计量经济学多元线性回归模型
- 格式:doc
- 大小:1.62 MB
- 文档页数:8
第三章、经典单方程计量经济学模型:多元线性回归模型一、内容提要本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。
主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。
只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。
本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。
与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。
本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。
这里需要注意各回归参数的具体经济含义。
本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。
参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。
检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。
参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。
它们仍以估计无约束模型与受约束模型为基础,但以最大似然原χ分布为检验统计量理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2的分布特征。
非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。
二、典型例题分析例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为36.0.+=-10+094medufedu.0sibsedu210131.0R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
计量经济学复习笔记(四):多元线性回归⼀元线性回归的解释变量只有⼀个,但是实际的模型往往没有这么简单,影响⼀个变量的因素可能有成百上千个。
我们会希望线性回归模型中能够考虑到这些所有的因素,⾃然就不能再⽤⼀元线性回归,⽽应该将其升级为多元线性回归。
但是,有了⼀元线性回归的基础,讨论多元线性回归可以说是轻⽽易举。
另外我们没必要分别讨论⼆元、三元等具体个数变量的回归问题,因为在线性代数的帮助下,我们能够统⼀讨论对任何解释变量个数的回归问题。
1、多元线性回归模型的系数求解多元线性回归模型是⽤k 个解释变量X 1,⋯,X k 对被解释变量Y 进⾏线性拟合的模型,每⼀个解释变量X i 之前有⼀个回归系数βi ,同时还应具有常数项β0,可以视为与常数X 0=1相乘,所以多元线性回归模型为Y =β0X 0+β1X 1+β2X 2+⋯+βk X k +µ,这⾥的µ依然是随机误差项。
从线性回归模型中抽取n 个样本构成n 个观测,排列起来就是Y 1=β0X 10+β1X 11+β2X 12+⋯+βk X 1k +µ1,Y 2=β0X 20+β1X 21+β2X 22+⋯+βk X 2k +µ2,⋮Y n =β0X n 0+β1X n 1+β2X n 2+⋯+βk X nk +µn .其中X 10=X 20=⋯=X n 0=1。
⼤型⽅程组我们会使⽤矩阵表⽰,所以引⼊如下的矩阵记号。
Y =Y 1Y 2⋮Y n,β=β0β1β2⋮βk,µ=µ1µ2⋮µn.X =X 10X 11X 12⋯X 1k X 20X 21X 22⋯X 2k ⋮⋮⋮⋮X n 0X n 1X n 2⋯X nk.在这些矩阵表⽰中注意⼏点:⾸先,Y 和µ在矩阵表⽰式中都是n 维列向量,与样本容量等长,在线性回归模型中Y ,µ是随机变量,⽽在矩阵表⽰中它们是随机向量,尽管我们不在表⽰形式上加以区分,但我们应该根据上下⽂明确它们到底是什么意义;β是k +1维列向量,其长度与Y ,µ没有关系,这是因为β是依赖于变量个数的,并且加上了对应于常数项的系数(截距项)β0;最后,X 是数据矩阵,且第⼀列都是1。
多元线性回归模型
一.概述
当今农村农民人均纯收入与多个因素存在着紧密的联系,例如人均工资收入,人均农林牧渔产值人均生产费用支出,人均转移性和财产性收入等。
本次将以安徽1995-2009年农村居民纯收入与人均工资收入,人均生产费用支出,人均转移性和财产性收入等因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调农村居民生活的重要性,从而促进全国经济的发展。
二、模型构建过程
⒈变量的定义
被解释变量:农民人均纯收入y
解释变量:人均工资收入x1, 人均农林牧渔产值x2
人均生产费用支出x3 人均转移性和财产性收入x4。
建立计量经济模型:解释农民人均纯收入与人均工资收入,人均生产费用支出,人均转移性和财产性收入的关系
⒉模型的数学形式
设定农民人均纯收入与五个解释变量相关关系模型,样本回归模型为:
∧Y i=∧
β
+
∧
β
1
X i1+∧β
2
X i2+∧β
3
X i3+∧β
4
X i4+e i
⒊数据的收集
该模型的构建过程中共有四个变量,分别是中国从1995-2009年人均工资收入,人均农林牧渔产值人均生产费用支出,人均转移性和财产性收入,因此为时间序列数据,最后一个即2009年的数据作为预测对比数据,收集的数据如下所示:
⒋用OLS法估计模型
回归结果,散点图分别如下:
Yˆ=33.632+0.659X1+0.59X2-0.274X3+0.152X4 i
d.f.=10 ,R2=0.997116 ,
Se=(186.261) (0.1815 (0.1245) (0.2037) (0.5699) t=(0.1805) (3.632) (4.741) (-1.347) (2.674)
三、模型的检验及结果的解释、评价
⒉拟合优度检验及统计检验
R 2=0.997,可以看到模型的拟合优度非常高,说明农民人均纯收入与上述四个解释变量之间总体线性关系显著。
● 模型总体性检验(F 检验):给定显著水平α=0.05,查自由度为(4,10)的F
分布表,得F(4,10)=3.48,可见该模型的F 值远大于临界值,因此该回归方程很明显是显著的。
但由于X3系数不显著且符号为负,与经济意义不符,因此我们认为解释变量之间存在多重共线性。
● 变量的显著性检验(t 检验):给定显著水平α=0.05,查自由度为10的t 分
布表,得t 2/α10=1.812,大于该临界值的的显著变量为x1,x2,x4; x3解释变量未通过检验,说明x3与被解释变量之间不存在显著的线性相关关系。
⒊多重共线性的检验 ⑴相关系数检验法
上图是Eviews 输出所有变量的相关系数矩阵,可发现Y 与所有解释变量都是正相关的关系,所以进一步确定了上面的回归存在共线性问题。
另外,我们发现X1和X2的相关系数很高,两变量很可能存在共线性。
⑵多个解释变量的相关性检验
由上面的分析可知,X1和X2有很高的相关性,那么我们这里就用X1做被解释变量,X2和X3做解释变量,可得回归模型如下:
Xˆ1=-757.251+0.477X2+0.2454X3 t=(-4.373) (3.662) (0.744)
R2=0.9675,
-
R2=0.9621,F=178.78,DW=1.19。
可以看到,回归模型的拟合优度非常高,F值也远大于临界值。
如果将显著水平扩大到α=10%的话,X2 系数显著,X3系数不显著。
因此x 1 ,x2 存在共线性。
四、模型的建立
这里我们用逐步回归法得到农民人均纯收入模型。
⒈分别用四个解释变量对Y进行回归,回归结果分别如下:
x拟合优度R2最大,因此将这个方程作为基本方程,然后往里可以看出,Y与
2
加入其他变量。
⒉引入第二个变量
x后,t值引入变量
1
3.17 < 临界值3.18,其系数通不过显著性检验。
x后,t值-0.22444< 临界值3.18,其系数通不过显著性检验。
引入变量
3
x后,t值2.715< 临界值3.18,其系数通不过显著性检验。
引入变量
4
x,其最终输出结果如下:
综上所述,本次模型只引入变量
2
模型的最终结果为
Y∧=-745.76+1.0692X
(-7.644)(34.22)
R2=0.989,
-
R2=0.988,F=1171.031, DW=1.4611
一.异方差检验(怀特检验)
n*R2=1.935<χ205.0(2)=5.991,不存在异方差。
六、自相关检验及修正
LM=n*R2=0.021< 205.0(1)=3.841,模型不存在一阶自相关。