量子力学第一章习题
- 格式:doc
- 大小:241.50 KB
- 文档页数:4
第⼀章量⼦⼒学基础例题与习题第⼀章量⼦⼒学基础例题与习题⼀、练习题1.⽴⽅势箱中的粒⼦,具有的状态量⼦数,是A. 211 B. 231 C. 222 D. 213。
解:(C)。
2.处于状态的⼀维势箱中的粒⼦,出现在处的概率是多少?A.B.C.D.E.题⽬提法不妥,以上四个答案都不对。
解:(E)。
3.计算能量为100eV光⼦、⾃由电⼦、质量为300g⼩球的波长。
( )解:光⼦波长⾃由电⼦300g⼩球。
4.根据测不准关系说明束缚在0到a范围内活动的⼀维势箱中粒⼦的零点能效应。
解:。
5.链状共轭分⼦在波长⽅向460nm处出现第⼀个强吸收峰,试按⼀维势箱模型估计该分⼦的长度。
解:6.设体系处于状态中,⾓动量和有⽆定值。
其值是多少?若⽆,求其平均值。
解:⾓动量⾓动量平均值7.函数是不是⼀维势箱中粒⼦的⼀种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。
(2s+1) (1)⼆维⽅势箱中的9个电⼦。
(2)⼆维势箱中的10个电⼦。
(3)三维⽅势箱中的11个电⼦。
解:(1)2,(2)3,(3)4。
9.在0-a间运动的⼀维势箱中粒⼦,证明它在区域内出现的⼏率。
当,⼏率P怎样变?解:10.在长度l的⼀维势箱中运动的粒⼦,处于量⼦数n的状态。
求 (1)在箱的左端1/4区域内找到粒⼦的⼏率?(2)n为何值,上述的⼏率最⼤?(3),此⼏率的极限是多少?(4)(3)中说明什么?解:11.⼀含K个碳原⼦的直链共轭烯烃,相邻两碳原⼦的距离为a,其中⼤π键上的电⼦可视为位于两端碳原⼦间的⼀维箱中运动。
取l=(K-1)a,若处于基组态中⼀个π电⼦跃迁到⾼能级,求伴随这⼀跃迁所吸收到光⼦的最长波长是多少?解:12.写出⼀个被束缚在半径为a的圆周上运动的质量为m的粒⼦的薛定锷⽅程,求其解。
解:13.在什么条件下?解:14.已知⼀维运动的薛定锷⽅程为:。
量⼦⼒学第⼀章习题答案第⼀章1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。
解:⿊体辐射的普朗克公式为:)1(833-=kT h e c h νννπρ∵ v=c/λ∴ dv/dλ= -c/λ2⼜∵ρv dv= -ρλdλ∴ρλ=-ρv dv/dλ=8πhc/[λ5(ehc/λkT-1)] 令x=hc/λkT ,则ρλ=8πhc(kT/hc)5x 5/(e x -1)求ρλ极⼤值,即令dρλ(x)/dx=0,得:5(e x -1)=xe x可得: x≈4.965∴ b=λm T=hc/kx≈6.626 *10-34*3*108/(4.965*1.381*10-23)≈2.9*10-3(m K )1.2√. 在0 K 附近,钠的价电⼦能量约为3电⼦伏,求其德布罗意波长。
解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J故其德布罗意波长为:07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ?1.3 √.氦原⼦的动能是E=32KT (K B 为波尔兹曼常数),求T=1 K 时,氦原⼦的德布罗意波长。
解:h = 6.626×10-34 J ·s , 氦原⼦的质量约为=-26-2711.993104=6.641012kg , 波尔兹曼常数K B =1.381×10-23 J/K故其德布罗意波长为:λ= 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2≈01.2706A或λ= ⽽KT E 23=601.270610A λ-==?1.4利⽤玻尔-索末菲量⼦化条件,求:a )⼀维谐振⼦的能量:b )在均匀磁场作圆周运动的电⼦轨道的可能半径。
量子力学 第一章 习题一、填空题1. 普朗克(Planck )常数h 的数值是 ,普朗克(Planck )常数ħ和h 之间的关系是 ,普朗克(Planck )常数ħ的数值是 。
2. 索末菲(Sommerfeld )的量子化条件是 。
3. 德布罗意(de Broglie )公式是 。
二、问答题1.什么是黑体(或绝对黑体)?根据普朗克(Planck )黑体辐射规律(教材第二页1.2.1式),试讨论辐射频率很高(趋于无穷大)和很低(趋于零)时的黑体辐射规律,并与维恩公式、瑞利——金斯公式相比较。
请给出波长在λ到λ+d λ之间的辐射能量密度规律。
2.什么是光电效应?光电效应的实验特点是什么?经典物理在解释光电效应时的困难是什么?采用爱因斯坦(Einstein )的光量子假设后,光电效应是如何解释的?3.光子有什么特点?爱因斯坦关于光子能量、动量和光子频率、波长之间的关系是什么?这个关系反映出光子的什么特征?4.什么是康普顿效应?试由Einstein 的光量子说,利用能量动量守恒,解释Compton 效应。
康普顿效应说明了什么?和光电效应相比,入射光子能量哪个大,并说明理由。
5.玻尔的氢原子模型内容是什么?试根据玻尔的氢原子模型给出里德堡(Rydberg )常数和氢原子第一玻尔半径的表达式和数值结果。
并说明为什么玻尔的量子论是半经典的半量子的?三、多项选择题1.说明微观粒子具有波动性的现象有 说明电磁波具有粒子性的现象有(a)以太漂移说 (b)黑体辐射 (c)光电效应(d)康普顿(Compton )效应 (e)原子结构和线性光谱 (f)电子的双缝衍射 (g)戴维逊(Davisson )——革末(Germer )实验(h)迈克尔逊(Michelson )——莫雷(Monley )实验四、计算题1. 教材习题(1.1)(1.2)(1.3)(1.4)(1.5)2. 设粒子限制在长、宽、高分别为a,b,c 的箱内运动,试用量子化条件求粒子能量的可能取值。
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
1量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kThce kThc λλ ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
2解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有p h =λ nmm m E c hc Eh e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。
对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。
试用测不准关系判断该模型是否合理。
解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。
二、选择题1. 一组正交、归一的波函数123,,,ψψψ。
正交性的数学表达式为 a ,归一性的表达式为 b 。
()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。
------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。
量子力学习题及解答第一章 量子理论基础1.1。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量⼦⼒学习题集量⼦⼒学习题第⼀章绪论1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T=b (常量);并近似计算b 的数值,准确到⼆位有效数字。
1.2 在0K 附近,钠的价电⼦能量约为3eV ,求其德布罗意波长。
1.3 氦原⼦的动能是E=3kT/2(k 为玻⽿兹曼常数),求T=1K 时,氦原⼦的德布罗意波长。
1.4 利⽤玻尔-索末菲的量⼦化条件,求:(1)⼀维谐振⼦的能量;(2)在均匀磁场中作圆周运动的电⼦轨道的可能半径。
已知外磁场H =10特斯拉,玻尔磁⼦M B =9×10-24焦⽿/特斯拉,试计算动能的量⼦化间隔?E ,并与T =4K 及T =100K 的热运动能量相⽐较。
1.5 两个光⼦在⼀定条件下可以转化为正负电⼦对。
如果两光⼦的能量相等,问要实现这种转化,光⼦的波长最⼤是多少?第⼆章波函数和薛定谔⽅程2.1 由下列两定态波函数计算⼏率流密度: (1) ψ1=e ikr /r , (2) ψ2=e -ikr /r .从所得结果说明ψ1表⽰向外传播的球⾯波,ψ2表⽰向内(即向原点)传播的球⾯波。
2.2 ⼀粒⼦在⼀维势场ax a x x x U >≤≤∞∞=00,,0,)(中运动,求粒⼦的能级和对应的波函数。
2.3 求⼀维谐振⼦处在第⼀激发态时⼏率最⼤的位置。
2.4 ⼀粒⼦在⼀维势阱ax a x U x U ≤>??>=,0,0)(0中运动,求束缚态(02.5 对于⼀维⽆限深势阱(0x 和?x ,并与经典⼒学结果⽐较。
2.6 粒⼦在势场xa a x x V x V ≤<<≤??-∞=00,0,,)(0中运动,求存在束缚态(E <0)的条件( ,m ,a ,V 0关系)以及能级⽅程。
2.7 求⼆维各向同性谐振⼦[V =21k (x 2+y 2)]的能级,并讨论各能级的简并度。
2.8粒⼦束以动能E =mk222从左⽅⼊射,遇势垒00,,0)(0≥=x x V x V求反射系数、透射系数。
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω===。
a - 0 a x 由此得 2/2ωm E a =, (2)a x ±=即为粒子运动的转折点。
有量子化条件h n a m a m dx x a m dx x m E m dx p aaaa==⋅=-=-=⋅⎰⎰⎰+-+-222222222)21(22πωπωωω得ωωπm nm nh a 22==(3) 代入(2),解出 ,3,2,1,==n n E n ω (4)积分公式:c au a u a u du u a ++-=-⎰arcsin 22222221.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,xx xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E zy x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设一个平面转子的转动惯量为I ,求能量的可能取值。
第一章绪论一、填空题1、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为0.123A〔保留三位有效数字〕。
2、自由粒子的质量为m,能量为E,其德布罗意波长为h/p=h/√2mE(不考虑相对论效应)。
3、写出一个证明光的粒子性的:康普顿效应的发现,从实验上证实了光具有粒子性。
4、爱因斯坦在解释光电效应时,提出光的频率决定光子的能量,光的强度只决定光子的数目概念。
5、德布罗意关系为p=h/λ n〔没有写为矢量也算正确〕。
7、微观粒子具有波粒二象性。
8、德布罗意关系是粒子能量E、动量P与频率ν、波长λ之间的关系,其表达式为E=hv9、德布罗意波长为λ,质量为m的电子,其动能为已知。
10、量子力学是反映微观粒子运动规律的理论。
11、历史上量子论的提出是为了解释的能量分布问题。
用来解释光电效应的爱因斯坦公式为已知。
12、设电子能量为4电子伏,其德布罗意波长为待定nm。
13、索末菲的量子化条件为在量子理论中,角动量必须是h的整数倍,E待定。
应用这个量子化条件可以求得一维谐振子的能级=n14、德布罗意假说的正确性,在1927年为戴维孙和革末所做的电子衍射实验所证实,德布罗意关系〔公式〕为见P11。
15、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性。
根据其理论,质量为 ,动量为p的粒子所对应的物质波的频率为,波长为若对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为待定〔保留三位有效数字〕。
16、1923年,德布罗意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于经过电压为100伏加速的电子,其德布洛意波长为0.123A〔保留三位有效数字〕。
二、选择题1、利用爱因斯坦提出的光量子概念可以成功地解释光电效应。
A. 普朗克B. 爱因斯坦C. 玻尔D. 波恩2、1927年C和等人所做的电子衍射试验验证了德布洛意的物质波假设。
第一章例题
1.2利用玻尔一索末菲的量子化条件求一维谐振子的能量。
解方法一:
按经典力学,质量为,角频率为的一维谐振子的能量
(a)
可改写成如下形式
(b)
上式是椭圆方程(右图),两半轴a、b分别为
利用量子化条件
(c)
但椭圆面积=
代入(c)得
方法二:
设谐振子位置可表示为
(d)
显然(e)
谐振子能量
将p、q代入上式得
利用(d)、(e)计算
半此代入量子化条件
得
即
代入(f),即得谐振子能量 E=nhv
1.3用玻尔一索末菲量子化条件求质量为的料子在长为l的一维盒子中作自由运动的能量。
解如图所示,设粒子开始时以速度v向右运动,设与右壁作弹性撞碰,动量数值不变方向相反,由量子化条件
得
粒子能量。
第一章 绪论
1.1. 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即
b T m =λ(常量)
并近似计算b 的数值,准确到二位有效数字.
解: 能量密度公式 581
hc kT hc d d e λλπλ
ρλλ=-
则可由
0=λρλ
d d 解得 m λ 05111186=⎪⎭⎫
⎝⎛---=λλλλλλπλρkT hc kT hc kT hc e e kT hc e hc d d , 亦即 051
1
=--λλλkT hc kT hc e e kT hc
若令
x kT hc
m =λ, 则 051
1=--x x e xe 即 015
=-+-x e x
这是个超越方程,用计算机做出()51x f x e x -=+-的函数图,容易看出当0,5x =附近近似地满足上述方程(舍去0x =的解),用计算机编程求出其数值解为
96514.x ≈ 显然 23
8
23
6.62610 2.991028971.3810 4.9651
m hc T kx λ--⨯⨯⨯===⨯⨯⋅⋅米度微米度 绘图程序: >>clear x=0:0.01:8; y=exp(-x)+x/5-1; plot(x,y,'-k' ,'LineWidth',2)
title('\fontsize{18}\rmf(x)=e^-^x+x/5-1的图像', 'Color','k') xlabel ('\fontsize{14}\rmx', 'Color','k') ylabel ('\fontsize{14}\rmf(x)', 'Color','k') axis ([0 8 -0.8 0.8]) grid on %end 计算程序:
1.在文件编辑区建立待求方程组文件并保存: function F = myfun(x)
F = exp(-x)+x/5-1 % Compute function values at x 2. 在MATLAB 的命令窗口求解: >>clear
x0=1 %建立初始量
题1.1图
fsolve(@myfun,x0, optimset('fsolve')) %解非线性方程 ans = 0 >>clear
x0=5 %建立初始量 fsolve(@myfun,x0, optimset('fsolve')) %解非线性方程 ans = 4.9651
1.2. 在K 0附近,钠的价电子能量约为3电子伏特,求其德布罗意波长. 解: 因 E
h p
h μλ2==
而 1212
1084106133--⨯=⨯⨯==..eV E (尔格)
故
()27
2780206.626107.0827107.08279.3466610
A cm λ----⨯=
==⨯=⨯ 1.3. 氦原子的动能是kT E 2
3
=
(k 为波尔茨曼常数),求K T 1=时,氦原子的德布罗意波长. 解: 在c v <<的情况下,E p μ2=,故 E
h p h μλ2==. 对于氦原子16
103812
323-⨯⨯==.kT E (尔格),24241068610
6714--⨯=⨯⨯=..μ(克
), ()27
801.210 1.2A cm λ--==⨯=
1.4. 利用波尔-索莫菲的量子化条件,求: (1) 一维谐振子的能量;
(2) 在均匀磁场中作圆周运动的电子轨道的可能半径. 已知外磁场10=H 特斯拉,玻尔磁子24
10
9-⨯=B M 焦耳/特斯拉,试计算动能的量子化间
隔E ∆,并与K T 4=及K T 100=的热运动能量相比较.
解: 波尔-索莫菲的量子化条件表示为 ⎰
==Λ3210,,,n h n dq p i i i i
(1) 求一维谐振子的能量
一维谐振子的能量 2222
1
2q p E μωμ+=
整理为如下形式: (
)
1222
222
2=⎪⎪⎭
⎫ ⎝⎛+
μωμE q E
p
这是椭圆方程,长短半轴b ,a 为
E a μ2=, 2
2μωE
b =
.
于是
⎰==
==nh E
ab pdq ω
ππ2椭圆面积
由最后一个等式,立即得到:
π
ω2321h ,,n ,n E =
==ηΛ
η其中 (2) 求电子轨道的可能半径
电子在垂直于磁场方向的平面里以某一确定的线速度v 作半径为R 的圆运动,则角动量就是广义动量
Rv p μϕ=
对应的广义坐标为ϕ,则
()Rv d Rv d p nh πμϕμϕπ
ϕ220
==
=⎰⎰
由上式得
R
nh
v πμ2=
(1) 另一方面,电子在均匀磁场中作圆周运动的力R v 2
μ来源于电子所受到的罗仑兹力evB ,即
2
v evB R
μ=
亦即
eBR
v μ
=
(2)
比较(1)和(2),消去v 便得到
1,2,3R n =
=L 现在来研究电子的能量.先讨论电子的动能:
222222*********B e B R e B n e T v nB nBM eB μμμμμμ=====h h (2B
e M μ
=h 波尔磁子) 其次讨论电子的势能. 电子作圆周运动相当于有一个磁矩μ,取磁场方向B 为正方向. 则磁矩
222
v evR
m iA e R R ππ==-=-
2v R
π代表电子作圆周运动的频率,i 是电流强度,2
A R π=是电流环的面积. 综合上述结果得 22222222evR eR eBR e
B e B n e m R n eB μμμμ
=-=-=-=-=-h h
因此与磁场B 的作用能为
2eB
V mB n μ
=-=h
所以带电粒子总能量为
222B eB
e E T V n n
B nM B μ
μ
=+===h
h。
动能的量子化间隔为:B T BM ∆=。
具体到本题,有
242310910910T J J ∆--=⨯⨯=⨯
根据动能与温度的关系式
3
2
T E kT =
(为区别起见,此处用T E 代表动能) 以及
323110 1.610k K eV J --⋅==⨯
可知,当温度4T K =时
232233
4 1.6109.61022
T E kT J J --==⨯⨯⨯=⨯
可知,当温度100T K =时
232033
100 1.610 2.41022
T E kT J J --==⨯⨯⨯=⨯
显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量间隔。
1.5. 两个光子在一定条件下可以转化为正负电子对.如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?
解: 反应可以表示为 +
+→e e γ2
正负电子的能量 224202p c c m E +=,设产生的正、负电子静止,即0=p ,2
0c m E =,
这能量来自光量子λνc
h
h E ==,所以光子的最大波长(对应于最小能量)为:
8
3134020024010
99821019106266A ....c m h c m hc E hc =⨯⨯⨯⨯====--λ。