接口概念和总线技术
- 格式:doc
- 大小:19.50 KB
- 文档页数:4
计算机上的总线知识计算机上的总线知识一、什么是总线总体上来说,总线是PC机的一种内部结构,它是CPU、内存、输入、输出设备传递信息的公用通道。
总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。
通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。
1、计算机工作原理大家可能都知道,我们现在使用的计算机是基于提出的"存储程序计算机(Stored Program Computer)",又称冯·诺依曼结构。
冯·诺依曼结构具有两个特点:1.使用二进制;2.全部指令和数据存放在存储器中,数据处理单元到存储器中读取指令并顺序执行。
冯·诺依曼结构的核心思想就是"存储程序",其最大的优点在于结构比较简单,便于控制。
基于这种结构,1949年制造出了电子计算机EDIAC(而非1946年制造的ENIAC),宣告人类历史上的电子计算机时代开始了。
尽管经过了近60年的发展,计算机经历了4代的变迁,发展到了我们今天所使用的微型计算机时代,但是计算机的基本结构没有太大的变化,基本延续了冯·诺依曼当初的设计思想:如上图所示的计算机工作原理,计算机核心部件是运算器和控制器,我们想要处理的信息指令通过输入设备进入存储器,再由存储器进入运算器,运算结果从输出设备反馈给我们,当然这一切都是在控制器的指挥下完成的。
在实际应用中,控制器和运算器构成了我们通常所说的CPU,存储器就是内存、硬盘、光盘、U盘,当然还有一些老掉牙的设备(软盘、磁带、磁鼓…);输入设备就是鼠标键盘,当然还有一些不常用的如扫描仪、光笔等等;输出设备则是显示器、打印机等等。
那么CPU和这些设备之间的信息交换是如何完成的呢?有的读者可能说:是通过主板完成的!这个答案可以算对,但是不太精确,其实CPU和外部设备之间的信息指令通讯是通过总线完成的。
2、总线的概念正如我们上面所说的,PC机的各个部件都要通过总线相连接,外部设备通过相应的接口电路再于总线相连接,从而形成了计算机硬件系统。
输入输出接口技术第一节接口技术的基本概念一、接口的概念和功能二、接口电路的典型结构三、接口功能第二节I/O端口的编址和译码一、I/O端口的编址方式二、输入/输出指令三、I/O端口的译码第三节CPU与外设间的数据传送方式一、无条件传送方式二、条件传送方式三、中断传送方式四、DMA传送方式一、接口的概念和功能1 接口:指CPU与存储器和外设之间通过总线进行连接的电路部分,是CPU与外界进行信息交换的中转站。
为什么要在CPU与外设之间设置接口电路?其一,CPU与外设两者的信号线不兼容,在信号线功能定义、逻辑定义和时序关系上都不一致;其二,两者的工作速度不兼容,CPU速度高,外设速度低; 其三,若不通过接口,而由CPU直接对外设的操作实施控制,就会使CPU处于穷于应付与外设打交道之中,大大降低CPU的效率;其四,若外部设备直接由CPU控制,也会使外设的硬件结构依赖于CPU,对外设本身的发展不利。
因此,有必要设置接口电路,以便协调CPU与外设两者的工作,提高CPU的效率,并有利于外设按自身的规律发展。
2 接口技术:是研究CPU如何与外部世界进行最佳耦合与匹配,实现双方高效、可靠地交换信息的一门技术,是软件、硬件结合的体现,是微机应用的关键。
微机接口技术综合性很强,所涉及的知识面很宽,包括微机原理、汇编语言(或高级语言)程序设计、电子技术、自控原理以及通信技术等多门课程的基础理论和专业知识。
3.接口技术在微机应用中的作用微机应用系统的研究和微机化产品的开发,从硬件角度来讲,就是接口电路的研究和开发,接口技术已成为直接影响微机系统的功能和微机推广应用的关键。
微机的应用是随着外部设备的不断更新和接口技术的发展而深入到各个领域的。
1从编程角度看,接口内部主要包括一个或多个CPU可以进行读/写操作的寄存器,又称为I/O端口。
2各I/O端口由端口地址区分。
3按存放信息的不同,I/O端口可分为三种类型数据端口:用于存放CPU与外设间传送的数据信息状态端口:用于暂存外设的状态信息控制端口:用于存放CPU对外设或接口的控制信息,控制外设或接口的工作方式。
总线、并/串口、USB接口、ps/2接口、I/O接口、扩展卡一、总线、1.总线的概念:多个功能部件共享的信息传输线称为总线。
采用总线结构便于部件和设备的扩充,使用统一的总线标准,不同设备间互连将更容易实现。
2.总线的分类:总线分为内部总线、系统总线和外部总线。
内部总线指芯片内部连接各元件的总线。
系统总线指连接CPU、存储器和各种I/O模块等主要部件的总线。
外部总线则是微机和外部设备之间的总线。
3.系统总线:⑴数据总线DB(Data Bus):用于CPU 与主存储器、CPU 与I/O 接口之间传送信息。
数据总线的宽度(根数)决定每次能同时传输信息的位数。
因此数据总线的宽度是决定计算机性能的主要指标。
计算机总线的宽度等于计算机的字长。
目前,微型计算机采用的数据总线有16位、32位、64位等几种类型。
⑵地址总线AB(Address Bus):用于给出源数据或目的数据所在的主存单元或I/O端口的地址。
⑶控制总线CB(Control Bus):用来控制对数据线和地址线的访问和使用。
4.常用的总线标准常用的总线标准有:ISA总线、EISA总线、VESA总线、PCI总线。
目前微机上采用的大多是PCI总线。
5.系统总线的性能指标⑴总线的带宽:指的是单位时间内总线上可传送的数据量。
⑵总线的位宽总线的位宽指总线能同时传送的数据位数。
⑶总线的工作频率:工作频率越高,总线工作速度越快,总线带宽越宽。
总线带宽=总线位宽/8×总线工作频率 MB/s二、主板并/串口并口又称为并行接口。
目前,并行接口主要作为打印机端口,采用的是25 针D 形接头。
所谓“并行”,是指8 位数据同时通过并行线进行传送,这样数据传送速度大大提高,但并行传送的线路长度受到限制,因为长度增加,干扰就会增加,数据也就容易出错。
串口叫做串行接口。
现在的PC 机一般有两个串行口COM 1 和COM 2 。
串行口不同于并行口之处在于它的数据和控制信息是一位接一位地传送出去的。
通信接口网络协议总线的区别和联系通信接口、网络协议和总线是计算机通信领域中重要的概念。
它们在计算机网络和硬件设计中起着不可或缺的作用。
本文将对通信接口、网络协议和总线进行解释,并探讨它们之间的区别和联系。
一、通信接口通信接口是计算机系统中用于与外部设备进行数据交换的接口。
它连接计算机与外设或其他计算机系统,实现数据的输入和输出。
通信接口通常由硬件和软件组成,硬件部分负责电信号的传输和转换,而软件部分负责协调数据传输和通信过程。
通信接口的特点:1. 物理连接:通信接口通过一组物理线路连接计算机与外设或其他计算机系统。
2. 数据传输:通信接口负责将数据从计算机传送到外设或其他计算机系统,或从外设或其他计算机系统传送到计算机。
3. 协议支持:通信接口支持特定的通信协议,以保证数据的可靠传输和正确解析。
二、网络协议网络协议是计算机网络中用于规定数据通信规则和格式的约定。
它定义了数据传输的方式、数据包的格式、错误处理等细节。
网络协议使得计算机网络中的各个节点能够进行有效地通信。
网络协议的特点:1. 规范化:网络协议是一系列的规范和约定,用于确保计算机网络中的各个节点都遵循相同的通信规则。
2. 分层结构:网络协议通常由多层组成,每一层负责不同的功能。
常见的网络协议有TCP/IP、HTTP、SMTP等。
3. 执行方式:网络协议通过软件实现,在计算机系统中通过网络协议栈的方式进行数据的传输和处理。
三、总线总线是计算机系统中用于连接各个内部组件的传输线路。
它是一种并行传输结构,将数据、地址和控制信号传输到计算机系统中的各个部件。
总线起到了连接和协调各个部件的作用。
总线的特点:1. 并行性:总线是一种并行传输结构,能够同时传输多个比特或字节。
2. 多功能性:总线可用于传输数据、地址和控制信号等多种类型的信息。
3. 高带宽:总线能够支持高速数据传输,提供较大的带宽。
区别和联系:通信接口、网络协议和总线在计算机通信中发挥着不同的作用,但它们之间存在着一定的区别和联系。
USB总线技及术应用摘要:USB是通用串行总线(Universal Serial Bus)的简称,是一种应用在计算机领域的新型接口技术(也越来越多地应用于嵌入式便携设备),是当前最流行的接口技术之一.USB以其卓越的易用性、稳定性、兼容性、扩展性、完备性、网络性和低功耗等诸多优点得到了迅速发展和广泛的应用。
USB是英文Universal Serial Bus的简称,是一种应用在计算机领域的新型接口技术(也越来越多地应用于嵌入式便携设备),是当前最流行的接口技术之一。
USB以其卓越的易用性、稳定性、兼容性、扩展性、完备性、网络性和低功耗等诸多优点得到了迅速发展和广泛的应用.当今的计算机外部设备都在追求高速度和高通用性。
为了满足用户的需求,以Intel为首的七家公司Intel、Compaq、Microsoft、IBM、DEC、Northern、Telecom 以及日本NEC于1994年11月推出了USB(Universal Serial Bus)通用串行总线协议的第一个草案专用于低中速的计算机外设,USB可把多达127个外设同时连到用户的系统上,所有的外设通过协议来共享USB的带宽,其12Mbps的带宽对于键盘鼠标等低中速外设是完全足够.随着USB技术的应用不断深入,在2000年发布的USB规范版本2。
0中已经将USB支持的带宽提升到480Mbps。
USB 正在不断地占领PC外设的市场,成为了PC外设的主流接口。
在自己的产品中使用USB已经成为了一种潮流。
如果希望产品被市场接受开发者往往不得不使用USB。
现在USB不光成为了微机主板上的标准端口而且还成为了所有微机外设(包括键盘、鼠标、显示器、打印机、数字相机、扫描仪和游戏手柄等等)与主机相连的标准协议之一.这种连接较以往普通并口(Parallel port)和串口(serial port)的连接而言主要的优点是速度高、功耗低、支持即插即用(Plug& Play)和使用维护方便。
计算机接口的基本概念第一章绪论(1)什么是接口:接口就是连接CPU与外设之间的部件,它完成CPU 与外设之间的信息传送。
还包括辅助CPU工作的外围电路。
(课本上的定义):微机接口就是微处理器CPU与“外部世界”的连接电路,是CPU与外界进行信息交换的中转站(2)为什么使用接口?a. 外设品种繁多;b. 工作速度快、慢不一;c. 信号类型和电平种类不同;d. 信息结构格式复杂(3)接口的功能1)执行CPU命令的功能;2)返回外设状态的功能;3)数据缓冲功能;4)信号转换功能;5)设备选择功能;6)数据宽度与数据格式转换功能(4)接口的组成硬件(予以支撑)+软件(予以驱动);2)硬件电路A. 基本逻辑电路;B. 端口地址译码电路;C. 供选电路3)软件编程:初始化程序段、传送方式处理程序段、主控程序段、程序终止与退出程序段、辅助程序段( LED, LCD)(5 ) 接口电路的结构形式固定式结构, 半固定式结构, 可编程结构, 智能型结构(6) CPU与接口交换数据的方式1、查询方式( cpu 不太忙,传送速度不高)2、中断方式( cpu 任务比较忙,适用于实时控制,紧急事件的管理)3、直接存储器存取方式(DMA) (高速大批量的数据传送)第二章I/O 端口地址译码技术一、I/O接口的定义:I/O 接口是一电子电路( 以IC 芯片或接口板形式出现), 其内有若干专用寄存器和相应的控制逻辑电路构成•它是CPU和I/O设备之间交换信息的媒介和桥梁.二、I/O 接口的功能:进行端口地址译码设备选择;向CPU提供I/O设备的状态信息和进行命令译码;进行定时和相应时序控制。
;对传送数据提供缓冲,以消除计算机与外设在“定时” 或数据处理速度上的差异;提供计算机与外设间有关信息格式的相容性变换。
;提供有关电气的适配;还可以中断方式实现CPU与外设之间信息的交换三、I/O端口的定义:是I/O接口中可通过编程实现寻址并进行读写的寄存器。
以太网接口MII,RMII,SMII,GMII总线接口简介所有的这些接口都从MII而来,MII是(Medium Independent Interface)的意思,是指不用考虑媒体是铜轴、光纤、电缆等,因为这些媒体处理的相关工作都有PHY或者叫做MAC 的芯片完成。
MII支持10兆和100兆的操作,一个接口由14根线组成,它的支持还是比较灵活的,但是有一个缺点是因为它一个端口用的信号线太多,如果一个8端口的交换机要用到112根线,16端口就要用到224根线,到32端口的话就要用到448根线,一般按照这个接口做交换机,是不太现实的,所以现代的交换机的制作都会用到其它的一些从MII简化出来的标准,比如RMII、SMII、GMII等。
RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线,所以它一般要求是50兆的总线时钟。
RMII一般用在多端口的交换机,它不是每个端口安排收、发两个时钟,而是所有的数据端口公用一个时钟用于所有端口的收发,这里就节省了不少的端口数目。
RMII的一个端口要求7个数据线,比MII少了一倍,所以交换机能够接入多一倍数据的端口。
和MII一样,RMII支持10兆和100兆的总线接口速度。
SMII是由思科提出的一种媒体接口,它有比RMII更少的信号线数目,S表示串行的意思。
因为它只用一根信号线传送发送数据,一根信号线传输接受数据,所以在时钟上为了满足100的需求,它的时钟频率很高,达到了125兆,为什么用125兆,是因为数据线里面会传送一些控制信息。
SMII一个端口仅用4根信号线完成100信号的传输,比起RMII差不多又少了一倍的信号线。
SMII在工业界的支持力度是很高的。
同理,所有端口的数据收发都公用同一个外部的125M时钟。
GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口。
MII工作原理“媒体独立”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。
接口和总线
接口:是微型计算机的基本内容,是计算机与外部交换信息的桥梁。
总线:是计算机各种功能部件之间进行信息传输的公共通道。
微机接口
接口的基本概念
为了解决CPU和外设之间的速度差异以及外设各不相同的信息格式的问题,出现了带缓冲器的I/O装置,这里的缓冲器是指通过一个或几个单独的寄存器,实现主机和外设之间的数据传送。
这里的缓冲器被发展为功能更强的I/O接口电路。
总结:I/O接口是微处理器与“外部世界”之间的连接电路,是主机与外设之间数据的“转接站”,同时提供主机和外设之间传送数据所需的状态信息,并能接受和执行主机发来的各种控制命令。
接口的基本功能
接口的基本功能有:数据缓冲,提供联络信息,信号与信息格式的转换,设备选择,中断管理,可编程功能。
接口的基本结构
接口一方面数据总线、地址总线以及控制总线和CPU进行联系,另一方面同响应的外设连接。
接口内部都包含一组寄存器,通常有数据输入寄存器、数据输出寄存器、状态寄存器和控制寄存器,有的接口还包含中断逻辑寄存器。
数据输入寄存器用于暂存外设送往主机的数据。
数据输出寄存器用于暂存主机送往外设的数据。
状态寄存器用于保存I/O接口的状态信息。
控制寄存器用于存放CPU发出的控制命令。
中断控制逻辑电路用于实现外设准备就绪时向CPU发出中断请求信号。
与接口传输数据的方式
主机与外设之间传输数据的方式一般有三种:程序控制方式,中断控制方式,DMA方式。
程序控制方式:是指在程序控制下进行数据传送,又分为无条件传输方式和程序查询传送方式。
中断控制方式:是指CPU在执行当前程序时,若出现了紧急事件,CPU必须终止现在
正在执行的程序转而去处理紧急事件,并在处理完毕后再返回到被中断程序处继续运行原程序的过程。
一个完整的中断处理过程包括中断请求、中断判优、中断响应、中断处理和中断返回等环节。
特点:1·提高了CPU的工作效率;2·外设具有申请服务的主动权;3·CPU可以和外设并行工作;4·可适合实时系统对I/O处理的要求
DMA方式:不需要CPU干预(不需要CPU执行程序指令),而在专门硬件控制电路之下进行的外设与存储器之间的直接的数据交互方式。
专门的硬件控制电路称为DMA控制器。
微机总线
基本概念
总线是指芯片之间、插板之间及系统之间相互连接与通讯的公共通道。
通过总线进行连接和传输信息时,应遵守一些协议和规范,包括硬件和软件两个方面。
微型计算机采用标准的总线结构。
总线通常包括一组信号线,主要是:1·数据线和地址线;2·控制、时序和中断信号线;3·电源线和地线;4·备用线。
数据线和地址线:决定了数据的位数范围和地址的位数范围。
控制、时序和中断信号线:决定了总线功能的优劣以及适应性的强弱。
电源线和地线:决定电源的种类及地线的分布和用法。
备用线:厂家和用户作为性能扩充或作为特殊要求使用的信号线。
总线分类
1·片总线;2·系统总线;3·通讯总线;
片总线:是在芯片内,把各种不同的功能单元连接在一起,构成特定功能的芯片的信息传输通道。
系统总线:是微机系统中各插件之间的信息传输通道。
通讯总线:是微机系统之间或微机系统与其他系统(仪器、仪表、控制装置等)之间信息传输的通道。
在三类总线中的系统总线,即通常意义上的总线,是链接CPU、主存和I/O接口电路的信息传输通道,一般包括a·数据总线;b·地址总线;c·控制总线;
数据总线:是一种三态控制的双向总线。
可以实现CPU、主存和I/O接口电路之间的数据交换。
地址总线:其是CPU输出地址信息所用的总线,用来确定所访问的内存单元或i/o端口的地址范围,一般是三台控制的单项总线。
地址总线的位数决定了CPU可直接寻址空间的大小。
控制总线:主要用来传送控制信号和时序信号,通过它使微机各个部件协同动作。
控制信号中,有的是微处理器送往存储器和输入输出设备接口电路。
PC总线
最早的微机系统总线,又称XT总线,其数据线宽度为8位、地址线宽度为20位。
PC/XT机是采用8088微处理器构造的第一代通用微机。
特点:
1·系统中所有部件都通过PC总线与微处理器相连,一旦微处理器发生变化,总线也要变化。
2·外围支持模块军事单功能的芯片,而且集成度低、数量多、状态分散。
ISA总线
8086/80286微机采用IAS总线代替了PC总线。
特点:
1·在系统部件与微处理器之间增加了一些控制器,加以隔离,但总线与微处理器的关系仍然密切,总线依赖微处理器。
2·外围支持模块开始以集成度高的多功能芯片组成,芯片数目开始减少。
PCI总线
PCI全称外围部件互联总线,是高带宽、独立于微处理器的总线,能够作为中间层或外围设备的总线。
结构描述:
PCI总线构成的系统中CPU与存储器通过CPU总线相连,然后CPU总线通过北桥与PCI总线相连,PCI总线上链接了例如PCI图形适配器,PCI网卡,PCI硬盘控制器等部件,同时PCI总线通过南桥与各种ISA卡相连。
特点:
1·高性能:PCI总线数据宽度是32位或者64位,时钟频率为33HMZ或66MHz,且独立于CPU时钟频率。
2·兼容性好且易于扩展:PCI独立于CPU,所以适应于各种型号的CPU,当CPU更新时只需要更新连接CPU和存储器的CPU总线即可。
3·支持“即插即用”:PCI总线定义了三种地址空间,是存储地址空间,I/O地址空间和配置地址空间,其配置地址空间为256B,用来存储PCI设备的相关信息,当PCI卡插入扩展槽时,系统BIOS及操作系统软件会根据配置空间信息自动进行PCI卡的识别和配置工作。
4·低成本:PCI总线采用数据总线与地址总线多路复用技术。
5·规范严格:PCI总线对协议、时序、负载、机械特性等指标都做了严格的规定。
PCI-E总线
PCI-E标准最大的特点就是采用串行总线,而依靠高频率来获得高性能。
PCI-E采用全双工运行模式,最基本的PCI-E拥有4根传输线路,其中两根用于数据传
送,两根用于数据接收。
另外,因为PCI-E采用8b/10b编码内嵌的时钟技术,将时钟信息直接写入到数据流中,比PCI总线更有效的节省传输通道,提高了传输效率。
PCI-E总线采用点到点工作模式,每个PCI-E设备有自己的专用链接,这就无需向整个总线申请带宽,避免了多个设备争抢带宽的情况。
由于PCI-E工作频率高达205ghz,最基本的PCI-E总线的单项带宽便能达到250MB/s。