point circumcenter(point a,point b,point c){line u,v;u.a.x=(a.x+b.x)/2;u.a.y=(a.y+b.y)/2;u.b.x=u.a.x-a.y+b.y;u.b.y=u.a.y+a.x-b.x;v.a.x=(a.x+c.x)/2;v.a.y=(a.y+c.y)/2;v.b.x=v.a.x-a.y+c.y;v.b.y=v.a.y+a.x-c.x;return intersection(u,v);}//内心point incenter(point a,point b,point c){line u,v;double m,n;u.a=a;m=atan2(b.y-a.y,b.x-a.x);n=atan2(c.y-a.y,c.x-a.x);u.b.x=u.a.x+cos((m+n)/2);u.b.y=u.a.y+sin((m+n)/2);v.a=b;m=atan2(a.y-b.y,a.x-b.x);n=atan2(c.y-b.y,c.x-b.x);v.b.x=v.a.x+cos((m+n)/2);v.b.y=v.a.y+sin((m+n)/2);return intersection(u,v);}//垂心point perpencenter(point a,point b,point c){line u,v;u.a=c;u.b.x=u.a.x-a.y+b.y;u.b.y=u.a.y+a.x-b.x;v.a=b;v.b.x=v.a.x-a.y+c.y;v.b.y=v.a.y+a.x-c.x;return intersection(u,v);}//重心//到三角形三顶点距离的平方和最小的点//三角形内到三边距离之积最大的点point barycenter(point a,point b,point c){line u,v;u.a.x=(a.x+b.x)/2;u.a.y=(a.y+b.y)/2;u.b=c;v.a.x=(a.x+c.x)/2;v.a.y=(a.y+c.y)/2;v.b=b;return intersection(u,v);}//费马点//到三角形三顶点距离之和最小的点point fermentpoint(point a,point b,point c){point u,v;double step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+fabs(c.x)+fabs(c.y);int i,j,k;u.x=(a.x+b.x+c.x)/3;u.y=(a.y+b.y+c.y)/3;while (step>1e-10)for (k=0;k<10;step/=2,k++)for (i=-1;i<=1;i++)for (j=-1;j<=1;j++){v.x=u.x+step*i;v.y=u.y+step*j;if(distance(u,a)+distance(u,b)+distance(u,c)>distance(v,a)+distance(v,b)+distance(v,c))u=v;}return u;}1.9三维几何//三维几何函数库#include <math.h>#define eps 1e-8#define zero(x) (((x)>0?(x):-(x))<eps)struct point3{double x,y,z;};struct line3{point3 a,b;};struct plane3{point3 a,b,c;};//计算cross product U x Vpoint3 xmult(point3 u,point3 v){point3 ret;ret.x=u.y*v.z-v.y*u.z;ret.y=u.z*v.x-u.x*v.z;ret.z=u.x*v.y-u.y*v.x;return ret;}//计算dot product U . Vdouble dmult(point3 u,point3 v){return u.x*v.x+u.y*v.y+u.z*v.z;}//矢量差U - Vpoint3 subt(point3 u,point3 v){point3 ret;ret.x=u.x-v.x;ret.y=u.y-v.y;ret.z=u.z-v.z;return ret;}//取平面法向量point3 pvec(plane3 s){return xmult(subt(s.a,s.b),subt(s.b,s.c));}point3 pvec(point3 s1,point3 s2,point3 s3){return xmult(subt(s1,s2),subt(s2,s3));}//两点距离,单参数取向量大小double distance(point3 p1,point3 p2){return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z)); }//向量大小double vlen(point3 p){return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);}//判三点共线int dots_inline(point3 p1,point3 p2,point3 p3){return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps;}//判四点共面int dots_onplane(point3 a,point3 b,point3 c,point3 d){return zero(dmult(pvec(a,b,c),subt(d,a)));}//判点是否在线段上,包括端点和共线int dot_online_in(point3 p,line3 l){return zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&& (l.a.y-p.y)*(l.b.y-p.y)<eps&&(l.a.z-p.z)*(l.b.z-p.z)<eps;}int dot_online_in(point3 p,point3 l1,point3 l2){return zero(vlen(xmult(subt(p,l1),subt(p,l2))))&&(l1.x-p.x)*(l2.x-p.x)<eps&& (l1.y-p.y)*(l2.y-p.y)<eps&&(l1.z-p.z)*(l2.z-p.z)<eps;}//判点是否在线段上,不包括端点int dot_online_ex(point3 p,line3 l){return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z));}int dot_online_ex(point3 p,point3 l1,point3 l2){return dot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y)||!zero(p.z-l1.z))&& (!zero(p.x-l2.x)||!zero(p.y-l2.y)||!zero(p.z-l2.z));}//判点是否在空间三角形上,包括边界,三点共线无意义int dot_inplane_in(point3 p,plane3 s){return zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))- vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a))));}int dot_inplane_in(point3 p,point3 s1,point3 s2,point3 s3){return zero(vlen(xmult(subt(s1,s2),subt(s1,s3)))-vlen(xmult(subt(p,s1),subt(p,s2)))- vlen(xmult(subt(p,s2),subt(p,s3)))-vlen(xmult(subt(p,s3),subt(p,s1))));}//判点是否在空间三角形上,不包括边界,三点共线无意义int dot_inplane_ex(point3 p,plane3 s){return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&&vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>eps; }int dot_inplane_ex(point3 p,point3 s1,point3 s2,point3 s3){return dot_inplane_in(p,s1,s2,s3)&&vlen(xmult(subt(p,s1),subt(p,s2)))>eps&& vlen(xmult(subt(p,s2),subt(p,s3)))>eps&&vlen(xmult(subt(p,s3),subt(p,s1)))>eps; }//判两点在线段同侧,点在线段上返回0,不共面无意义int same_side(point3 p1,point3 p2,line3 l){return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps;}int same_side(point3 p1,point3 p2,point3 l1,point3 l2){return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))>eps;}//判两点在线段异侧,点在线段上返回0,不共面无意义int opposite_side(point3 p1,point3 p2,line3 l){return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))<-eps;}int opposite_side(point3 p1,point3 p2,point3 l1,point3 l2){return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))<-eps;}//判两点在平面同侧,点在平面上返回0int same_side(point3 p1,point3 p2,plane3 s){return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps;}int same_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps; }//判两点在平面异侧,点在平面上返回0int opposite_side(point3 p1,point3 p2,plane3 s){return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps;}int opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps; }//判两直线平行int parallel(line3 u,line3 v){return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps;}int parallel(point3 u1,point3 u2,point3 v1,point3 v2){return vlen(xmult(subt(u1,u2),subt(v1,v2)))<eps;}//判两平面平行int parallel(plane3 u,plane3 v){return vlen(xmult(pvec(u),pvec(v)))<eps;}int parallel(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){ return vlen(xmult(pvec(u1,u2,u3),pvec(v1,v2,v3)))<eps;}//判直线与平面平行int parallel(line3 l,plane3 s){return zero(dmult(subt(l.a,l.b),pvec(s)));}int parallel(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){return zero(dmult(subt(l1,l2),pvec(s1,s2,s3)));}//判两直线垂直int perpendicular(line3 u,line3 v){return zero(dmult(subt(u.a,u.b),subt(v.a,v.b)));}int perpendicular(point3 u1,point3 u2,point3 v1,point3 v2){return zero(dmult(subt(u1,u2),subt(v1,v2)));}//判两平面垂直int perpendicular(plane3 u,plane3 v){return zero(dmult(pvec(u),pvec(v)));}int perpendicular(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){ return zero(dmult(pvec(u1,u2,u3),pvec(v1,v2,v3)));}//判直线与平面平行int perpendicular(line3 l,plane3 s){return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps;}int perpendicular(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){return vlen(xmult(subt(l1,l2),pvec(s1,s2,s3)))<eps;}//判两线段相交,包括端点和部分重合int intersect_in(line3 u,line3 v){if (!dots_onplane(u.a,u.b,v.a,v.b))return 0;if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u); }int intersect_in(point3 u1,point3 u2,point3 v1,point3 v2){if (!dots_onplane(u1,u2,v1,v2))return 0;if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);returndot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u 2);}//判两线段相交,不包括端点和部分重合int intersect_ex(line3 u,line3 v){return dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u); }int intersect_ex(point3 u1,point3 u2,point3 v1,point3 v2){returndots_onplane(u1,u2,v1,v2)&&opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);}//判线段与空间三角形相交,包括交于边界和(部分)包含int intersect_in(line3 l,plane3 s){return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&& !same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b);}int intersect_in(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ return !same_side(l1,l2,s1,s2,s3)&&!same_side(s1,s2,l1,l2,s3)&& !same_side(s2,s3,l1,l2,s1)&&!same_side(s3,s1,l1,l2,s2);}//判线段与空间三角形相交,不包括交于边界和(部分)包含int intersect_ex(line3 l,plane3 s){return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&& opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b); }int intersect_ex(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ return opposite_side(l1,l2,s1,s2,s3)&&opposite_side(s1,s2,l1,l2,s3)&& opposite_side(s2,s3,l1,l2,s1)&&opposite_side(s3,s1,l1,l2,s2);}//计算两直线交点,注意事先判断直线是否共面和平行!//线段交点请另外判线段相交(同时还是要判断是否平行!)point3 intersection(line3 u,line3 v){point3 ret=u.a;double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));ret.x+=(u.b.x-u.a.x)*t;ret.y+=(u.b.y-u.a.y)*t;ret.z+=(u.b.z-u.a.z)*t;return ret;}point3 intersection(point3 u1,point3 u2,point3 v1,point3 v2){point3 ret=u1;double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));ret.x+=(u2.x-u1.x)*t;ret.y+=(u2.y-u1.y)*t;ret.z+=(u2.z-u1.z)*t;return ret;}//计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!。
实用标准文案ACM培训大纲基础内容:数据结构——》搜索——》图论DP数论博弈中级内容数据结构网络流第一章搜索1.二分搜索三分搜索2.栈 3.队列 4.深搜 5.广搜 6.第二章数据结构1.优先队列并查集 2.二叉搜索树3.线段树(单点更新) 4.Trie5.精彩文档.实用标准文案第三章图论1.图的表示1.1二维数组1.2邻接表1.3前向星2.图的遍历2.1双连通分量2.2拓扑排序3.最短路3.1迪杰斯特拉3.2弗洛伊德3.3SPFA4.匹配匈牙利算法5.生成树6.网络流简介第四章动态规划1.状态转移方程2.引入2.10-1背包2.2硬币问题2.3矩阵链乘3.区间DP4.按位DP5.树形DP6.状压DP第五章数论1.欧几里得扩展欧几里得 2.因数分解3.费马小定理 4.欧拉定理 5.素数6.6.1筛法6.2素数判定6.2.1O(√n)方法精彩文档.实用标准文案6.2.2Miller-rabin测试第六章博弈1.Nim和2.SG函数第七章中级数据结构1.树状数组RMQ 2.KMP3.AC自动机4.线段树(区间更新)5.第八章图论进阶1.网络流问题精彩文档.实用标准文案综述在很多人眼里,东北大学秦皇岛分校不算是985高校。
所以我们要用自己的能力证明我们有985的实力。
ACM是计算机界认可度最高的一个比赛,可以说只要区域赛有过奖牌,国内任何IT公司没有理由不要。
同时,在高校之中,对一个大学计算机专业的评价,大部分人也会首先看ACM 的水平。
将ACM打出学校,在国内打出一定成绩,对扩大我校影响力很有帮助。
考虑到本校暂时没有进行专题训练的出题能力,专题训练的题目主要从UESTC 2014年集训队专题训练中获取,再加上从别的OJ上找一些题目。
训练的平台设置在华中科技大学的vertual judge上面。
本人将在毕业之前承担培训任务。
在2015学年开始之前,培训计划为每两周一次,中间空闲的时间由大二或者大一熟悉C++的同学给不熟悉C++的同学进行基础的讲解。
学院ACM协会培训资料学院ACM协会06年10月第一章新手入门1.ACM国际大学生程序设计竞赛简介1) 背景与历史1970年在美国TexasA&M大学举办了首次区域竞赛,从而拉开了国际大学生程序设计竞赛的序幕。
1977年,该项竞赛被分为两个级别:区域赛和总决赛,这便是现代ACM竞赛的开始。
在亚洲、美国、欧洲、太平洋地区均设有区域赛点。
1995至1996年,来自世界各地的一千多支s代表队参加了ACM区域竞赛。
ACM大学生程序设计竞赛由美国计算机协会(ACM)举办,旨在向全世界的大学生提供一个展示和锻炼其解决问题和运用计算机能力的机会,现已成为全世界范围内历史最悠久、规模最大的大学生程序设计竞赛。
2) 竞赛组织竞赛在由各高等院校派出的3人一组的队伍间进行,分两个级别。
参赛队应首先参加每年9月至11月在世界各地举行的“区域竞赛(Regional Contest)”。
各区域竞赛得分最高的队伍自动进入第二年3月在美国举行的“总决赛(Final Contest)”,其它的高分队伍也有可能被邀请参加决赛。
每个学校有一名教师主管队伍,称为“领队”(faculty advisor),他负责选手的资格认定并指定或自己担任该队的教练(coach)。
每支队伍最多由三名选手(contestant)组成,每个选手必须是正在主管学校攻读学位的学生。
每支队伍最多允许有一名选手具有学士学位,已经参加两次决赛的选手不得再参加区域竞赛。
3) 竞赛形式与评分办法竞赛进行5个小时,一般有6~8道试题,由同队的三名选手使用同一台计算机协作完成。
当解决了一道试题之后,将其提交给评委,由评委判断其是否正确。
若提交的程序运行不正确,则该程序将被退回给参赛队,参赛队可以进行修改后再一次提交该问题。
程序运行不正确是指出现以下4种情况之一:(1)运行出错(run-time error);(2)运行超时〔time-limit exceeded〕;(3)运行结果错误(wrong answer);(4)运行结果输出格式错误(presentation error)。
竞赛结束后,参赛各队以解出问题的多少进行排名,若解出问题数相同,按照总用时的长短排名。
总用时为每个解决了的问题所用时间之和。
一个解决了的问题所用的时间是竞赛开始到提交被接受的时间加上该问题的罚时(每次提交通不过,罚时20分钟)。
没有解决的问题不记时。
美国英语为竞赛的工作语言。
竞赛的所有书面材料(包括试题)将用美国英语写出,区域竞赛中可以使用其它语言。
总决赛可以使用的程序设计语言包括PASCAL,C,C++及Java,也可以使用其它语言。
具体的操作系统及语言版本各年有所不同。
4) 竞赛奖励情况总决赛前十名的队伍将得到高额奖学金:第一名奖金为12000美元,第二名奖金为6000美元,第三名奖金为3000美元,第四名至第十名将各得到l500美元。
除此之外还将承认北美冠军、欧洲冠军、南太平洋冠军及亚洲冠军。
2.ACM竞赛需要的知识语言是最重要的基本功无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要过的第一道关。
亚洲赛区的比赛支持的语言包括C/C++与JA V A。
首先说说JA V A,众所周知,作为面向对象的王牌语言,JA V A在大型工程的组织与安全性方面有着自己独特的优势,但是对于信息学比赛的具体场合,JA V A则显得不那么合适,它对于输入输出流的操作相比于C++要繁杂很多,更为重要的是JA V A程序的运行速度要比C++慢10倍以上,而竞赛中对于JA V A程序的运行时限却往往得不到同等比例的放宽,这无疑对算法设计提出了更高的要求,是相当不利的。
其实,并不主张大家在这种场合过多地运用面向对象的程序设计思维,因为对于小程序来说这不旦需要花费更多的时间去编写代码,也会降低程序的执行效率。
接着说C和C++。
在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C 在效率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高了自己在算法设计上的造诣,纯C一样能发挥巨大的威力。
而C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。
如果有些同学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间的。
C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。
但是,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法;另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。
通过以上的分析,我们可以看出仅就信息学竞赛而言,对语言的掌握并不要求十分全面,但是对于经常用到的部分,必须十分熟练,不允许有半点不清楚的地方.✓以数学为主的基础知识十分重要虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。
今年World Final 的总冠军是波兰华沙大学,其成员出自于数学系而非计算机系,这就是一个鲜活的例子。
竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有一定应用,但是不多。
因此,大一的同学也不必为自己还没学数据结构而感到不知从何入手提高,把数学捡起来吧!下面我来谈谈在竞赛中应用的数学的主要分支。
离散数学离散数学作为计算机学科的基础是竞赛中涉及最多的数学分支,重中之重又在于图论和组合数学,尤其是图论。
图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。
虽然这部分的比重很大,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到力不从心,也不必着急,可以慢慢积累。
组合数学竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些部分需要先对代数结构中的群论有初步了解才能进行学习。
组合数学在竞赛中很少以难题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。
数论以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想上一阵时间。
素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码学常识确定大概的过程之后,核心算法往往要涉及数论的内容。
计算几何计算几何相比于其它部分来说是比较独立的,就是说它和其它的知识点很少有过多的结合,较常用到的部分包括—线段相交的判断、多边形面积的计算、内点外点的判断、凸包等等。
计算几何的题目难度不会很大,但也永远不会成为最弱的题。
线性代数对线性代数的应用都是围绕矩阵展开的,一些表面上是模拟的题目往往可以借助于矩阵来找到更好的算法。
✓计算机专业知识虽然数学十分十分重要,但是如果让三个只会数学的人参加比赛,我相信多数情况下会比三个只会数据结构与算法的人得到更为悲惨的结局。
数据结构掌握队列、堆栈和图的基本表达与操作是必需的,至于树,我个人觉得需要建树的问题有但是并不多。
(但是树往往是很重要的分析工具)除此之外,排序和查找并不需要对所有方式都能很熟练的掌握,但你必须保证自己对于各种情况都有一个在时间复杂度上满足最低要求的解决方案。
说到时间复杂度,就又该说说哈希表了,竞赛时对时间的限制远远多于对空间的限制,这要求大家尽快掌握“以空间换时间”的原则策略,能用哈希表来存储的数据一定不要到时候再去查找,如果实在不能建哈希表,再看看能否建二叉查找树等等—这都是争取时间的策略,掌握这些技巧需要大家对数据结构尤其是算法复杂度有比较全面的理性和感性认识。
算法算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。
这里要说的是,有些初学者在学习这些搜索基本算法是不太注意剪枝,这是十分不可取的,因为所有搜索的题目给你的测试用例都不会有很大的规模,你往往察觉不出程序运行的时间问题,但是真正的测试数据一定能过滤出那些没有剪枝的算法。
实际上参赛选手基本上都会使用常用的搜索算法,题目的区分度往往就是建立在诸如剪枝之类的优化上了。
常用算法中的另一类是以“相似或相同子问题”为核心的,包括递推、递归、贪心法和动态规划。
这其中比较难于掌握的就是动态规划(DP),如何抽象出重复的子问题是很多题目的难点所在,笔者建议初学者仔细理解图论中一些以动态规划为基本思想所建立起来的基本算法(比如Floyd-Warshall算法),并且多阅读一些定理的证明,这虽然不能有什么直接的帮助,但是长期坚持就会对思维很有帮助。
3.对新手的一些建议首先要看一些基础的算法书籍,把基本的算法搞懂。
像递归、二分、宽搜、深搜、简单的图论、数论、简单的组合数学。
重点根据书上的例题理解算法的实质、思想,能做到有一定领悟。
这时需要做一些题目来巩固了。
先可以做搜索题,搜索是博大精深的,诸多细节技巧都需要靠平时的积累领悟,根据自己练习的目的挑一些题练习。
然后可以做简单的数学题,对组合数学、数论有个大致的概念。
再然后可以做DP类题目了。
DP也是非一日之功,练好DP就像练好了内功,这时可以做一些DP的基础题,体会一下,然后做一些提高题,如果不会做,一定要自己想通为什么别人这样设定状态数组,他的技巧在哪里。
oibh上很多的国家集训队关于DP的论文是必看的。
图论里有很多基础的东西需要学习,先把图论里面基本的定义看懂,然后把经典的算法看懂,比如最短路、生成树、割点、连通分量等等。
如果不会做,一定要好好看书。
很多新手会问碰到不会做的题目怎么办。
首先应该考察一下为什么不会做这题,如果是书本上的知识点没掌握,那要赶紧把书本找来,仔细理解之后再来想这题。
如果知识点基本都掌握了,那么可以利用网络的资源,多搜索一下关于这题的讨论,看看别人是怎么想的,看是否可以给自己提供思路。
总之一条,要自己多开动脑子。
重在理解这一题的算法,而不是只知道算法,自己把它编程实现了就算了。
对待算法和程序要用严谨的态度,没有搞懂的地方要花力气把它搞懂,这样才能不断提高。
看书是必须的,而且也是迅速提高的最好方法,不要等到做题时才去理解书上的知识点,而要对知识点有了充分的理解后再去做题,这样才能事半功倍,否则看到难题,从哪方面下手的思路都没有。