第六章 并行算法的基本设计技术
- 格式:ppt
- 大小:781.00 KB
- 文档页数:44
并行算法综述摘要:本文主要对并行算法的概念、设计等进行综述。
首先概要的介绍有关并行算法的相关概念,接着详细的介绍并行算法的设计策略、设计方法等,最后对并行算法的前景做简单的分析讨论,并做总结。
关键词:并行算法;算法设计;设计策略;设计方法中图分类号:tp393随着计算机时代的到来,计算机的应用和开发主要延伸到社会的各个领域,无论是国家的经济科技还是生活教育等,都能看到计算机的身影。
而高性能计算机的研究和开发更能直接体现出一个国家的经济科技水平,同时由于信息化国防建设也使得高性能计算机成为国防安全的宠儿。
世界各国都在努力争夺高性能计算机的战略制高点,这也充分说明高性能计算机对于一个国家科技实力的重要性。
计算机的发展迅速,从最初的电子管到现在大规模继承电路技术的应用,计算机的运算速度更快,功能也更加强大。
当然,其关键因素就是并行算法,并行算法直接决定着计算机性能的高低,同时并行算法的发展程度也相当明显的显示出国家计算机科技水平的发达程度,是国家综合国力的一个体现。
1 并行算法1.1 国内外研究现状并行算法研究的高峰期在70、80年代。
这一时期,涌现除了很多优秀的非数值并行算法,它们在整个并行算法研究历史上占据着非常辉煌的一页。
90年代中期以后,并行算法的研究渐渐面向实际,内容也有所扩展。
近年来,并行算法的研究更是趋于实际应用中。
比如:一种基于局部小型分布式存储架构的大规模fock矩阵建设的新的并行算法:rt并行算法;基于共享内存架构的节能性能权衡分析并行算法;在多核心cpu与gpu中基于块三角矩阵求解线性系统的并行算法;同构新的并行划分方法和巨人矩阵转置并行算法,等等。
图像匹配的并行算法;面向异构体系结构的粒子输运并行算法;海量数据拟合并行算法;基于gpu的高性能并行算法;遥感数字影像中提取植被指数的并行算法;fermi架构下超声成像组织运动可视化并行算法;分布式水文模型的并行计算;声纳图像对比度增强的并行算法;大规模稀疏矩阵特征问题求解的并行算法;分布动载荷识别的并行算法,等等。
第5章算法与复杂性习题一、选择题1. B2. D3. C4. A5. B6. B7. D8.B9.C 10.A11.A 12.C 13.A 14.A二、简答题1.什么是算法,算法的特性有哪些?答:“算法(Algorithm)是一组明确的、可以执行的步骤的有序集合,它在有限的时间内终止并产生结果”。
算法的特性有:(1) 有穷性(可终止性):一个算法必须在有限个操作步骤内以及合理的有限时间内执行完成。
(2) 确定性:算法中的每一个操作步骤都必须有明确的含义,不允许存在二义性。
(3) 有效性(可执行性):算法中描述的操作步骤都是可执行的,并能最终得到确定的结果。
(4) 输入及输出:一个算法应该有零个或多个输入数据、有1个或多个输出数据。
2.什么是算法的时间复杂度和空间复杂度,如何表示?答:时间复杂度是与求解问题规模、算法输入相关的函数,该函数表示算法运行所花费的时间。
记为,T(n),其中,n代表求解问题的规模。
算法的空间复杂度(Space complexity)度量算法的空间复杂性、即执行算法的程序在计算机中运行所占用空间的大小。
简单讲,空间复杂度也是与求解问题规模、算法输入相关的函数。
记为,S(n),其中,n代表求解问题的规模。
时间复杂度和空间复杂度同样,引入符号“O”来表示T(n)、S(n)与求解问题规模n之间的数量级关系。
3.用图示法表示语言处理的过程。
答:语言处理的过程如图所示:4.简述算法设计的策略。
答:作为实现计算机程序实现时解决问题的方法,算法研究的内容是解决问题的方法,而不是计算机程序的本身。
一个优秀的算法可以运行在比较慢的计算机上,但一个劣质的算法在一台性能很强的计算机上也不一定能满足应用的需要,因此,在计算机程序设计中,算法设计往往处于核心地位。
要想充分理解算法并有效地应用于实际问题,关键是对算法的分析。
通常可以利用实验对比分析、数学方法来分析算法。
实验对比分析很简单,两个算法相互比较,它们都能解决同一问题,在相同环境下,一般就会认为哪个算法的速度快这个算法性能更好。
计算机编程并行计算基础知识了解并行计算的概念和并行算法计算机编程并行计算基础知识:了解并行计算的概念和并行算法计算机编程是一个广泛而深入的领域,而并行计算是其中一个重要的概念。
在本文中,我们将介绍并行计算的基础知识,包括并行计算的概念和并行算法。
一、并行计算的概念并行计算是指在多个处理器或计算机上同时执行多个计算任务的过程。
与之相反的是串行计算,即在单个处理器或计算机上依次执行计算任务。
并行计算可以提高计算速度和效率,特别适用于处理大规模的数据和复杂的计算任务。
并行计算的主要优点包括:1. 提高计算速度:通过同时执行多个计算任务,可以大大缩短计算时间。
2. 提高计算效率:通过充分利用多个处理器或计算机的计算资源,可以更有效地完成计算任务。
3. 处理大规模数据:并行计算可以处理大规模的数据集,例如在科学研究、数据挖掘和机器学习等领域中。
二、并行算法并行算法是一种针对并行计算环境设计的算法,旨在充分利用多个处理器或计算机的计算能力。
并行算法可以分为两种类型:数据并行和任务并行。
1. 数据并行:数据并行是指将数据划分为多个部分,在多个处理器或计算机上同时进行计算。
每个处理器独立计算自己的数据,并通过通信来共享必要的结果。
数据并行常用于矩阵乘法、图像处理和模拟等领域。
2. 任务并行:任务并行是指将计算任务划分为多个子任务,在多个处理器或计算机上同时进行计算。
每个处理器独立执行自己的子任务,并通过通信来协调和共享计算结果。
任务并行常用于解决复杂的问题,如搜索、优化和排序等。
并行算法的设计要考虑以下几个方面:1. 任务划分:将计算任务划分为适当的子任务,以利用并行计算环境的处理能力。
2. 数据通信:在并行计算过程中,不同处理器之间需要及时交换和共享计算结果。
3. 数据同步:在并行计算过程中,确保不同处理器之间的计算步骤能够同步进行,避免数据冲突和错误的计算结果。
三、并行计算的应用并行计算在各个领域都有广泛的应用。
并行计算第六章并行算法基本设计策略并行计算是指多个计算单元同时工作,以更快的速度完成复杂任务的计算机技术。
近年来,并行计算机体系结构不断的发展,使得许多复杂的计算任务可以在更短的时间内完成。
在开发并行计算系统时,第六章的算法设计策略可以帮助开发者设计出更有效的并行计算系统。
其中,最重要的要素是确定算法的合适划分方法,以及在这一划分方法下如何可以有效地处理节点间的通信。
首先,要考虑的是划分算法,也就是如何在不同的节点上实现算法的并行处理。
根据算法的不同性质,划分算法一般可以分为算术划分算法和数据划分算法两类。
算术划分算法是指将算法分解为一系列的步骤,并且可以将这些步骤分布到不同的节点上执行;而数据划分算法是指将输入数据拆分为若干个分片,然后将每个分片分别分发到不同的节点上。
其次,要考虑的是算法的通信策略。
在无线并行计算系统中,节点之间的通信消耗大量的时间和系统资源,因此传输数据的方式要符合算法的要求,以最大限度地减少系统的通信时间。
通常情况下,算法的通信策略可以分为同步模式和异步模式两种。