习智教育温馨整理-37不等式及其性质(基础)巩固练习
- 格式:docx
- 大小:108.14 KB
- 文档页数:4
初中数学七年级下册不等式及其性质(基础)巩固练习一、选择题1.下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a+l ;⑥113x ->;⑦x =1.其中是不等式的有( )A .3个B .4个C .5个D .6个2.下列不等式表示正确的是 ( )A .a 不是负数表示为a >0B .x 不大于5可表示为x >5C .x 与1的和是非负数可表示为x+1>0D .m 与4的差是负数可表示为m-4<03.下列说法中,正确的是 ( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集4.(2015•乐山)下列说法不一定成立的是( )A .若a >b ,则a+c >b+cB .若a+c >b+c ,则a >bC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b5.把不等式x+2>4的解集表示在数轴上,正确的是( )6.下列变形中,错误的是( )A .若3a+5>2,则3a >2-5B .若213x ->,则23x <- C .若115x -<,则x >-5 D .若1115x >,则511x > 二、填空题7.用“>”或“<”填空:(1)-10.8________10.4; (2)1100-________1100; (3)15-________16- (4)0________134-; (5)(-2)3________3|2|- (6)1112________1213;(7)23- ________0.66; (8)-1.11________119- 8.用不等式表示下列各语句所描述的不等关系:(1)a 的绝对值与它本身的差是非负数________;(2)x 与-5的差不大于2________;(3)a 与3的差大于a 与a 的积________;(4)x 与2的平方差是—个负数________.9.(2015春•玉田县期末)如果a <b .那么3﹣2a 3﹣2b .(用不等号连接)10.假设a >b ,请用“>”或“<”填空(1)a-1________b-1; (2)2a______2b ; (3)12a -_______12b -; (4)a+l________b+1. 11.已知a >b ,且c ≠0,用“>”或“<”填空. (1)2a________a+b (2)2a c _______2b c (3)c-a_______c-b (4)-a|c|_______-b|c|12.若a >0,则关于x 的不等式ax >b 的解集是________;若a <0,则关于x 的不等式以ax >b 的解集是_______.三、解答题13.已知x 与1的和不大于5,完成下列各题.(1)列出不等式;(2)写出它的解集;(3)将它的解集在数轴上表示出来.14. (2015春•睢宁县校级月考)用等号或不等号填空:(1)比较2x 与x 2+1的大小:当x=2时,2x x 2+1当x=1时,2x x 2+1当x=﹣1时,2x x 2+1(2)任选取几个x 的值,计算并比较2x 与x 2+1的大小;15.已知x <y ,比较下列各对数的大小.(1)8x-3和8y-3; (2)516x -+和516y -+; (3) x-2和y-1.【答案与解析】一、选择题1. 【答案】C ;【解析】①②③④⑥均为不等式。
《不等式与一次不等式组》全章复习与巩固(基础)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的符号语言表达下列关系.。
不等式及其根天性质一、填空题1.不等式的根天性质:(1).不等式的两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。
几何语言表述。
(2).不等式的两边都乘以〔或除以〕同一正数,不等号的方向不变。
几何语言表述。
(3).不等式的两边都乘以〔或除以〕同一负数,不等号的方向不变。
几何语言表述。
(4).对称性:。
(5).传达性:。
2.依据不等式的根天性质,用“<或〞“>填〞空.〔1〕假定a-1>b-1,那么a____b;〔2〕假定a+3>b+3,那么a____b;〔3〕假定2a>2b,那么a____b;〔4〕假定-2a>-2b,那么a___b.3.假定a>b,m<0,n>0,用“>或〞“<填〞空.〔1〕a+m____b+m;〔2〕a+n___b+n;〔3〕m-a___m-b;a b a b〔4〕an____bn;〔5〕m____m;〔6〕n_____n;二、选择题1.假定a>b,c>0,那么以下四个不等式建立的是〔〕a bA.ac>bcB cCc bcD c<.c.a.a b+c2.a<-1,那么以下不等式中错误的选项是〔〕A.4a<-4B.4a<-4C.a21D.2a33.假定a<b,那么以下不等式中建立的个数是〔〕〔1〕-3+a<-3+b〔2〕-3a<-3b〔3〕-3a-1<-3b-1〔4〕-3a+1>-3b+1A.1个B.2个C.3个D.4个4.假定x<y,那么ax>ay,那么a知足的条件是〔〕A.a≥0B.a≤0C.a>0D.a<05.假定a>b,那么a-b>0,其依据是〔〕A.不等式性质1B.不等式性质2C.不等式性质3D.以上答案均不对6.由x<y得ax>ay的条件是〔〕A.a>0B.a<0C.a=0D.没法确立7.8x+1<-2x,那么以下各式中正确的选项是〔〕A.10x+1>0 B.10x+1<0 C.8x-1>2x D.10x>-18.假定a<b,那么不等式〔a-b〕x>a-b,化为“x>a或〞“x<a的〞形式为〔〕A.x>-1 B.x>1 C.x<1 D.x<-19.假定m+2>n+2,那么以下各不等式不可以建立的是〔〕1A.m+3>n+2 B.-2m<-10.以下不等式不可以化成x>-2的是〔〕12288 2n C.3m>3n D.-7m>-7n1 5 1A.x+4>2 B.x-2>-2C.-2x>-4 D.2x>-1三、依据不等式的根天性质,把以下不等式表示为x>a,或x<a的形式:〔1〕10x-1>9x 〔2〕2x+2<3 〔3〕-5x+6<2x+1四、依据题意,列出不等式:〔1〕x的一半不大于它的三倍,用不等式表示为:〔2〕某栽种物生长的适合温度不可以低于18o C,也不可以高于22o C,假如该植物生长的适合温度为x o C,那么有不等式〔3〕某企业打算之多用1200元印制广告单,制版费50元,每印一张广告单还需支付元的印刷费,那么该企业可印的广告单数目x〔张〕知足的不等式为。
不等式基础训练在数学中,不等式是指两个表达式之间关系的符号表示,常用的不等关系包括大于、小于、大于等于、小于等于等。
不等式基础训练是数学学习中非常重要的一部分,通过不等式的练习可以帮助学生加强对不等式概念的理解,提高解决不等式问题的能力。
本文将就不等式基础训练进行详细探讨,包括基本概念、常见类型和解题技巧等。
首先,我们先来了解一下不等式的基本概念。
在数学中,不等式是指不同数之间大小关系的一种表示形式,用符号表示不等关系。
常见的不等式符号包括“>”、“<”、“≥”和“≤”,分别表示大于、小于、大于等于和小于等于。
例如,对于两个实数a和b,如果a大于b,则可以表示为a > b;如果a小于等于b,则可以表示为a ≤ b。
其次,不等式基础训练包括各种类型的不等式问题,如一元一次不等式、一元二次不等式、绝对值不等式等。
对于一元一次不等式,一般的解题步骤是化简、移项、解方程和判断符号等。
例如,对于不等式2x + 5 > 3x - 1,我们可以首先将不等式化简为x < 6,然后判断符号为“<”,得出解集为(-∞, 6)。
对于一元二次不等式,解题方法可以是利用二次函数的图像性质或配方法变形等。
不等式基础训练还包括一些常见的性质和技巧,例如加减法的性质、绝对值不等式的性质、乘法的性质等。
通过掌握这些性质和技巧,可以更加灵活地解决不等式问题,提高解题效率。
另外,对于复合不等式问题,需要先将不等式拆解成简单的不等式,然后逐步求解每个简单不等式,最后合并解集。
总的来说,不等式基础训练是数学学习中的重要内容,通过系统、有针对性的练习,可以帮助学生掌握不等式的基本概念、常见类型和解题技巧,提高数学解题能力和逻辑思维能力。
希望本文对不等式基础训练有所帮助,同时也希望读者能够通过不断的实践和训练,掌握更多有关不等式的知识和技巧,取得更好的学习成绩。
谢谢阅读!。
第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。
(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改)的全部内容。
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥"及“≤"等不等号把代数式连接起来,表示不等关系的式子。
a —b 〉0a>b, a —b=0a=b, a-b 〈0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>"读作“大于",它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
高中数学 不等式的基本性质 习题1.已知a >b >c ,a +b +c =0,则必有( ).A .a ≤0 B.a >0 C .b =0 D .c >02.若a <1,b >1,那么下列命题中正确的是( ).A .11a b >B .1b a> C .a 2<b 2 D .ab <a +b -13.设a >1>b >-1,则下列不等式中恒成立的是( ).A .11a b <B .11a b> C .a >b 2 D .a 2>2b 4.已知1≤a +b ≤5,-1≤a -b ≤3,则3a -2b 的取值范围是( ).A .B .C .D .5.已知a <0,b <-1,则下列不等式成立的是( ).A .2a a a b b >> B .2a a a b b >> C . 2a a a b b >> D .2a a a b b>> 6.已知-3<b <a <-1,-2<c <-1,则(a -b )c 2的取值范围是__________. 7.若a ,b ∈R ,且a 2b 2+a 2+5>2ab +4a ,则a ,b 应满足的条件是__________.8.设a >b >c >0,x =y =,z =x ,y ,z 之间的大小关系是__________.9.某次数学测验,共有16道题,答对一题得6分,答错一题倒扣2分,不答则不扣分,某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?列出其中的不等关系.10.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较33S a 与55S a 的大小.参考答案1. 答案:B 解析:由a >b >c ,a +b +c =0知3a >0,故a >0.2. 答案:D 解析:由a <1,b >1得a -1<0,b -1>0,所以(a -1)(b -1)<0,展开整理即得ab <a +b -1.3. 答案:C 解析:取a =2,b =12-,满足a >1>b >-1,但11a b>,故A 错;取a =2,13b =,满足a >1>b >-1,但11a b <,故B 错;取54a =,56b =,满足a >1>b >-1,但a 2<2b ,故D 错,只有C 正确.4. 答案:D 解析:令3a -2b =m (a +b )+n (a -b ),则32m n m n +=⎧⎨-=-⎩,,所以125.2m n ⎧=⎪⎪⎨⎪=⎪⎩, 又因为1≤a +b ≤5,-1≤a -b ≤3, 所以115()222a b ≤+≤,5515()222a b -≤-≤, 故-2≤3a -2b ≤10. 5. 答案:C 解析:∵a <0,b <-1,则0a b >,b <-1,则b 2>1,∴211b <. 又∵a <0,∴0>2a b>a .∴2a a a b b >>.故选C. 6. 答案:(0,8) 解析:依题意0<a -b <2,1<c 2<4,所以0<(a -b )c 2<8. 7. 答案:a ≠2或b ≠12 解析:原不等式可化为(ab -1)2+(a -2)2>0.故a ≠2或b ≠12. 8. 答案:x <y <z 解析:x 2-y 2=a 2+(b +c )2-b 2-(c +a )2=2c (b -a )<0,所以x <y ,同理可得y <z ,故x ,y ,z 之间的大小关系是x <y <z .9. 答案:解:设至少答对x 题,则6x -2(15-x )≥60.10. 答案:解:当q =1时,333S a =,555S a =,所以3535S S a a <; 当q >0且q ≠1时,353511243511(1)(1)(1)(1)S S a q a q a a a q q a q q ---=---=23544(1)(1)10(1)q q q q q q q -----=<-, 所以有3535S S a a <.综上可知有3535S S a a <.。
高中数学基本不等式知识点归纳及练习题(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学基本不等式知识点归纳及练习题(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学基本不等式知识点归纳及练习题(推荐完整)的全部内容。
高中数学基本不等式知识点归纳及练习题(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望高中数学基本不等式知识点归纳及练习题(推荐完整) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <高中数学基本不等式知识点归纳及练习题(推荐完整)> 这篇文档的全部内容。
高中数学基本不等式的巧用1.基本不等式:错误!≤错误!(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)错误!+错误!≥2(a ,b 同号);(3)ab ≤错误!2(a ,b ∈R ); (4)a 2+b 22≥错误!2(a ,b ∈R ).3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为错误!,几何平均数为错误!,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2错误!。
必修五:不等式知识点一:不等式关系与不等式一、不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>; (4)乘法法则:bc ac c b a >⇒>>0,; (5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a nn且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n且【典型例题】1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2C .2a -2b <0 D.1a >1b2.如果0a <,0b >,则下列不等式中正确的是( )A .11a b< B .a b -< C .22a b < D .a b >3. 已知a ,b ,c ,d 均为实数,有下列命题:(1)若ab >0,bc -ad >0,则c a -d b >0;(2)若ab >0,c a -db >0,则bc -ad >0;(3)若bc -ad >0,c a -db>0,则ab >0,其中正确命题的个数是( )A .0B .1C .2D .34. 设a 、b 、c 、d ∈R ,且a >b ,c >d ,则下列结论中正确的是( )A. a +c >b +d B .a -c >b -d C .ac >bd D.a d >bc【习题训练】1:已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )A .ad bc >B .ac bc >C .a c b d ->-D .a c b d +>+ 2:下列命题中正确的是( )A .若a b >,则22ac bc > B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b < D .若a b >,c d <,则a b c d> 3. 下列命题中正确命题的个数是( )①若x y z >>,则xy yz >;②a b >,c d >,0abcd ≠,则a bc d>; ③若110a b <<,则2ab b <;④若a b >,则11b b a a ->-. A .1 B .2 C .3D .44. 如果a R ∈,且20a a +<,那么a ,2a ,a -,2a -的大小关系是( )A .22a a a a >>->- B .22a a a a ->>->C .22a a a a ->>>-D .22a a a a >->>-5.用“>”“<”号填空:如果0a b c >>>,那么c a ________cb. 6.已知a ,b ,c ,d 均为实数,且0ab >,c da b-<-,则下列不等式中成立的是( ) A .bc ad <B .bc ad >C .a bc d> D .a b c d< 7. 已知实数a 和b 均为非负数,下面表达正确的是( )A .0a >且0b >B .0a >或0b >C .0a ≥或0b ≥D .0a ≥且0b ≥8.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是( )A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22-二、含有绝对值的不等式1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a3.当0c >时, ||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<;当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. 4、解含有绝对值不等式的主要方法:①解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解; ②去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 【典型例题】1. 给出下列命题:①22a b ac bc >⇒>;②22a b a b >⇒>;③33a b a b >⇒>;④22a b a b >⇒>.其中正确的命题是( )A .①②B .②③C .③④D .①④2. 设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( )A .b -a >0B .a 3+b 3<0C .a 2-b 2<0D .b +a >03.不等式3529x ≤-<的解集为( )(运用公式法)A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)- 4. 求解不等式:|21||2|4x x ++->.(运用零点分段发) 5.函数46y x x =-+-的最小值为( ) (零点分段法) A .2 B .2 C .4 D .6 【习题训练】1.解不等式|||1|3x x +->2.若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。
【巩固练习】
一、选择题
1.下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a+l ;⑥113
x ->;⑦x =1.其中是不等式的有( )
A .3个
B .4个
C .5个
D .6个
2.下列不等式表示正确的是 ( )
A .a 不是负数表示为a >0
B .x 不大于5可表示为x >5
C .x 与1的和是非负数可表示为x+1>0
D .m 与4的差是负数可表示为m-4<0
3.下列说法中,正确的是 ( )
A .x =3是不等式2x >1的解
B .x =3是不等式2x >1的唯一解
C .x =3不是不等式2x >1的解
D .x =3是不等式2x >1的解集
4.(2015•乐山)下列说法不一定成立的是( )
A .若a >b ,则a+c >b+c
B .若a+c >b+c ,则a >b
C .若a >b ,则ac 2>bc 2
D .若ac 2>bc 2,则a >b
5.把不等式x+2>4的解集表示在数轴上,正确的是( )
6.下列变形中,错误的是( )
A .若3a+5>2,则3a >2-5
B .若213x ->,则23
x <- C .若115x -<,则x >-5 D .若1115x >,则511x > 二、填空题 7.用“>”或“<”填空:
(1)-10.8________10.4; (2)1100-
________1100; (3)15-________16- (4)0________134
-; (5)(-2)3________3
|2|- (6)1112________1213
; (7)23- ________0.66; (8)-1.11________119- 8.用不等式表示下列各语句所描述的不等关系:
(1)a 的绝对值与它本身的差是非负数________;
(2)x 与-5的差不大于2________;
(3)a 与3的差大于a 与a 的积________;
(4)x 与2的平方差是—个负数________.
9.(2015春•玉田县期末)如果a <b .那么3﹣2a 3﹣2b .(用不等号连接)
10.假设a >b ,请用“>”或“<”填空
(1)a-1________b-1; (2)2a______2b ;
(3)12
a -_______12
b -; (4)a+l________b+1. 11.已知a >b ,且
c ≠0,用“>”或“<”填空. (1)2a________a+b (2)
2a c _______2b c (3)c-a_______c-b (4)-a|c|_______-b|c|
12.若a >0,则关于x 的不等式ax >b 的解集是________;
若a <0,则关于x 的不等式以ax >b 的解集是_______.
三、解答题
13.已知x 与1的和不大于5,完成下列各题.
(1)列出不等式;(2)写出它的解集;(3)将它的解集在数轴上表示出来.
14. (2015春•睢宁县校级月考)用等号或不等号填空:
(1)比较2x 与x 2+1的大小: 当x=2时,2x x 2+1 当x=1时,2x x 2+1
当x=﹣1时,2x x 2+1
(2)任选取几个x 的值,计算并比较2x 与x 2+1的大小;
15.已知x <y ,比较下列各对数的大小.
(1)8x-3和8y-3; (2)516x -+和516
y -+; (3) x-2和y-1.
【答案与解析】
一、选择题
1. 【答案】C ;
【解析】①②③④⑥均为不等式。
2. 【答案】D ;
【解析】a 不是负数应表示为a ≥0,故A 错误; x 不大于5应表示为x ≤5,故B 错误; x 与1的和是非负数应表示为x+1≥0,故C 错误; m 与4的差是负数应表示为m-4<0,故D 正确。
3. 【答案】A ;
4.【答案】C .
【解析】A 、在不等式a >b 的两边同时加上c ,不等式仍成立,即a+c >b+c ,故本选项错误;
B 、在不等式a+c >b+c 的两边同时减去c ,不等式仍成立,即a >b ,故本选项错误;
C 、当c=0时,若a >b ,则不等式ac 2>bc 2不成立,故本选项正确;
D 、在不等式ac 2>bc 2的两边同时除以不为0的c 2,该不等式仍成立,即a >b ,故本选项错
误.
5. 【答案】B ;
【解析】根据不等式的性质,在不等式的两边都加上-2,得x+2-2>4-2,所以x >2.在数轴上表示不等式的解集,应从表示2的点向右画,并且不包含2的点,即表示2的点画空心圆圈,故选B .
6. 【答案】B ;
【解析】B 错误,应改为:213x ->,两边同除以23
-,可得:32x <-。
二、填空题
7. 【答案】 (1)< (2)< (3)> (4)> (5)< (6)< (7)< (8)>;
【解析】根据大小进行判断.
8.【答案】 (1)|a|-a ≥0 (2)x-(-5)≤2 (3)23a a -> (4)2220x -<;
9.【答案】>.
【解析】∵a <b ,两边同乘﹣2得:﹣2a >﹣2b ,不等式两边同加3得:3﹣2a >3﹣2b.
10.【答案】(1)> (2)> (3)< (4) >;
11.【答案】 (1)> (2)> (3)< (4)<;
【解析】利用不等式的性质进行判断。
12.【答案】b x a >,b x a
<; 【解析】不等式两边同除以一个正数,不等号不变;不等式两边同除以一个负数,不等号改变方向.
三、解答题
13.【解析】
解: (1)x+1≤5.
(2)不等式x+1≤5的解集是x ≤4.
(3)把x ≤4表示在数轴上如图所示
14.【解析】
解:(1)比较2x 与x 2+1的大小:
当x=2时,2x <x 2+1
当x=1时,2x=x 2+1
当x=﹣1时,2x <x 2+1,
故答案为:<,=,<;
(2)当x=3时,2x <x 2+1,
当x=﹣2时,2x <x 2+1.
15.【解析】
解: (1)∵ x <y ∴ 8x <8y , ∴ 8x-3<8y-3.
(2)∵ x <y ,∴ 55y 66
x -
>-, ∴ 551166x y -+>-+. (3)∵ x <y ,∴ x-2<y-2,而y-2<y-1,
∴ x-2<y-1.。