计量经济学 第三章 基本回归模型.
- 格式:ppt
- 大小:661.50 KB
- 文档页数:73
第三章一元线性回归模型第一节一元线性回归模型及其基本假设一元线性回归模型第二章回归分析的基本思想指出,由于总体实际上是未知的,必须根据样本回归模型估计总体回归模型,回归分析的目的就是尽量使得样本回归模型接近总体回归模型,那么采取什么方法估计样本回归模型才使得估计出的样本回归模型是总体回归模型的一个较好估计值呢?这里包括两个问题:一是采用什么方法估计样本回归模型;二是怎样验证估计出的样本回归模型是总体回归模型的一个较好估计值。
这些将在接下来的内容中讲到。
这一章介绍最简单的一元线性回归模型,下一章再扩展到多元线性回归模型。
一元线性回归模型及其基本假设一、一元线性回归模型的定义一元线性回归模型是最简单的计量经济学模型,在该一元模型中,仅仅只含有一个自变量,其一般形式为:yi = β0 + β1xi + μi(3.1.1)其中yi是因变量,xi是自变量,β0、β1是回归参数,μi是随机项。
由于式(3.1.1)是对总体而言的,也称为总体回归模型。
随机项μ代表未被考虑到模型中而又对被解释变量y有影响的所有因素产生的总效应。
二、一元线性回归模型的基本假设由于模型中随机项的存在使得参数β0和β1的数值不可能严格计算出来,而只能进行估计,在计量经济学中,有很多方法可以估计出这些参数值,但采用什么方法能够尽可能准确地估计出这些参数值,取决于随机项μ和自变量x的性质。
因此,对随机项μ和自变量x的统计假定以及检验这些假定是否满足的方法,在计量经济学中占有重要的地位。
估计方法中用得最多的是普通最小二乘法(Ordinary Least Squares),同样为了保证利用普通最小二乘法估计出的参数估计量具有良好的性质,也需要对模型的随机项μ和自变量x 提出若干种假设。
当模型中的随机项μ和自变量x满足这些假设时,普通最小二乘法就是适合的估计方法;当模型中的随机项μ和自变量x不满足这些假设时,普通最小二乘法就不是适合的方法,这时需要利用其他的方法来估计模型。
第三章 多元线性回归模型学习辅导一、本章的基本内容(一)基本内容图3.1 第三章基本内容(二)本章的教学目标在现实的计量经济分析中,事实上影响被解释变量的因素不止一个,通常会有多个影响因素;另外,即使我们的分析目的是仅考察某一个因素对被解释变量的影响,但为了得到该因素对被解释变量的“净”影响,也需要将其他影响因素作为“控制变量”,使其以显性形式出现在模型中,以提高模型估计精度。
因此,在对现实经济问题进行计量经济分析时,通常需要建立包含两个及两个以上解释变量的计量模型,此类模型称为多元回归模型。
多元回归模型是在简单回归模型理论基础上的扩展,其建模的理论基础、基本思路、模型估计等与一元回归模型基本一致,只是因解释变量增多,从而带来一些新的内容,比如模型整体显著性检验(F 检验)、修正的可决系数(2R )以及解释变量之间多重共线性等问题。
本章的教学目标是:深刻理解建立多元回归模型的目的;掌握多元线性回归模型估计、检验的理论与方法;熟练掌握多元线性回归EViews 输出结果的解释。
二、重点与难点分析1.对多元线性回归模型参数意义的理解多元线性回归模型的参数与简单线性回归模型的参数有重要区别。
在多元线性回归模型中,解释变量对应的参数是偏回归系数,表达的是控制其他解释变量不变的条件下,该解释变量的单位变动对被解释变量平均值的“净”影响。
为了更深刻理解偏回归系数,可以两个解释变量的多元线性回归模型为例加以说明1。
例如,被解释变量Y 与解释变量2X 和3X 都有关,如果分别建立模型:多元线性回归: 12233i i i i Y X X u b b b =+++简单线性回归 : 1221i i i Y a a X u =++由于Y 与3X 有关,可以作回归:1332i i i Y b b X u =++,若用OLS 估计其参数,并计算残差213333ˆˆˆi i i i i e Y b b X y b x =--=-,这里的2i e 表示除去3i X 影响后的i Y 。