精选-九年级数学上册第一章特殊平行四边形1-2矩形的性质与判定第1课时知能演练提升新版北师大版
- 格式:doc
- 大小:253.17 KB
- 文档页数:3
第一章特殊平行四边形1.2 矩形的性质与判定(一)教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质.过程与方法:经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重难点、关键重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.教学准备教师准备:投影仪,收集有关矩形的图片,制作教具.学生准备:复习平行四边形性质,预习矩形这节内容.学法解析1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.2.知识线索:情境与操作→平行四边形→矩形→矩形性质.3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,•平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)[来源:21世纪教育网学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.[来源:学*科*网Z*X*问题2:既然它具有平行四边形的所有性质,•那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才∠α变为90°,可以得到∠α的补角也是90°,从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等。
九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版矩形的性质及判定教学目标(1)掌握矩形的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)初步运用矩形的定义和性质解决相关问题,进一步培养学生的分析能力和教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边的中线等于斜边的一半”的推导及性质定理应用的教学过程:一、创设情境,引入新课老师:展示教具(平行四边形)并演示将平行四边形转化为菱形的过程当我们给平行四边形其他特殊条件时,我们会得到其他形状吗?例如,如果平行四边形的内角变成90度,你会发现什么特殊形状?学生:长方形师:原来是大家非常熟悉的图形,他还有个高大上的名字――矩形.板书课题老师:根据前面学习的菱形和平行四边形的过程,你想了解矩形的哪些方面?学生:矩形的定义:矩形的本质生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究老师:根据以下自学指导,自学课本第11至12页讨论前的内容。
1.定义:有些被称为矩形12.矩形是平行四边形吗?3、如图,四边形abcd是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)侧面:角度:对角线:对称性:4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方法:学生将自学与小组合作相结合,通过自学、猜想和推理三个步骤掌握矩形的性质,在小组学习过程中提问,其他学生讨论并回答【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.定义:直角平行四边形是一个矩形。
矩形的四个角是直角。
OD B C A O D B C A O CB A 九年级数学上册第一章特殊的平行四边形1.2矩形的性质与判定(第一课时)一、导学二、学习目标1、理解矩形的概念,了解它与平行四边形之间的关系2、理解并掌握矩形的性质定理,并能够运用它们进行证明和计算三、探究学习知识点(一)探究矩形的定义思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。
矩形的定义:__________________________________________________是矩形 知识点(二) 探究矩形的性质定理想一想:⑴矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,你能列举一些这样的性质吗?⑵矩形是轴对称图形?如果是,它有几条对称轴?⑶你认为矩形还具有哪些特殊的性质?已知:如图,四边形ABCD 是矩形,︒=∠90ABC ,对角线AC 与DB 相交于点O求证:⑴︒=∠=∠=∠=∠90DAB CDA BCD ABC⑵DB AC =结论:矩形的性质定理1:矩形的四个角都是________________矩形的性质定理2:矩形的对角线______________知识点(三)探究直角三角形性质:如图,设矩形的对角线AC 与BD 的交点为O ,那么BO 是ABC Rt ∆中一条怎样的特殊线段?它与AC 有什么大小关系? 已知:在ABC Rt ∆中,BO 是斜边上的中线求证:AC BO 21=定理:直角三角形斜边上的中线等于 。
例1:如图,在矩形ABCD中,两条对角线相交于点O,︒=∠120AOD,5.2=AB 求这个矩形对角线的长四、训练提升1.矩形具有而平行四边形不具有的性质是( )A.对角线互相平分 B.邻角互补C.对角相等 D.对角线相等2.如图1,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为( )A.30° B.60° C.90° D3.如图3,A,B,C40 km,D恰好为AB的中点,则点D与点C之间的距离是________km.4.如图4,O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )A.5 B.4 C.342D.345.如图5,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,交BD于点O,则△BOF的面积为________.6.如图6,矩形ABCD的对角线AC,BD交于点O,DE平分∠ADC,交BC于点E,∠BDE=15°,求∠COD与∠COE的度数.7.如图7,在矩形ABCD中,AB=3,BC=2,E为AD的中点,F为BC边上任一点,过点F 分别作EB,EC的垂线,垂足分别为G,H,则FG+FH的值为( )A.52B.5210 C.31010 D.35108.在矩形ABCD中,∠A的平分线AE分BC成两部分的比为1∶3,若矩形则其周长为________.9. 如图10,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B.4 C.4.5 D.5ODB CA。
北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 【知识关系】【知识点梳理】知识点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 知识点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 知识点二、菱形高底平行四边形⨯=S1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形. 3.面积:4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.知识点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 知识点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 知识点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形2对角线对角线高==底菱形⨯⨯S 宽=长矩形⨯S1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=1 2BC,进而得到EF=12CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCAMA MCAMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC, ∴MD=MC ,由①知四边形ADCN 是平行四边形, ∴MD=MN =MA =MC , ∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】 解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6, 又∵ 在Rt △ADC 中,. ∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,10AC =222(8)4x x -=+222DC FC DF +=解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案. 【答案与解析】 探究:AE =EF证明:∵△BHE 为等腰直角三角形, ∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形, ∴∠FCE =12∠DCE =45°, ∴∠H =∠FCE.由正方形ABCD 知∠B =90°,∠HAE =90°+∠DAE =90°+∠AEB, 而AE ⊥EF ,∴∠FEC =90°+∠AEB , ∴∠HAE =∠FEC.由正方形ABCD 知AB =BC ,∴BH -AB =BE -BC , ∴HA =CE,∴△AHE ≌△ECF (ASA ), ∴AE =EF. 【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三: 【变式】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 .【答案】 65°。
矩形【学习目标】1. 理解矩形的概念.2. 掌握矩形的性质定理与判定定理.【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质1、如图所示,已知四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.【思路点拨】(1)矩形的四个内角都等于90°,利用条件△PBC 和△QCD 都是等边三角形,容易求得∠PBA 和∠PCQ 度数;(2)利用(1)的结论以及矩形的性质进一步证明△PAB≌△PQC(SAS),从而证得PA =PQ .【答案与解析】证明:(1)∵ 四边形ABCD 是矩形,∴ ∠ABC=∠BCD=90°.∵ △PBC 和△QCD 是等边三角形,∴ ∠PBC=∠PCB=∠QCD=60°,∴ ∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°,故∠PBA=∠PCQ=30°(2)∵ 四边形ABCD 是矩形,∴ AB=DC .∵ △PBC 和△QCD 是等边三角形,∴ PB=PC ,QC =DC =AB .∵ AB=QC ,∠PBA=∠PCQ,PB =PC .∴ △PAB≌△PQC,∴ PA=PQ .【总结升华】利用矩形的性质,可以得到许多的结论,在解题时,针对问题列出有用的结论作论据即可.举一反三:【变式】如图所示,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B '处,点A 落在点A '处.(1)求证:B E BF '=;(2)设AE =a ,AB =b ,BF =c ,试猜想a b c 、、之间有何等量关系,并给予证明.【答案】证明:(1)由折叠可得B FE BFE '∠=∠.∵ AD∥BC, ∴ B EF BFE B FE ''∠=∠=∠,∴ B E B F ''=,∴ B E BF '=.(2)猜想222a b c +=.理由:由题意,得A E AE a '==,A B AB b ''==.由(1)知B E BF c '==.在A B E ''△中,∵ 90A '∠=°,A E a '=,A B b ''=,B E c '=,∴ 222a b c +=.2、如图所示,矩形ABCD 中,AC 、BD 相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°,求∠BOE 的度数.【思路点拨】∠BOE 在△BOE 中,易知∠OBE=30°,直接求∠BOE 有困难,转为考虑证BO =BE .由AE 平分∠B AD 可求∠BAE=45°得到AB =BE ,进一步可得等边△AOB.有AB =OB .证得BO =BE .【答案与解析】解:∵ 四边形ABCD 是矩形,∴ ∠DAB=∠ABC=90°,AO =12AC ,BO =12BD ,AC =BD . ∴ AO=BO .∵ AE 平分∠BAD,∴ ∠BAE=45°.∴ ∠AEB=90°-45°=45°=∠BAE.∴ BE=AB .∵ ∠CAE=15°,∴ ∠BAO=60°.∴ △ABO 是等边三角形.∴ BO=AB ,∠ABO=60°.∴ BE=BO ,∠OBE=30°.∴ ∠BOE=18030752-=°°°. 【总结升华】矩形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰三角形,因此矩形中的计算问题可以转化到直角三角形和等腰三角形中去解决.类型二、矩形的判定3、如图,在▱ABCD 中,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F ,连接BD .(1)求证:△ABE≌△CDF;(2)若AB=DB ,求证:四边形DFBE 是矩形.【思路点拨】(1)根据平行四边形性质得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根据ASA推出全等即可;(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四边形DFBE是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.【答案与解析】证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.【总结升华】本题考查了平行线的性质,平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定,角平分线定义等知识点的应用,主要考查学生综合运用性质进行推理的能力.举一反三:【变式】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO中,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?【答案】(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD 是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.类型三、直角三角形斜边上的中线的性质4、如图所示,BD 、CE 是△ABC 两边上的高,G 、F 分别是BC 、DE 的中点.求证:FG⊥DE.【答案与解析】证明:连接EG 、DG ,∵ CE 是高,∴ CE⊥AB.∵ 在Rt△CEB 中,G 是BC 的中点,∴ EG=12BC ,同理DG =12BC . ∴ EG=DG .又∵ F 是ED 的中点,∴ FG⊥DE.【总结升华】直角三角形斜边中线的性质是依据矩形的对角线互相平分且相等推出来的.根据这个性质.又可以推出直角三角形的斜边上的中线把直角三角形分成了两个等腰三角形.温馨提示:若题目中给出直角三角形斜边上的中点,常设法用此性质解决问题. 举一反三:【变式】如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为( )15 D.52【答案】A ;解:如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大, 此时,∵AB=2,BC =1,∴OE=AE =12AB =1,DE ==∴OD 1.。
2.矩形的性质与判定
第一课时
知能演练提升
ZHINENG YANLIAN TISHENG
能力提升
1.如图,矩形ABCD的周长为20 cm,两条对角线相交于点O,过点O作AC的垂线EF,分别交AD,BC于点E,F,连接CE,则△CDE的周长为()
A.5 cm
B.8 cm
C.9 cm
D.10 cm
(第1题图)
(第2题图)
2.如图,在矩形纸片ABCD中,AB=8 cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F.若AF= cm,则AD的长为()
A.4 cm
B.5 cm
C.6 cm
D.7 cm
3.如图,∠ACB=90°,△ABF的中位线DE经过点C,且CE=CD.若AB=6,则BF=()
A.6
B.7
C.8
D.10
(第3题图)
(第4题图)
(第5题图)
4.如图,在矩形ABCD中,O为AC的中点,EF过点O且EF⊥AC分别交DC,AB于点F,E,点G是AE的中点,且∠AOG=30°,则下列结论正确的个数为()
①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.
A.1
B.2
C.3
D.4
5.如图,在矩形ABCD中,对角线AC,BD相交于点O.若∠AOB=60°,AB=4 cm,则AC的长为.
6.如图,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上的点F处.如果AB=8,AD=10,那么CE=.
7.现有一张长和宽之比为2∶1的矩形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作),如图甲(虚线表示折痕).
除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作.如图乙和图甲是相同的操作).
8.
如图,在四边形ABCD中,∠ABC=∠ADC=90°,E,F分别是AC,BD的中点.
求证:EF⊥BD.
创新应用
9.
如图,在矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB,CD的延长线分别交于点E,F.
(1)求证:△BOE≌△DOF.
(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?说明理由.
答案:
能力提升
1.D
2.C
3.C
4.C
5.8 cm
6.3
7.解答案不唯一,如图.
8.证明如图,连接DE,BE.
∵∠ABC=∠ADC=90°,且E是AC边的中点,
∴DE=BE.又∵DF=BF,∴EF⊥BD.
创新应用
9.(1)证明∵四边形ABCD是矩形,∴OB=OD,AE∥CF.
∴∠E=∠F,∠OBE=∠ODF.
∴△BOE≌△DOF.
(2)解当EF⊥AC时,四边形AECF是菱形.
理由如下:∵四边形ABCD是矩形,
∴OA=OC.
又由△BOE≌△DOF,得OE=OF.
∴四边形AECF是平行四边形.
又∵EF⊥AC,∴四边形AECF是菱形.。