六年级数学反比例
- 格式:pdf
- 大小:1.44 MB
- 文档页数:12
数学六年级下册反比例一、反比例的概念。
1. 定义。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
例如:当路程一定时,速度和时间成反比例关系,因为速度×时间 = 路程(一定)。
2. 表达式。
- 如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),反比例关系可以表示为xy = k(k为常数,k≠0)。
二、反比例关系的判断方法。
1. 找变量。
- 首先确定题目中存在哪两种量是相关联的,也就是一种量的变化会引起另一种量的变化。
例如:在长方形面积一定的情况下,长和宽是两种相关联的量。
2. 看乘积。
- 然后看这两种量相对应的数的乘积是否一定。
就像长方形面积S = ab(S一定),长a增大时,宽b必然减小,且ab = S(始终为定值),所以长和宽成反比例关系。
三、反比例关系的图像。
1. 图像形状。
- 反比例函数y=(k)/(x)(k为常数,k≠0)的图像是双曲线。
2. 图像性质。
- 当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内,y随x的增大而减小;当k < 0时,双曲线的两支分别位于第二、四象限,在每个象限内,y随x的增大而增大。
四、反比例关系的实际应用。
1. 工程问题。
- 例如一项工程,如果工作效率提高,那么工作时间就会缩短。
设工作总量为W,工作效率为p,工作时间为t,则W = pt。
当W一定时,p和t成反比例关系。
如果工作总量是120个零件,原来的工作效率是每天做10个零件,那么工作时间t=(W)/(p)=(120)/(10) = 12天;如果工作效率提高到每天做15个零件,那么工作时间t=(120)/(15)=8天。
2. 购物问题。
- 总价一定时,单价和购买数量成反比例关系。
例如,小明有100元钱去买笔记本,笔记本单价为5元时,可以买100÷5 = 20本;如果单价变为10元,那么能买100÷10 = 10本。
小学六年级数学正反比例一、什么是正反比例1、正比例:正比例是指两个变量之间的变化率是一致的,当其中一个变量增大时,另一个也会相应地增大,反之亦然。
两个值之间的正比例可以用y=ax+b (a>0)这样的函数表达出来。
2、反比例:反比例是指两个变量之间的变化率相反,当其中一个变量增大时,另一个会相应地减小,反之亦然。
反比例可以用y=a/x+b (a>0)的函数表示出来。
二、小学六年级数学中的正反比例1、小学六年级数学中常见的正反比例实例有:(1)时间与内容的正比例:学习的时间与学习的内容正比,也就是说,投入的时间越多,学习的内容就会比较多。
(2)距离与时间的反比例:一般来说,距离和所耗时间是反比例的。
也就是说,距离越大,耗费的时间也就越长。
(3)质量与价格的反比例:大家购买物品也是质量和价格是反比例的。
也就是说,质量越高,价格也就越高。
三、正反比例在小学六年级数学中的应用1、分数的反比例:比如有一个划分为两部分的数,其中一部分是原数的3分之一,另一部分是原数的2分之1,这就是表达反比例的例子,可以让学生掌握反比例的概念。
2、重量和体积的反比例:利用试管、称重的方式,让学生观察自己所得的试管中重量和体积的反比例关系,并且按照规律画出反比例的图像,总结出反比例特点,这样就可实现对正反比例的洞察和掌握。
3、面积与周长之间的正比例:通过画图测量形状的面积和周长,从中可以观察面积与周长之间的正比例关系,让学生把正反比例概念掌握其中,从而可以解决有关正反比例的问题。
4、实际问题求解:可以用折线图、比例图等形式来表示,在给定2个变量情况下,实现对反比例、正比例的概念掌握,从而解决实际问题,培养学生使用正反比例进行实际问题求解的能力。
完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
反比例是数学中的一个重要概念,它在实际生活中也有广泛的应用。
在六年级的数学教学中,反比例的学习是必不可少的。
今天,我们将为大家详细讲解数学六年级教案中的练习题,以及答案解析。
一、选择题1.一个矩形的长和宽成反比例,如果它的长为5,则宽为多少?A.1B.2C.3D.4答案:D。
解析:由于长和宽成反比例,长与宽呈现出一定的规律。
当长为5时,宽应该为原来的1/5,即5×1/5=1,宽为4。
2.有一条路程,如果两名工人同时开始走,第一名工人的速度是第二名工人的1.5倍,他们走到终点的时间是相同的。
如果第二名工人用了4小时,第一名工人用了多长时间?A.2.5小时B.3小时C.4.5小时D.6小时答案:A。
解析:设第二名工人的速度为v,则第一名工人的速度为1.5v。
设路程为S,则根据路程=速度×时间可以得到:v×4=1.5v×t。
解得:t=2.5小时。
3.一个需要从A地到达B地,已知需要走的路程是20米,走的最快速度为8m/s。
需要多长时间到达B地?A.2.5秒B.2.8秒C.3.0秒D.4秒答案:C。
解析:根据路程=速度×时间,可以得到时间为20÷8=2.5秒。
4.小红每天早上骑自行车去学校,行程固定为6公里。
如果她增加了速度,需要2分钟才能到达学校。
如果小红减速,需要5分钟才能到达学校。
求小红原来每小时的骑车速度是多少?A.20公里/小时B.25公里/小时C.30公里/小时D.35公里/小时答案:B。
解析:设小红原来的速度为v,则根据路程=速度×时间,可以得到6=vt。
已知小红增加速度后的时间为2/60=1/30小时,可以得到6=v×1/30,即v=6×30=180公里/小时。
同理,小红减速时的速度为6÷(5/60)=72公里/小时。
根据反比例的定义可知,速度与时间呈反比例关系,速度越快,所用时间越短。
小红原来的速度应该在这两个速度之间,取平均值即可得出答案:(180+72)÷2=126公里/小时,约等于25公里/小时。
反比例知识点六年级在六年级数学中,学习反比例关系是非常重要的一部分。
反比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量会相应地减小。
本文将介绍反比例知识点,帮助您更好地理解和应用反比例关系。
一、何为反比例关系反比例关系是一种特殊的数量关系,指的是两个变量在改变的过程中,其中一个变量的增大导致另一个变量的减小,而且两者之间存在固定的比例关系。
例如,如果我们考虑一个汽车行驶的时间和速度之间的关系。
当汽车的速度增加时,行驶时间就会减少;反之,当汽车的速度减小时,行驶时间就会增加。
这就是速度和行驶时间之间的反比例关系。
二、反比例关系的表示方式在数学中,我们可以使用等式或者图表来表示反比例关系。
常见的反比例关系表示方式有以下几种:1. 等式表示:如果两个变量 x 和 y 存在反比例关系,我们可以使用以下等式来表示:x * y = k其中,k 是一个常量,表示反比例关系中的比例常数。
通过这个等式,我们可以发现在变量 x 增大时,变量 y 会相应地减小。
2. 图表表示:我们可以使用一个坐标系来绘制反比例关系的图表。
横轴代表一个变量,纵轴代表另一个变量。
当两个变量呈反比例关系时,我们可以观察到一个特殊的图形,即一个抛物线的开口朝下的函数图像。
三、反比例关系的性质和应用反比例关系具有以下几个重要的性质:1. 变量非零:在反比例关系中,变量不能取零,因为零不能作为除数。
2. 常量比例:反比例关系中,存在一个常量比例 k。
这个常量比例决定了两个变量之间的比例关系。
当一个变量增大时,另一个变量会按照比例减小。
反比例关系在实际生活中有许多应用。
以下是一些常见的例子:1. 速度和时间关系:在旅行中,速度和时间之间存在着反比例关系。
当速度增加时,到达目的地所需的时间就会减少;反之,当速度减小时,到达目的地所需的时间会增加。
2. 浓度和容积关系:在溶液的配制中,浓度和容积之间存在反比例关系。
当固定溶质质量的情况下,溶液的浓度与溶液体积成反比。
《反比例》说课稿及反思(一)一、说教材反比例这一节内容是在本单元学习了"变化的量""正比例及正比例图像"等比例知识的基础上进行教学的,是比例知识的深化,也是以后学习函数的基础,因此在教学中起着承上启下的作用。
为了让学生更好地理解反比例知识,教材密切联系学生已有的生活经验和学习经验,创设了两个情境,在这两个情境的教学中,让学生通过比较教材中实例的共同点,引出“反比例”。
在教学中教师要注意引导学生发现成反比例的量的特征,让学生学会正确判断两个量是否成反比例,以发挥学生的主动性。
二、说教学目标1.使学生认识反比例关系的意义,理解并掌握成反比例量的变化规律及其特征。
2.进一步培养学生的观察、分析、综合、概括能力,使学生掌握判断两种相关联的量是否成反比例的方法。
3.渗透数学源于生活的观点。
三、说教学重难点重点:通过具体问题理解成反比例量的变化规律及其特征。
难点:会判断两种相关联的量能否成反比例。
四、说教学过程板块一、情境导入师:我们已经学习了正比例,那么判断两种相关联量是否成正比例的关键是什么?生:看这两种量之间的比值是否一定,如果比值一定,那么就成正比例,否则不成正比例。
师:下面哪两种量成正比例?为什么?(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
=时间(一定),也就是速度和路程的比值一定,所以生1:因为路程速度速度和路程成正比例。
=数量(一定),也就是单价和总价的比值一定,所以生2:因为总价单价单价和总价成正比例。
师:速度、时间和路程之间的数量关系,在什么条件下,其中两种量成正比例?(学生回答后老师板书),在速度一定的条件下,时间和路程成正比例。
生1:速度=路程时间,在时间一定的条件下,速度和路程成正比例。
生2:时间=路程速度师:如果路程一定,速度和时间之间会有怎样的关系呢?这就是我们今天要学习的反比例关系。
(板书课题:反比例)板块二、探究新知1.出示教材第46页第1个问题。
人教版数学六年级下册反比例说课稿(推荐3篇)人教版数学六年级下册反比例说课稿【第1篇】一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式3.难点的突破方法:用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。
教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题人教版数学六年级下册反比例说课稿【第2篇】一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
因此反比例函数的概念与意义的教学是基础。
二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式.难点:反比例函数表达式的确立.五、教学过程( 1)京沪线铁路全程为1463km,某次列车的平均速度v( 单位:km/h)随此次列车的全程运行时间t 单位:h)的变化而变化;( 2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y 单位:m)随宽x 单位:m)的变化而变化。