1.2 矩形的性质与判定1
- 格式:ppt
- 大小:371.00 KB
- 文档页数:8
九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版矩形的性质及判定教学目标(1)掌握矩形的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)初步运用矩形的定义和性质解决相关问题,进一步培养学生的分析能力和教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边的中线等于斜边的一半”的推导及性质定理应用的教学过程:一、创设情境,引入新课老师:展示教具(平行四边形)并演示将平行四边形转化为菱形的过程当我们给平行四边形其他特殊条件时,我们会得到其他形状吗?例如,如果平行四边形的内角变成90度,你会发现什么特殊形状?学生:长方形师:原来是大家非常熟悉的图形,他还有个高大上的名字――矩形.板书课题老师:根据前面学习的菱形和平行四边形的过程,你想了解矩形的哪些方面?学生:矩形的定义:矩形的本质生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究老师:根据以下自学指导,自学课本第11至12页讨论前的内容。
1.定义:有些被称为矩形12.矩形是平行四边形吗?3、如图,四边形abcd是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)侧面:角度:对角线:对称性:4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方法:学生将自学与小组合作相结合,通过自学、猜想和推理三个步骤掌握矩形的性质,在小组学习过程中提问,其他学生讨论并回答【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.定义:直角平行四边形是一个矩形。
矩形的四个角是直角。
王庄中学九年级数学(上)导学案姓名:班级:日期:§1.2矩形的性质与判定(1)【学习内容】矩形的性质与判定(P11-P14页)【学习目标】1、掌握矩形的的定义,理解矩形与平行四边形的关系2、经历矩形的性质定理的探索过程,发展合情推理能力。
3、运用矩形的性质解决简单的数学问题。
对子间等级评定:对子间提出的问题:【训练课】(时段:晚自习,时间20分钟) 一、选择题:1.下面的图形中,既是轴对称图形,又是中心对称图形的是 ( ) A. 角 B. 任意三角形 C. 矩形 D. 等腰三角形 2、矩形具有而一般平行四边形不具有的性质是 ( )A.对角相等B.对边相等C.对角线相等D.对角线互相平分 3、下列说法错误的是( ).A.矩形的对角线互相平分B. 矩形的对角线相等。
C.有一个角是直角的四边形是矩形D. 有一个角是直角的平行四边形叫做矩形4.如图,过矩形ABCD 的对角线BD 上一点R 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMRP 的面积S 1,与矩形QCNR 的面积S 2的大小关系是 ( )A. S 1> S 2B. S 1= S 2C. S 1< S 2D. 不能确定二、填空题:5、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周长为________.6、矩形ABCD 的两条对角线相交于O,∠AOB =60o ,AB =8,则矩形对角线的长__7、矩形一个角的平分线分矩形一边成2cm 和3cm ,则这个矩形的面积为8、已知矩形的一条对角线长为10cm ,两条对角线的一个交角为120°,则矩形的边长分别为 _____。
9、已知△ABC 是Rt △,∠ABC=90°,BD 是斜边AC 上的中线. (1)若BD=3㎝,则AC =_____㎝;(2)若∠C=30°,AB =5㎝,则AC =_____㎝,BD =_____㎝.三、解答题:10、一个矩形的对角线长为8,对角线与一边的夹角是45°,求这个矩形各边的长。
北师大版九年级上第一章《特殊平行四边形》《矩形的性质与判定》(第1课时)教案课题矩形的性质单元第一章学科数学年级九年级学习目标1.知识与技能了解矩形的有关概念,理解并掌握矩形的有关性质.2.过程与方法经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.3.情感态度和价值观培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重点掌握矩形的性质,并学会应用.难点理解矩形的特殊性.教学过程教学环节教师活动学生活动设计意图导入新课教师说:“同学们,下面几幅图片中都含有一些平行四边形。
观察这些平行四边形,你能发现它们有什么样的共同特征?”引导学生发现:是平行四边形,且它们的四个角都相等,且都等于90度. 学生看黑板,观察图片,思考老师提出的问题观察图片,思考相关问题,能够给学生清晰的思考路径讲授新课矩形的定义:有一个角是直角的平行四边形叫做矩形。
矩形是特殊的平行四边形教师:同学们,开动脑筋,想一想,矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?点名学生回答教师问:你认为矩形还具有哪些特殊的性质?与同伴交流。
学生讨论,点名学生回答。
教师:同学们,拿出一张矩形纸片出来,我们来动学生听讲,并思考老师问的问题小组讨论矩形的性质,并举手回答老师问题学生动手跟着老师指导的思增强学生观察,总结能力,小组讨论能力学生自己观察得出结论,能够让学生更好地掌握新知识增强同学间的互动,交流,动手手试试看。
用矩形纸片折一折,回答下列问题:1)矩形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?教师点名学生回答问题。
得出结论:矩形是轴对称图形,有两条对称轴,分别是两条对边垂直平分线,两条对称轴互相垂直. 也是中心对称图形,对称中心是对角线的交点。
教师:同学们完成任务的能力很好哦,接下来,老师要提高问题难度了,谁来帮老师和同学们从边、角、对角线方面,观察或度量猜想矩形的特殊性质. ①边:对边平行且相等(与平行四边形相同),邻边互相垂直; ②角:四个角是直角; ③对角线:相等且互相平分.教师带领学生验证猜想结论 验证结论:已知:如图,在矩形ABCD 中,∠A=90°. 求证:(1)∠A=∠B=∠C=∠D=90°路,完成任务。
1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角.③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形. 直角三角形斜边上的中线等于斜边的一半.直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.重点:掌握矩形的性质,并学会应用. 难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.一、矩形的判定【例1】 ☆ 在矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH ⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形 【例2】 如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.【巩固】 ☆矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等 【例3】 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.例题精讲重、难点中考要求中考要求矩形的性质 及判定CDB A H G O F E DCBA【巩固】 如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.【例4】 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.NMQPDCBA【例5】 如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.【巩固】 ☆ 如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA∠的平分线于点E ,交BCA ∠的外角平分线于点F(1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!【例6】 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD . ⑴ 求证:四边形AFCD 是菱形;⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?【巩固】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.【例7】 已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥.板块二、矩形的性质及应用【例8】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足 【例9】 为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面 【例10】 的横线上,然后再加以证明。
2矩形的性质与判定第1课时矩形的性质一、基本目标1.了解矩形的有关概念,理解并掌握矩形的有关性质.2.经过探索矩形的概念和性质的过程,发展学生合情推理意识.二、重难点目标【教学重点】理解并掌握矩形的性质定理.【教学难点】会用矩形的性质定理进行推导证明.环节1自学提纲、生成问题【5 min阅读】阅读教材P11~P13的内容,完成下面练习.【3 min反馈】1.有一个角是直角的平行四边形叫做矩形.2.矩形是特殊的平行四边形,具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等.3.直角三角形斜边上的中线等于斜边的一半.4.判断下列说法是否正确:(1)矩形是特殊的平行四边形,特殊之处就是有一个角是直角.()(2)平行四边形就是矩形.()(3)平行四边形具有的性质,矩形也具有.()环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5 cm,求矩形对角线的长.【互动探索】(引发学生思考)矩形中含有直角三角形→判断AB 与BD 的数量关系→需确定∠ODA 的度数.【解答】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD .∴OA =OD . ∵∠AOD =120°,∴∠ODA =∠OAD =12×(180°-120°)=30°.又∵∠DAB =90°,∴BD =2AB =2×2.5=5(cm).【互动总结】(学生总结,老师点评)利用矩形的对角线相等及直角三角形的性质是解决这类问题的关键.活动2 巩固练习(学生独学)1.矩形具有一般平行四边形不具有的性质是( B ) A .对边相互平行 B .对角线相等 C .对角线相互平分D .对角相等2.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( B )A .3∶2B .2∶1C .1.5∶1D .1∶13.如图,在Rt △ABC 中,∠ACB =90°,D 、E 为AB 、AC 的中点.则下列结论中错误的是( D )A .CD =ADB .∠B =∠BCDC .∠AED =90°D .AC =2DE活动3拓展延伸(学生对学)【例2】如图,BD为矩形ABCD的一条对角线,延长BC至点E,使CE=BD,连结AE,若AB=1,∠AEB=15°,求AD的长.【互动探索】在Rt△ABD中,已知AB=1,要求AD的长,需先求出BD的长,由矩形的性质及∠AEB=15°,应怎样转化,建立起它们之间的联系,才能得出结论?【解答】∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD,∴∠E=∠DAE.又∵BD=CE,∴CE=CA,∴∠E=∠CAE.∵∠CAD=∠CAE+∠DAE=30°,∴∠ADB=30°,∴BD=2AB=2,∴AD=BD2-AB2= 3.【互动总结】(学生总结,老师点评)解决本题的关键是应用转化思想,将CE=BD转化为AC=CE.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应训练!第2课时矩形的判定一、基本目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.二、重难点目标【教学重点】理解并掌握矩形的判定方法及其证明.【教学难点】定理的证明方法及运用.环节1自学提纲、生成问题【5 min阅读】阅读教材P14~P16的内容,完成下面练习.【3 min反馈】1.对角线相等的平行四边形是矩形.2.有三个角是直角的四边形是矩形.3.能够判断一个四边形是矩形的条件是(C)A.对角线相等B.对角线垂直C.对角线互相平分且相等D.对角线垂直且相等环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在四边形ABCD中,对角线AC、BD相交于点O,AB∥CD且AB=CD,∠BAC=∠BDC,求证:四边形ABCD是矩形.【互动探索】(引发学生思考)矩形的判定方法有哪些?【证明】∵AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∴AB∥DC,∴∠ABD=∠BDC.∵∠BAC=∠BDC,∴∠ABD=∠BAC,∴OA=OB,∴AC=BD,∴平行四边形ABCD是矩形.【互动总结】(学生总结,老师点评)矩形的判定方法有多种,先证明四边形是平行四边形,再证明平行四边形是矩形是一种常用的判定方法.活动2巩固练习(学生独学)1.下列说法错误的是(D)A.有一个内角是直角的平行四边形是矩形B.矩形的四个角都是直角,并且对角线相等C.对角线相等的平行四边形是矩形D.有两个角是直角的四边形是矩形2.如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想使该四边形成为矩形,只需再加上一个条件是答案不唯一,如:∠A=90°.(填上你认为正确的一个答案即可)3.如图,在□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F.求证:四边形BFDE 为矩形.证明:∵四边形ABCD为平行四边形,∴CD∥AB.∴∠CDE+∠DEB=180°.∵∠DEB=90°,∴∠CDE=90°.∴∠CDE=∠DEB=∠BFD=90°.∴四边形BFDE为矩形.活动3拓展延伸(学生对学)【例2】如图,在□ABCD中,对角线AC和BD相交于点O,△ABO是等边三角形,AB=4.求□ABCD的面积.【互动探索】结合△ABO是等边三角形,能判定四边形ABCD是什么特殊四边形?【解答】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°,∴OA=OC=OB=OD=4,∴AC=BD=2OA=8,∴四边形ABCD是矩形.∴∠ABC=90°,∴由勾股定理,得BC=82-42=43,∴□ABCD的面积是BC×AB=43×4=16 3.【互动总结】(学生总结,老师点评)先通过对角线相等证明此平行四边形为矩形,再通过矩形的面积公式求解.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应训练!第3课时矩形的性质与判定的运用一、基本目标1.通过探索与交流,得出矩形的判定定理,使学生会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.2.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力. 二、重难点目标 【教学重点】进一步掌握矩形的性质及判定的应用. 【教学难点】能够运用严密的数学语言证明矩形的性质和判定定理以及其他相关结论.环节1 自学提纲、生成问题 【5 min 阅读】阅读教材P16~P18的内容,完成下面练习. 【3 min 反馈】如图,矩形ABCD 的两条对角线相交于点O ,已知∠AOD =120°,AB =2.5 cm ,则∠DAO =30°,AC =5cm ,S 矩形ABCD =2543cm 2.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在矩形ABCD 中,AD =6,对角线AC 与BD 交于点O ,AE ⊥BD ,垂足为E ,ED =3BE .求AE 的长.【互动探索】(引发学生思考)矩形性质→BE 与OE 的数量关系→确定△ABO 的形状→得出AE 的长度.【解答】∵四边形ABCD 是矩形, ∴AO =BO =DO =12BD ,∠BAD =90°.∵ED =3BE ,∴BE =OE . 又∵AE ⊥BD ,∴AB =AO ,∴AB =AO =BO ,即△ABO 是等边三角形, ∴∠ABO =60°,∴∠ADB =90°-∠ABO =30°. 在Rt △AED 中,∵∠ADB =30°,∴AE =12AD =12×6=3.【互动总结】(学生总结,老师点评)解决本题的关键是利用题中的隐含条件(OA =OB )及ED =3BE 、AE ⊥BD 得到△ABO 是等边三角形.活动2 巩固练习(学生独学)1.如图,矩形的两条对角线的一个夹角为60°,两条对角线的长度的和为20 cm ,则这个矩形的一条较短边的长度为( D )A .10 cmB .8 cmC .6 cmD .5 cm2.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB 、EC 、DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( B )A .AB =BE B .DE ⊥DC C .∠ADB =90°D .CE ⊥DE3.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =10,则AB =5.活动3 拓展延伸(学生对学)【例2】如图,在△ABC 中,AB =AC ,AD 为∠BAC 的平分线,AN 为△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为E .求证:四边形ADCE 是矩形.【互动探索】已知两个邻补角的角平分线能得到什么结论?结合已知条件,要证四边形ADCE 是矩形,应选择矩形的哪个判定定理?【证明】∵AD 平分∠BAC ,AN 平分∠CAM , ∴∠CAD =12∠BAC ,∠CAN =12∠CAM ,∴∠DAE =∠CAD +∠CAN =12(∠BAC +∠CAM )=12×180°=90°.在△ABC 中,∵AB =AC ,AD 为∠BAC 的平分线, ∴AD ⊥BC , ∴∠ADC =90°. 又∵CE ⊥AN , ∴∠CEA =90°.∴四边形ADCE 为矩形. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应训练!。