八年级数学 不等式的基本性质
- 格式:doc
- 大小:92.50 KB
- 文档页数:7
2.2不等式的性质不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a±c >b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc(或). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a >b ,c <0,那么ac <bc(或). 注意:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.题型1:利用不等式的性质判定正误1.如果a >b ,那么下列结论一定正确的是( )A .a ﹣3<b ﹣3B .>C .a +3<b +3D .﹣3a >﹣3b【变式1-1】已知a <b ,则( )A .a +1<b +2B .a ﹣1>b ﹣2C .ac <bcD .>(c ≠0)【变式1-2】以下是两位同学在复习不等式过程中的对话:小明说:不等式a >2a 永远都不会成立,因为如果在这个不等式两边同时除以a ,就会出现1>2这样的错误结论!a b c c>a b c c <题型2:利用不等式确定字母的取值范围2.已知x>1,x+a=1,则a的取值范围是()A.a<0B.a≤0C.a>0D.a≥0【变式2-1】若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是.题型3:利用不等式的性质将不等式变形3.根据不等式的性质,把下列不等式化成x>a或x<a的形式.(1)x+7>9;(2)6x<5x﹣3;(3);(4)﹣.【变式3-1】根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【变式3-2】根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:(1)x﹣2<3;(2)4x>3x﹣5;(3)x<;(4)﹣8x<10.题型4:利用不等式的性质比较大小4.若﹣2a>﹣2b,则a与b的大小关系为.题型5:利用不等式的性质化简不等式5.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,试化简:|m﹣1|﹣|2﹣m|.【变式5-1】已知关于x的不等式(1﹣a)x>2,两边都除以(1﹣a),得x<,试化简:|a﹣1|+|a+2|.【变式5-2】已知x满足不等式组,化简|x+3|+|x﹣2|.题型6:利用不等式的性质求最值6.代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0B.﹣10C.﹣5D.3【变式6-1】已知0≤m﹣n≤2,2≤m+n≤4,则当m﹣2n达到最小值时,3m+4n=.题型7:数轴与不等式7.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【变式7-1】已知有理数a、b、c在数轴上对应的位置如图所示,则下列式子中正确的是()A.ab2>ac2B.ab<ac C.ab>ac D.c+b>a+b【变式7-2】已知实数a、b、c在数轴上对应的点如图所示,请判断下列不等式的正确性.(1)bc>ab(2)ac>ab(3)c﹣b<a﹣b(4)c+b>a+b(5)a﹣c>b﹣c(6)a+c<b+c.题型8:不等式的简单应用8.江南三大名楼指的是:滕王阁、黄鹤楼、岳阳楼.其中岳阳楼位于湖南省岳阳市的西门城头、紧靠洞庭湖畔,始建于三国东吴时期.自古有“庭天下水,岳阳天下楼”之誉,因北宋范仲淹脍炙人口的《岳阳楼记》而著称于世.某兴趣小组参观过江南三大名楼的人数,同时满足以下三个条件:(1)参观过滕王阁的人数多于参观过岳阳楼的人数;(2)参观过岳阳楼的人数多于参观过黄鹤楼的人数;(3)参观过黄鹤楼的人数的2倍多于参观过滕王阁的人数.若参观过黄鹤楼的人数为4,则参观过岳阳楼的人数的最大值为()A.4B.5C.6D.7【变式8-1】如图,一个倾斜的天平两边分别放有2个小立方体和3个砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围是()A.m<15B.m>15C.m>D.m<【变式8-2】有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上。
八年级不等关系知识点总结关于八年级不等关系的知识点总结
八年级是初中学习中一个重要的环节,也是学生初步接触不等关系的年级。
不等关系能够培养学生善于观察与思考的能力,同时也能够提升学生的逻辑思维和数学技巧。
因此,对于八年级的学生来说,掌握不等关系的知识点是至关重要的。
下面就来总结一下八年级不等关系的重点知识。
一、不等式的基本性质
1.1 传递性质
不等式的传递性是指,若a<b,b<c,则a<c。
1.2 对称性质
不等式的对称性是指,若a<b,则b>a。
1.3 反称性质
不等式的反称性是指,若a<b,则不可能有b<=a。
二、不等式的解法
2.1 联立法
联立法是指,将不等关系联立到一起,通过消元的方法求出不
等式的解。
2.2 分类讨论法
分类讨论法是指,将不等式中的未知数按照大小关系分成几类,分别讨论每一类的解法,最后将结果合并起来。
2.3 取绝对值法
取绝对值法是指,将不等式中的未知数都取绝对值,通过比较
绝对值之间的大小关系来判断不等式的解。
三、不等式的应用
3.1 引理
引理是指,通过不等关系的性质,推导出一些结论,可以用来
简化不等式的求解。
3.2 应用
在生活中,不等关系也有着广泛的应用,如货币兑换、失业率、贷款等方面。
综上所述,不等关系的知识点对于八年级学生来说是至关重要的。
通过深入理解不等关系的基本性质、掌握不等式的解法和应用,可以提升学生的数学思维和问题解决能力。
不等式的基本性质及其解集一、不等式的性质1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变.c a b a +⇒> c a b a c b +⇒<+, c b +2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
若:0,>>c b a ,可得ac bc .3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.若ac c b a ⇒<>0, bc .二.不等式的解集1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集.2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体)3.不等式解集的表示方法. 1-≤x①用不等式表示。
如1-≤x 或x <-1等。
x <-1②用数轴表示.(注意实心圈与空心圈的区别)4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需要变号。
典型例题例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围.②不等式a x <2的解集为7<x ,求a 的值.例2.(1)如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围.(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.例3.(2007山东临沂)直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x的不等式k 1x +b >k 2x 的解为( )。
A 、x >-1 B 、x <-1 C 、x <-2 D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围.(2)若b a ,满足753=+b a ,求b a S 32-=的取值范围.例5.已知由小到大的十个正整数109321,,,,,a a a a a 的和是2003,那么5a 的最大值是多少?当5a 取得最大值时,写出10a 最小的这十个数.思考:1.已知a c c b a c b a 求,,0>>=++的取值范围.2.设c b a ,,均为正数,若ac b c b a b a c +<+<+,试确定c b a ,,三个数的大小.【经典练习】y k 2x1.如果关于x 的不等式b x a <-)1(的解集是1->a b x ,则有( ) A 、1>a B 、1<a C 、1≠a D 、a 为一切实数2.若m 为有理数,下列不等式关系不一定成立的是( )A 、m m +>+79B 、m m -<-43C 、m m 46>D 、0||4≥m3.下列四个结论:(1)4是不等式63>+x 的解;(2)4>x 是不等式63>+x 的解集;(3)3是不等式63≥+x 的解;(4)3≥x 是不等式63≥+x 的解集,其中正确的是( )A 、1个B 、2个C 、3个D 、4个4.满足不等式135->-x 的正整数值是方程[]a x x x =-----)15(4)21(5)2(4的解,则a 的值是( )A 、0B 、1C 、17D 、-175.不等式)52(4)83(714-<+-x x x 的负整数解是( )A 、-3,-2,-1,0B 、-4,-3,-2,-1C 、-2,-1D 、以上答案都不对6.已知032)2(2=--+-n b a a 中,b 为正数,则n 的取值范围是( )A 、2<nB 、3<nC 、4<nD 、5<n 7.如果b ax >,02<ac ,则xa b 8.(2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .9.若不等式a x <6的解集为3<x ,则a 的值为 .10.当a = 时,不等式x x 532≥-与x ax ≤+2同解.11.化简:若41<<x ,则化简22)1(4(-+-x )x 的结果是 . 12.当a 为何值时,方程)(23a x a x +-=+的解大于方程2)12(3)13(+=-x a x a 的解13.已知7321,,,a a a a 是彼此不相等的正整数,它们的和为159,求其中最小数a 的最大值.作业1.如果关于x 的方程7332+=-+x m x 的解为不大于2的非负数,那么( )(第8题图)A 、6=mB 、7,6,5=mC 、无解D 、75≤≤m2.如果关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,那么( ) A 、2>a B 、2<a C 、187<a D 、187>a 3.如果22,7235>+->-c a a ,那么( ) A 、c a c a +<- B 、a c a c +<- C 、ac ac -> D 、a a 23> 4.若b a b a ><>,0,0,那么b a b a --,,,的大小顺序是( )A 、b a a b >->>-B 、b a b a ->->>C 、a b a b ->->>D 、a b b a ->>->5.已知0)24(1832=-+++k y x x ,求当k 为何值时,y 的值是非负数?6.(1)关于x 的方程1223+=+m x 的解为正数,求m 的取值范围.(2)不等式a x <+32的正整数解恰为1,2,求m 的取值范围.思考:已知三个非负数z y x ,,满足132,523=-+=++z y x z y x ,若z y x m 73-+=,求m 的最大值及最小值。
八年级数学上册知识点归纳:一元一次不等式的解法知识点总结一.一元一次不等式的解法:一元一次不等式的解法与一元一次方程的解法类似,其步骤为:1.去分母;2.去括号;3.移项;4.合并同类项;5.系数化为1。
二.不等式的基本性质:1.不等式的两边都加上(或减去)同一个整式,不等号的方向不变;2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
三.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
四.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
五.解不等式的依据不等式的基本性质:性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,常见考法(1)考查一元一次不等式的解法;(2)考查不等式的性质。
误区提醒忽略不等号变向问题。
【典型例题】(XX年铁岭加速度辅导学校)在四川抗震救灾中,某抢险地段需实行爆破。
操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒。
为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米c.86厘米D.96厘米【解析】设导火线的长度要超过x厘米,故本题选择D。
一元一次不等式的解集:一个有未知数的不等式的所有解,组成这个不等式的解集。
例如﹕不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有正实数。
求不等式解集的过程叫做解不等式。
将不等式化为ax>b的形式若a>0,则解集为x>b/a若a<0,则解集为x<b/a一元一次不等式的特殊解:不等式的解集一般是一个取值范围,但有时需要求未知数的某些特殊解,如求正数解、整数解、最大整数解等,解答这类问题关键是明确解的特征。
)知识点、概念总结不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
1不等式的基本性质1.如果x>y,那么y<x;如果y<x,那么x>y;(对称性)2.如果x>y,y>z;那么x>z;(传递性)3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;5.如果x>y,z<0,那么xz<yz, 即不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变;6.如果x>y,m>n,那么x+m>y+n;7.如果x>y>0,m>n>0,那么xm>yn;8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
2不等式的基本性质的另一种表达方式1.对称性;2.传递性;3.加法单调性,即同向不等式可加性;4.乘法单调性;5.同向正值不等式可乘性;6.正值不等式可乘方;7.正值不等式可开方;8.倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
八年级数学不等式的基本性质
●教学目标
(一)教学知识点
1.探索并掌握不等式的基本性质;
2.理解不等式与等式性质的联系与区别.
(二)能力训练要求
通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.
(三)情感与价值观要求
通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与
交流.
●教学重点
探索不等式的基本性质,并能灵活地掌握和应用.
●教学难点
能根据不等式的基本性质进行化简.
●教学方法
类推探究法
即与等式的基本性质类似地探究不等式的基本性质.
●教具准备
投影片两张
第一张:(记作§1.2 A)
第二张:(记作§1.2 B)
●教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?
[生]记得.
等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.
基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.
[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.
Ⅱ.新课讲授
1.不等式基本性质的推导
[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.
[生]∵3<5
∴3+2<5+2
3-2<5-2
3+a <5+a
3-a <5-a
所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.
[师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究.
[生]∵3<5
∴3×2<5×2
3×21<5×2
1. 所以,在不等式的两边都乘以同一个数,不等号的方向不变.
[生]不对.
如3<5
3×(-2)>5×(-2)
所以上面的总结是错的.
[师]看来大家有不同意见,请互相讨论后举例说明.
[生]如3<4
3×3<4×3
3×
31<4×3
1 3×(-3)>4×(-3) 3×(-
31)>4×(-3
1) 3×(-5)>4×(-5)
由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.
[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.
[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.
[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用. 2.用不等式的基本性质解释π42l >16
2
l 的正确性 [师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和16
2
l ,且
有π42l >16
2
l 存在,你能用不等式的基本性质来解释吗? [生]∵4π<16 ∴π41>16
1 根据不等式的基本性质2,两边都乘以l 2得
π42l >16
2
l 3.例题讲解
将下列不等式化成“x >a ”或“x <a ”的形式:
(1)x -5>-1;
(2)-2x >3;
(3)3x <-9.
[生](1)根据不等式的基本性质1,两边都加上5,得
x >-1+5
即x >4;
(2)根据不等式的基本性质3,两边都除以-2,得
x <-2
3; (3)根据不等式的基本性质2,两边都除以3,得
x <-3.
说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.
4.议一议
投影片(§1.2 A )
[师]在上面的例题中,我们讨论的是具体的数字,这种题型比较简单,因为要乘以或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.
本题难度较大,请大家全面地加以考虑,并能互相合作交流.
[生](1)正确
∵a <b ,在不等式两边都加上c ,得
a +c <
b +
c ;
∴结论正确.
同理可知(2)正确.
(3)根据不等式的基本性质2,两边都乘以c ,得
ac <bc ,
所以正确.
(4)根据不等式的基本性质2,两边都除以c ,得
c a <c
b 所以结论错误.
[师]大家同意这位同学的做法吗?
[生]不同意.
[师]能说出理由吗?
[生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.
在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有
c a <c b ,若 c <0,则有c a >c
b ,而他只说出了一种情况,所以结果错误.
[师]通过做这个题,大家能得到什么启示呢?
[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.
[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.
[生]不等式的基本性质有三条,而等式的基本性质有两条.
区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.
联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.
Ⅲ.课堂练习
1.将下列不等式化成“x >a ”或“x <a ”的形式.
5
(1)x-1>2 (2)-x<
6
[生]解:(1)根据不等式的基本性质1,两边都加上1,得x>3 (2)根据不等式的基本性质3,两边都乘以-1,得
5
x>-
6
2.已知x>y,下列不等式一定成立吗?
(1)x-6<y-6;
(2)3x<3y;
(3)-2x<-2y.
解:(1)∵x>y,∴x-6>y-6.
∴不等式不成立;
(2)∵x>y,∴3x>3y
∴不等式不成立;
(3)∵x>y,∴-2x<-2y
∴不等式一定成立.
投影片(§1.2 B)
Ⅳ.课时小结
1.本节课主要用类推的方法探索出了不等式的基本性质.
2.利用不等式的基本性质进行简单的化简或填空.
Ⅴ.课后作业
习题1.2
Ⅵ.活动与探究
1.比较a 与-a 的大小.
解:当a >0时,a >-a ;
当a =0时,a =-a ;
当a <0时,a <-a .
说明:解决此类问题时,要对字母的所有取值进行讨论.
2.有一个两位数,个位上的数字是a ,十位上的数是b ,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a 与b 哪个大哪个小?
解:原来的两位数为10b +a .
调换后的两位数为10a +b .
根据题意得10a +b >10b +a .
根据不等式的基本性质1,两边同时减去a ,得9a +b >10b
两边同时减去b ,得9a >9b
根据不等式的基本性质2,两边同时除以9,得a >b .
●板书设计
●备课资料
参考练习
1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式:
(1)x -2<3;(2)6x <5x -1;
(3)2
1x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空.
(1)a -3 b -3;(2)2a 2
b ; (3)-4a -4b ;(4)5a 5b ;
(5)当a >0,b 0时,ab >0;
(6)当a >0,b 0时,ab <0;
(7)当a <0,b 0时,ab >0;
(8)当a <0,b 0时,ab <0.
参考答案:
1.(1)x <5;(2)x <-1;
(3)x >10;(4)x <-43
.
2.(1)> (2)> (3)< (4)>(5)>
(6)< (7)< (
8)>.。