【创新设计】届高考数学一轮总复习 第二篇 第4讲 指数与指数函数 理 湘教版.doc
- 格式:doc
- 大小:100.50 KB
- 文档页数:5
高考总复习2025第6节 指数函数课标解读1.了解指数函数的实际意义,理解指数函数的概念.2.能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.1 强基础 固本增分知识梳理1.指数函数的概念函数y=a x(a>0,且a≠1)叫作指数函数,其中指数x是自变量,定义域为R.微点拨形如y=k a x,y=a k x+b+h(a>0,且a≠1,k≠0)等的函数称为指数型函数,不是指数函数.2.指数函数的图象与性质(0,+∞)比较幂值大小的重要依据减函数增函数微点拨1.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1), (-1, ).2.底数a的大小决定了指数函数图象相对位置的高低,不论是a>1,还是0<a<1,在第一象限内底数越大,函数图象越高,即“底大图高”.3.f(x)=a x与g(x)=a-x=( )x(a>0,且a≠1)的图象关于y轴对称.4.指数函数的图象以x轴为渐近线.微拓展f(x)=a g(x)(a>0,且a≠1)的单调区间与最值(1)当a>1时,f(x)的单调递增、递减区间分别是g(x)的单调递增、递减区间;若g(x)有最大值M、最小值m,则f(x)的最大值为a M、最小值为a m.(2)当0<a<1时,f(x)的单调递增、递减区间分别是g(x)的单调递减、递增区间;若g(x)有最大值M、最小值m,则f(x)的最大值为a m、最小值为a M.常用结论y=a x+a-x(a>0,且a≠1)为偶函数.2.若函数f(x)=a g(x)(a>0,且a≠1)的值域为(0,+∞),则g(x)的值域必须为R.f (x )=a |x |a >10<a <1定义域R 奇偶性偶函数值域[1,+∞)(0,1]单调性在区间[0,+∞)上单调递增;在区间(-∞,0]上单调递减在区间(-∞,0]上单调递增;在区间[0,+∞)上单调递减图象3.函数f (x )=a |x |(a >0,且a ≠1)的图象与性质如下:自主诊断题组一思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)1.函数f (x )= 的值域为(0,+∞).( )2.若函数f (x )是指数函数,且f (1)>1,则f (x )是增函数.( )3.若a m >a n (a >0,且a ≠1),则m>n .( )4.函数f (x )=a x +3-2(a >0,且a ≠1)的图象恒过定点(-3,-1).( )× √ × √题组二回源教材5.(湘教版必修第一册4.2.2节例4(3))比较大小:0.70.8 0.80.7.< 0.80.7>0.70.7,所以0.70.8<0.70.7<0.80.7.[1,+∞) 6.(湘教版必修第一册4.2.2节练习第4题改编)函数y =2|3-x |的值域为 .解析 因为|3-x|≥0,所以2|3-x|≥1.题组三连线高考7.(2020·全国Ⅲ,理12)已知55<84,134<85.设a=log53,b=log85,c=log138,则( )A A.a<b<c B.b<a<cC.b<c<aD.c<a<b18.(2021·新高考Ⅰ,13)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a= .即(a-1)·2x+(a-1)·2-x=0.(a-1)(2x+2-x)=0.∴a=1.2 研考点 精准突破考点一 指数函数的图象及其应用例1(1)(多选题)(2024·山东青岛模拟)已知函数y=a x-b(a>0,且a≠1)的图象如ABD图所示,则下列结论正确的是( )A.a b>1B.a+b>1C.b a>1D.2b-a<1解析由图象可知,函数y=a x-b(a>0且a≠1)在R上单调递增,所以a>1,且当x=0时,y=1-b∈(0,1),可得0<b<1.对于A选项,a b>a0=1,故A正确;对于B选项,a+b>a>1,故B正确;对于C选项,b a<b0=1,故C错误;对于D选项,由于0<b<1<a,则b-a<0,所以2b-a<20=1,故D正确.故选ABD.(2)若函数y=|2x-1|的图象与直线y=b有两个公共点,则实数b的取值范围为 . (0,1)解析作出函数y=|2x-1|的图象与直线y=b,如图所示.由图象可得实数b的取值范围是(0,1).(3)(2024·福建龙岩模拟)若当a>0且a≠1时,函数y=a x+m+n的图象恒过定点(-2,2),则m-n= .1变式探究1(变条件)将本例(2)改为:若曲线|y|=2x+1的图象与直线y=b没有公共点,则实[-1,1]数b的取值范围是 .解析作出曲线|y|=2x+1,如图所示,要使该曲线图象与直线y=b没有公共点,只需-1≤b≤1.变式探究2(变条件)将本例(2)改为:若函数y=|2x-1|在区间(-∞,k]上单调递减,则实数k的(-∞,0]取值范围为 .解析因为函数y=|2x-1|的单调递减区间为(-∞,0],所以k≤0,即实数k的取值范围为(-∞,0].考点二 指数函数的性质及其应用(多考向探究预测)考向1指数型函数的值域问题例2(1)函数 的值域是( )A.(-∞,0)B.(0,1]C.[1,+∞)D.(-∞,1]B(2)(2024·江苏无锡模拟)高斯是德国著名的数学家,近代数学的奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为“高斯函数”,例如:[-2.5]=-3,[2.7]=2.已知函B数f(x)= ,则函数[f(x)]的值域是( )A.{-1,1}B.{-1,0}C.(-1,1)D.(-1,0)1[对点训练1]使函数f(x)=|e x-a|的值域为[0,+∞)的一个a的值为 . 解析令f(x)=|e x-a|,由题意得f(x)的值域为[0,+∞),又y=e x的值域为(0,+∞),所以-a<0,解得a>0,故a的取值范围为(0,+∞).考向2比较值的大小例3(1)已知函数f(x)=e x,若a=f(40.99),b=f(21.99),c=f(l n 2),则a,b,c的大小关系为( )C A.a<b<c B.a<c<bC.c<a<bD.c<b<a解析因为函数f(x)=e x在R上单调递增,且21.99>21.98=40.99>20=1>ln 2,因此f(21.99)>f(40.99)>f(ln 2),即c<a<b,故选C.A.c<b <aB.b <a <cC.c<a <bD.b<c<aC考向3解简单的指数方程或不等式例4(1)(2024·福建厦门模拟)若函数f(x)=4x-a·2x-1+4的一个零点是0,那么它的另一个零点为( )B解析依题意有f(0)=40-a·2-1+4=0,解得a=10,于是f(x)=4x-10·2x-1+4= -5·2x+4,令2x=t(t>0),则函数化为y=t2-5t+4,令y=0,解得t=1或t=4,当t=1时,得x=0;当t=4时,得x=2,所以函数f(x)的另一个零点为2,故选B.(2)(2024·山东东营模拟)若不等式的解集为(-∞,-5]∪[6,+∞),1则实数a= .[对点训练2](2024·山东济南模拟)若关于x的方程有两个不相等的实数根,则实数a的取值范围是 .考向4指数型函数的综合应用例5(多选题)(2024·重庆云阳模拟)若函数的图象经过点(3,1),则( )ACA.a=1B.f(x)在(-∞,1)上单调递减C.f(x)的最大值为81D.f(x)的最小值为在定义域R上为减函数,所以f(x)在区间(-∞,1)上单调递增,在区间(1,+∞)上单调递减,故B错误;对于C,D,因为f(x)在区间(-∞,1)上单调递增,在区间(1,+∞)上单调递减,所以f(x)max=f(1)=81,f(x)无最小值,故C正确,D错误,故选AC.变式探究1-1变式探究2D [对点训练3](2024·黑龙江大庆模拟)已知函数f(x)= ,则( )A.f(0.1)>f(0.2)B.函数f(x)有一个零点C.函数f(x)是偶函数D.函数f(x)的图象关于点( )对称考点一考点二。
2.4 指数与指数函数考纲要求1.了解指数函数模型的实际背景.2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型.1.根式(1)根式的概念(2)两个重要公式①na n =⎩⎨⎧n 为奇数,|a |=⎩⎪⎨⎪⎧,a ≥0, ,a <0n 为偶数;②(na )n=______(n >1且n ∈N *)(注意a 必须使na 有意义).2.实数指数幂(1)分数指数幂的表示①正数的正分数指数幂的意义是m na =______(a >0,m ,n ∈N *,n >1).②正数的负分数指数幂的意义是m na-=______=1na m(a >0,m ,n ∈N *,n >1).③0的正分数指数幂是____,0的负分数指数幂无意义. (2)有理指数幂的运算性质 ①a r a s=____(a >0,r ,s ∈Q );②(a r )s=____(a >0,r ,s ∈Q );③(ab )r=____(a >0,b >0,r ∈Q ). (3)无理指数幂一般地,无理指数幂a α(a >0,α是无理数)是一个____的实数,有理指数幂的运算法则________________于无理指数幂.在x轴________逐渐增大时,图象逐渐下降逐渐增大时,图象逐渐上升当x>0时,__________1.化简416x8y4(x<0,y<0)得( ).A.2x2y B.2xyC.4x2y D.-2x2y2.函数y=(a2-3a+3)a x是指数函数,则有( ).A.a=1或a=2 B.a=1C.a=2 D.a>0且a≠13.把函数y=f(x)的图象向左、向下分别平移2个单位长度得到函数y=2x的图象,则( ).A.f(x)=2x+2+2 B.f(x)=2x+2-2C.f(x)=2x-2+2 D.f(x)=2x-2-24.函数y=xa x|x|(0<a<1)图象的大致形状是( ).5.函数f(x)=223x xa+-+m(a>1)恒过点(1,10),则m=__________.一、指数式与根式的计算【例1】计算下列各式的值.(1)23278-⎛⎫- ⎪⎝⎭+12(0.002)--10(5-2)-1+(2-3)0;(2)15+2-(3-1)0-9-45;111143342()a b a b-(a>0,b>0).方法提炼指数幂的化简与求值(1)化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;④注意运算的先后顺序.提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算.(2)结果要求:①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂的形式给出,则结果用分数指数幂的形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂.请做演练巩固提升4二、指数函数的图象与性质的应用【例2-1】在同一坐标系中,函数y =2x与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( ).A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称【例2-2】已知函数f (x )=24313ax x -+⎛⎫ ⎪⎝⎭.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.【例2-3】k 为何值时,方程|3x-1|=k 无解?有一解?有两解? 方法提炼1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.2. 如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系及规律如下:图中直线x =1与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c >d >1>a >b ,即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.3.与指数函数有关的复合函数的单调性的求解步骤: (1)求复合函数的定义域;(2)弄清函数是由哪些基本函数复合而成的; (3)分层逐一求解函数的单调性;(4)求出复合函数的单调区间(注意“同增异减”).4.函数y =a f (x )的值域的求解,先确定f (x )的值域,再根据指数函数的单调性确定y =a f (x )的值域.请做演练巩固提升2三、指数函数的综合应用 【例3】已知f (x )=aa 2-1(a x -a -x)(a >0且a ≠1). (1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围. 方法提炼1.利用指数函数的性质解决相关的综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论.2.解决恒成立问题,一般需通过分离变量,通过转化为求函数的最值来实现. 请做演练巩固提升5忽略0<a <1或弄错x 的范围而致误【典例】(12分)已知函数y =b +22x xa+(a ,b 是常数且a >0,a ≠1)在区间⎣⎢⎡⎦⎥⎤-32,0上有y max =3,y min =52,试求a ,b 的值.分析:先确定t =x 2+2x 在⎣⎢⎡⎦⎥⎤-32,0上的值域,再分a >1,0<a <1两种情况讨论,构建关于a ,b 的方程组求解.规范解答:∵x ∈⎣⎢⎡⎦⎥⎤-32,0, ∴t =x 2+2x =(x +1)2-1,值域为[-1,0],即t ∈[-1,0].(2分)(1)若a >1,函数y =a t在[-1,0]上为增函数,∴a t ∈⎣⎢⎡⎦⎥⎤1a ,1,则b +22x x a+∈⎣⎢⎡⎦⎥⎤b +1a,b +1, 依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.(7分)(2)若0<a <1,函数y =a t在[-1,0]上为减函数,∴a t ∈⎣⎢⎡⎦⎥⎤1,1a ,则b +22x xa +∈⎣⎢⎡⎦⎥⎤b +1,b +1a ,(9分)依题意得⎩⎪⎨⎪⎧b +1a=3,b +1=52,解得⎩⎪⎨⎪⎧ a =23,b =32.综上,所求a ,b 的值为⎩⎪⎨⎪⎧a =2,b =2或⎩⎪⎨⎪⎧a =23,b =32.(12分)答题指导:1.在解答本题时,有两大误区:(1)误将x 的范围当成x 2+2x 的范围,从而造成失误.(2)误认为a >1,只按第(1)种情况求解,而忽略了0<a <1的情况,从而造成失误. 2.利用指数函数的图象、性质解决有关问题时,还有以下几个误区,在备考中要高度关注:(1)忽视函数的定义域而失误;(2)未能将讨论的结果进行整合而失误; (3)利用幂的运算性质化简指数式时失误; (4)在用换元法时忽视中间元的范围而失误.1.(2012天津高考)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ).A .c <b <aB .c <a <bC .b <a <cD .b <c <a2.在同一个坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0且a ≠1,则下列所给图象中可能正确的是( ).3.类比“两角和与差的正、余弦公式”的形式,对于给定的两个函数,S (x )=a x -a -x2,C (x )=a x +a -x2,其中a >0且a ≠1,下面正确的运算公式是( ). ①S (x +y )=S (x )C (y )+C (x )S (y ); ②S (x -y )=S (x )C (y )-C (x )S (y ); ③C (x -y )=C (x )C (y )-S (x )S (y ); ④C (x +y )=C (x )C (y )+S (x )S (y ).A .①③B .②④C .①④D .①②③④4.计算⎝ ⎛⎭⎪⎫lg 14-lg 25÷12100-=__________. 5.若函数y =a ·2x -1-a2x-1为奇函数.(1)求a 的值;(2)求函数的定义域; (3)讨论函数的单调性.参考答案基础梳理自测知识梳理1.(1)x n=a 正数 负数 两个 相反数 (2)①a a -a ②a2.(1)①na m②1m na③0 (2)①ar +s②a rs③a r b r(3)确定 同样适用 3.上方 (0,1) R (0,+∞) 递减递增 y =1 y >1 0<y <1 0<y <1 y >1 基础自测1.D 解析:416x 8y 4=1844(16)x y =14844[2()()x y ⋅-⋅-=1442⨯·184()x ⨯-·144()y ⨯-=2(-x )2(-y )=-2x 2y .2.C 解析:由已知,得⎩⎪⎨⎪⎧ a 2-3a +3=1,a >0且a ≠1,即⎩⎪⎨⎪⎧a 2-3a +2=0,a >0且a ≠1.∴a =2.3.C 解析:因为将函数y =2x 的图象向上平移2个单位长度得到函数y =2x+2的图象,再向右平移2个单位长度得到函数y =2x -2+2的图象,所以,函数f (x )的解析式为f (x )=2x -2+2.4.D 解析:当x >0时,y =a x ;当x <0时,y =-a x.故选D.5.9 解析:f (x )=223x x a +-+m 在x 2+2x -3=0时过定点(1,1+m )或(-3,1+m ),∴1+m =10,解得m =9. 考点探究突破【例1】 解:(1)原式=23278-⎛⎫-⎪⎝⎭+121500-⎛⎫⎪⎝⎭-105-2+1 =23827⎛⎫- ⎪⎝⎭+12500-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1. (3)原式=1213233211233()a b a b ab a b-=3111111226333ab +-++--=ab -1.【例2-1】A 解析:∵y =⎝ ⎛⎭⎪⎫12x =2-x,∴它与函数y =2x的图象关于y 轴对称.【例2-2】 解:(1)当a =-1时,f (x )=24313x x --+⎛⎫ ⎪⎝⎭,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13g (x )在R 上单调递减.所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增, 即函数f (x )的递增区间是(-2,+∞),递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,y =⎝ ⎛⎭⎪⎫13h (x ). 由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.【例2-3】 解:函数y =|3x -1|的图象是由函数y =3x的图象向下平移一个单位长度后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同交点,所以方程有两解. 【例3】 解:(1)函数定义域为R ,关于原点对称.又∵f (-x )=aa 2-1(a -x -a x)=-f (x ), ∴f (x )为奇函数.(2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数,从而y =a x -a -x为增函数, ∴f (x )为增函数.当0<a <1时,a 2-1<0,y =a x 为减函数,y =a -x 为增函数,从而y =a x -a -x为减函数,∴f (x )为增函数.故当a >0且a ≠1时,f (x )在定义域内单调递增. (3)由(2)知f (x )在R 上是增函数, ∴f (x )在区间[-1,1]上为增函数. ∴f (-1)≤f (x )≤f (1).∴f (x )min =f (-1)=aa 2-1(a -1-a ) =aa 2-1·1-a2a=-1. ∴要使f (x )≥b 在[-1,1]上恒成立,则只需b ≤-1,故b 的取值范围是(-∞,-1]. 演练巩固提升1.A 解析:a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8=20.8,∵21.2>20.8>1,∴a >b >1,c =2log 52=log 54<1. ∴c <b <a .2.D 解析:若a >1,则y =ax 是增函数,且y =sin ax 的周期T =2πa<2π;若0<a <1,则y =ax 是减函数,且y =sin ax 的周期T =2πa>2π.3.A 解析:∵S (x +y )=a x +y -a -(x +y )2,S (x )C (y )+C (x )S (y )=a x -a -x 2·a y +a -y2+a x +a -x 2·a y -a -y 2=a x +y +a x -y -a y -x -a -(x +y )4+a x +y -a x -y +a y -x -a -(x +y )4=2a x +y -2a -(x +y )4=a x +y -a -(x +y )2=S (x +y ),故①正确;同理可知③也正确.故选A. 4.-20 解析:(lg 14-lg 25)÷12100-=lg(14×125)÷121100=lg 1100÷1100=lg 10-2×100=-2×10=-20.5.解:∵函数y =a ·2x -1-a2x-1, ∴y =a -12x -1.(1)由奇函数的定义, 可得f (-x )+f (x )=0,即a -12-x -1+a -12x -1=0,∴2a +1-2x1-2x =0,∴a =-12.(2)∵y =-12-12x -1,∴2x-1≠0,即x ≠0.∴函数y =-12-12x -1的定义域为{x |x ≠0}.(3)当x >0时,设0<x 1<x 2,则y 1-y 2=2121x --1121x - =122122(21)(21)x x x x ---. ∵0<x 1<x 2,∴1<12x <22x.∴12x -22x <0,12x -1>0,22x-1>0.∴y 1-y 2<0,因此y =-12-12x -1在(0,+∞)上单调递增.同样可以得出y =-12-12x -1在(-∞,0)上单调递增.。
第四节指数函数[基础达标]一、选择题(每小题5分,共35分)1.(2015·威海测试)若点(a,9)在函数y=()x的图象上,则+1的值为()A.4B.C.D.01.C【解析】点(a,9)在函数y=()x的图象上,所以9=()a,解得a=4,所以+1+1=2+(24=2+2-1=.2.下列函数中值域为正实数的是()A.y=-5xB.y=C.y=D.y=(-3)|x|2.B【解析】∵1-x∈R,y=的值域是正实数,∴y=的值域是正实数.3.(2016·山西忻州一中月考)方程2-x+x2=3的实数解的个数为()A.2B.3C.1D.43.A【解析】方程2-x+x2=3的解的个数即为方程=3-x2的解的个数,易知两图象y1=,y2=3-x2有两个交点,因此方程的实数解的个数为2.4.(2015·泉州质检)曲线y=e x与直线y=5-x交点的纵坐标在区间(m,m+1)(m∈Z)内,则实数m 的值为() A.1 B.2 C.3 D.44.C【解析】因为函数y1=e x的图象单调递增,y2=5-x的图象单调递减,当x=1时,y1=e,y2=4,∴y1<y2,当x=2时,y1=e2,y2=3,∴y1>y2,∴交点的横坐标x0满足1<x0<2,对应的纵坐标y0满足3<y0<4,故m=3.5.(2016·江苏扬州中学开学测试)若函数f(x)=2(x-a)(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的取值范围()A.(-∞,1]B.(-∞,0]C.[1,+∞)D.[2,+∞)5.C【解析】由f(1+x)=f(1-x)可知函数图象关于直线x=1对称,所以a=1,所以f(x)=2|x-a|=2|x-1|,易知其在(-∞,1]上单调递减,在[1,+∞)上单调递增,故要使f(x)在[m,+∞)上单调递增,则m的取值范围是[1,+∞).6.(2016·吉安三校联考)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log25)<f(20.3)6.A【解析】对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0可知函数在(-∞,0)上单调递减,又由于f(x)为偶函数,因此在(0,+∞)上函数f(x)单调递增,而0<0.32<1,1<20.3<2,log25>2,所以f(0.32)<f(20.3)<f(log25).7.(2016·郑州一中调研)如图给出了函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2依次对应的图象是()A.①②③④B.①③②④C.②③①④D.①④③②7.B【解析】由题可知a>0,a≠1,由图可知①对应函数y=a x,且0<a<1,所以a+1>1,a-1<0,因此③对应于函数y=log a x,④对应于函数y=(a-1)x2,②对应于函数y=log(a+1)x.二、填空题(每小题5分,共15分)8.函数y=a x-2016+2016(a>0,且a≠1)的图象恒过定点.8.(2016,2017)【解析】令x-2016=0,得x=2016,此时y=a0+2016=2017,故函数y=a x-2016+2016的图象恒过定点(2016,2017).9.已知函数f(x)= +sin x,则f(-2)+f(-1)+f(0)+f(1)+f(2)=.9.5【解析】由f(x)= +sin x,得f(x)+f(-x)=2,所以f(-2)+f(-1)+f(0)+f(1)+f(2)=2×2+f(0)=4++sin 0=5.10.(2015·山东师大附中模拟)已知函数f(x)=log2x(x>0)的反函数为f-1(x),且f-1(a)·f-1(b)=8,若a>0且b>0,且的最小值为.10.3【解析】由题可知函数f(x)=log2x(x>0)的反函数为y=2x,即f-1(x)=2x,所以f-1(a)·f-1(b)=2a·2b=2a+b,因此2a+b=8,即a+b=3,所以(a+b)·×(5+2)=3.[高考冲关]1.(5分)(2015·黄山质检)已知函数f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),下列结论必成立的是() A.a<0,b<0,c<0 B.a<0,b≥0,c>0C.2-a<2cD.2a+2c<21.D【解析】因为f(x)=|2x-1|=其图象如图所示,要使a<b<c,且f(a)>f(c)>f(b)成立,则有a<0,b<0,c>0且1-2a>2c-1,即2a+2c<2,观察选项知D项正确.2.(5分)关于x=1对称的函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=1-x,则关于x的方程f(x)=在x∈[0,3]上解的个数是()A.1B.2C.3D.42.D【解析】由f(x-1)=f(x+1)知函数的周期为2,作出f(x)在[0,3]上的图象与函数y=的图象,易知它们交点个数为4,则方程f(x)=在x∈[0,3]上解的个数是4.3.(5分)(2015·绵阳一诊)计算:2=.3.6【解析】原式=2××1=2×=2×=6.4.(5分)(2015·孝感调研)已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则在直角坐标系下函数g(x)=的图象为()4.B【解析】由题可知f(x)=x-4+=x+1+-5≥2-5=1,当且仅当x=2时,等号成立,所以a=2,b=f(2)=1,故g(x)=,其图象可由y=向左平移1个单位得到,观察知B项正确.5.(10分)(2015·山东日照一中月考)已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最小值1和最大值4,设f(x)=.(1)求a,b的值;(2)若不等式f(2x)-k·2x≥0在区间[-1,1]上有解,求实数k的取值范围.5.【解析】(1)由已知可得g(x)=a(x-1)2+1+b-a,因为a>0,所以g(x)在区间[2,3]上是增函数,故解得a=1,b=0.(2)由已知可得f(x)=x+-2,所以f(2x)-k·2x≥0可化为2x+-2≥k·2x,即1+-2·≥k,令t=,由x∈[-1,1],得t∈,则k≤t2-2t+1,t∈.记h(t)=t2-2t+1,t∈,易得h(t)max=h(2)=1,所以k的取值范围是(-∞,1].。
第4讲 指数与指数函数A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·山东)若点(a,9)在函数y =3x的图象上,则tan a π6的值为 ( ).A .0B.33C .1 D. 3解析 由题意有3a=9,则a =2,∴tan a π6=tan π3= 3. 答案 D2.(2012·天津)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 5 2,则a ,b ,c 的大小关系为( ).A .c <b <aB .c <a <bC .b <a <cD .b <c <a解析 a =21.2>2,而b =⎝ ⎛⎭⎪⎫12-0.8=20.8,所以1<b <2,c =2log 52=log 54<1,所以c <b <a .答案 A3.(2013·酉阳模拟)不论a 为何值时,函数y =(a -1)2x-a2恒过定点,则这个定点的坐标是( ).A.⎝⎛⎭⎪⎫1,-12 B.⎝ ⎛⎭⎪⎫1,12C.⎝⎛⎭⎪⎫-1,-12D.⎝⎛⎭⎪⎫-1,12 解析 y =(a -1)2x -a 2=a ⎝ ⎛⎭⎪⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a -1)2x-a 2恒过定点⎝ ⎛⎭⎪⎫-1,-12.答案 C4.定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,如1] ( ).A .RB .(0,+∞)C .(0,1]D .[1,+∞)解析 f (x )=2x *2-x=⎩⎪⎨⎪⎧2x,x ≤0,2-x,x >0,∴f (x )在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f (x )≤1. 答案 C二、填空题(每小题5分,共10分)5.(2013·太原模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x,x <0,a -3x +4a ,x ≥0,满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是________.解析 对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,说明函数y =f (x )在R 上是减函数,则0<a <1,且(a -3)×0+4a ≤a 0,解得0<a ≤14.答案 ⎝ ⎛⎦⎥⎤0,14 6.若函数f (x )=⎩⎪⎨⎪⎧2x,x <0,-2-x,x >0,则函数y =f (f (x ))的值域是________.解析 当x >0时,有f (x )<0;当x <0时,有f (x )>0.故f (f (x ))=⎩⎪⎨⎪⎧2f x,f x <0,-2-f x ,f x >0=⎩⎪⎨⎪⎧2-2-x,x >0,-2-2x,x <0.而当x >0时,-1<-2-x <0,则12<2-2-x<1.而当x <0时,-1<-2x <0,则-1<-2-2x<-12.则函数y =f (f (x ))的值域是⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1 答案 ⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1三、解答题(共25分)7.(12分)已知函数f (x )=2x-12x +1.(1)判断函数f (x )的奇偶性; (2)求证f (x )在R 上为增函数.(1)解 因为函数f (x )的定义域为R ,且f (x )=2x-12x +1=1-22x +1,所以f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x +1=2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x 2x +1=2-22x+12x +1=2-2=0,即f (-x )=-f (x ),所以f (x )是奇函数. (2)证明 设x 1,x 2∈R ,且x 1<x 2,有f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=22x 1-2x 22x 1+12x 2+1, ∵x 1<x 2,2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, ∴f (x 1)<f (x 2),∴函数f (x )在R 上是增函数.8.(13分)已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解 (1)因为f (x )是奇函数,所以f (0)=0,即-1+b 2+a =0,解得b =1,所以f (x )=-2x+12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a .解得a =2.(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数(此外可用定义或导数法证明函数f (x )在R 上是减函数).又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫t ⎪⎪⎪t >1或t <-13. B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.已知函数f (x )=a x+log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( ).A.12B.14C .2D .4解析 由题意知f (1)+f (2)=log a 2+6,即a +log a 1+a 2+log a 2=log a 2+6,a 2+a -6=0,解得a =2或a =-3(舍). 答案 C2.若函数f (x )=(k -1)a x-a -x(a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是下图中的( ).解析 函数f (x )=(k -1)a x -a -x 为奇函数,则f (0)=0,即(k -1)a 0-a 0=0,解得k =2,所以f (x )=a x -a -x ,又f (x )=a x -a -x为减函数,故0<a <1,所以g (x )=log a (x +2)为减函数且过点(-1,0). 答案 A二、填空题(每小题5分,共10分)3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,且f (f (1))>3a 2,则a 的取值范围是________.解析 由已知得f (1)=21+1=3,故 f (f (1))>3a 2⇔f (3)>3a 2⇔32+6a >3a 2.解得-1<a <3. 答案 (-1,3)4.已知f (x )=x 2,g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是________.解析 x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14.答案 ⎣⎢⎡⎭⎪⎫14,+∞ 三、解答题(共25分)5.(12分)定义在[-1,1]上的奇函数f (x ),已知当x ∈[-1,0]时,f (x )=14x -a2x (a ∈R ).(1)求f (x )在[0,1]上的最大值;(2)若f (x )是[0,1]上的增函数,求实数a 的取值范围. 解 (1)设x ∈[0,1],则-x ∈[-1,0],f (-x )=14-x -a 2-x =4x -a ·2x, ∵f (-x )=-f (x ),∴f (x )=a ·2x-4x,x ∈[0,1].令t =2x,t ∈[1,2],∴g (t )=a ·t -t 2=-⎝ ⎛⎭⎪⎫t -a 22+a24,当a2≤1,即a ≤2时,g (t )max =g (1)=a -1; 当1<a2<2,即2<a <4时,g (t )max =g ⎝ ⎛⎭⎪⎫a 2=a24;当a2≥2,即a ≥4时,g (t )max =g (2)=2a -4. 综上,当a ≤2时,f (x )的最大值为a -1;当2<a <4时,f (x )的最大值为a 24;当a ≥4时,f (x )的最大值为2a -4.(2)∵函数f (x )在[0,1]上是增函数,∴f ′(x )=a ln 2×2x -ln 4×4x =2xln 2·(a -2×2x )≥0,∴a -2×2x ≥0恒成立,∴a ≥2×2x .∵2x∈[1,2],∴a ≥4. 6.(13分)已知定义在R 上的函数f (x )=2x-12|x |. (1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x <0时, f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,看成关于2x 的一元二次方程,解得2x=2或-12,∵2x>0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1), ∵22t-1>0,∴m ≥-(22t+1),∵t ∈[1,2],∴-(22t+1)∈[-17,-5], 故m 的取值范围是[-5,+∞).。