第6讲找简单数列的规律
- 格式:doc
- 大小:84.00 KB
- 文档页数:10
当一列数的规律是相邻两项的差是一个固定的数,这样的数列就成为等差数列。
其中固定的差用d 表示,和用S 表示,项数用n 表示,其中第n 项用a n 表示.等差数列有以下几个通项公式:(1)通项公式:递增数列:末项=首项+(项数-1)×公差,用字母表示:d n a a n ⨯-+=)1(1;递减数列:末项=首项-(项数-1)×公差,用字母表示:d n a a n ⨯--=)1(1。
(2)项数公式:项数=(末项-首项)÷公差+1。
由通项公式可以得到:1)(1+÷-=d a a n n (若1a a n >);1)(1+÷-=d a a n n (若n a a >1)。
(3)求和公式:和=(首项+末项)×项数÷2,用字母表示:2)(1÷⨯+=n a a S n 。
(4)公差=(末项-首项)÷(项数-1)。
(5)首项=末项-(项数-1)×公差【习题1】7654321++++++【难度】★★【答案】28【习题2】108642++++【难度】★★【答案】30【习题3】131197531++++++【难度】★★【答案】49课前热身简单数列求和 内容分析例题解析、随堂检测【例1】同学们一起来算一算吧!(1)等差数列:5,7,9,11,13,15,…的第12项是;(2)等差数列:0,4,8,12,16,20,…的第43项是;(3)等差数列:3,7,11,15,…的第56项是。
【难度】★★【答案】(1)5+(12-1)×2=27;(2)0+(43-1)×4=168;(3)3+(56-1)×4=223.【总结】末项=首项+(项数-1)×公差。
【检测】(1)等差数列:3,4,5,6,…的第62项是;(2)等差数列:2,5,8,11,…的第47项是。
【难度】★★【答案】(1)64;(2)140.【解析】解:(1)3+(62-1)×1=64.(2)2+(47-1)×3=140。
第一节、奥数找规律一、知识综述(一)简单数列的规律找规律填数是指给定一列数,这列数按照某种规律排列起来,其中留有部分空缺。
只要从连续的几个数中找规律,那么就可以知道其余所有的数,从而把题目中给定的空缺补充完整。
寻找数列的排列规律,除了从相邻两个数的和、差考虑外,有时还可以从积和商来考虑。
解决这类问题的基本思路就是认真观察出现的已知数量,在观察的基础上找出规律,然后运用规律解决问题。
找规律填数经常用到的知识有以下几个方面:1、找规律时要抓住日常生活和学习中通常存在的现象以及已经被人们公认的习惯。
比如数是由小到大排列的或由大到小排列的,即人们所说的等差数列。
如:2,4,6,____,______.2、找规律时要善于观察数与数之间的关系,有时相邻的两个数相差的数又形成一个等差数列。
如:1,2,4,7,11,______,______.3、有些找规律填数的题目,相邻的两个数之间存在着倍数关系(称为等比数列)。
比如数与数之间存在着2倍、3倍关系,或者存在着2倍多1、3倍少1的关系,甚至有的数列相邻的两个数之间商是一组连续的数。
4、找规律填数,一定要细心观察,从中找出它们之间存在的规律。
有些数列属于双数列,即不仅相邻数有一定的排列规律,而且相隔的数也存在着一定的排列规律。
比如:5,6,8,9,11,____,_____,_____.5、介绍几个特殊的数列。
○1完全平方数列:即每项都等于自身项数与项数的乘积。
如:1,4,9,16,_____,_____.○2斐波那契数列:即三个数为一组,每组中前两个数相加的和等于第三个数。
如: 1,1,2,3,5,8,_____,______.○3相邻的两个数十位上的数字有一定的规律,个位上的数字也有一定的规律。
如:98,87,76,65,_____,_____,_____.○4有一些数列相邻的两个数的差又能构成一个等比数列。
如:5,7,11,19,35,______.找规律填数也可以发展为按规律填图,遇到这样的题目就要注意研究图形的变化规律,从中找到解题的途径。
第5讲找规律(一)这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。
按一定次序排列的一列数就叫数列。
例如,(1) 1,2,3,4,5,6,…(2) 1,2,4,8,16,32;(3) 1,0,0,1,0,0,1,…(4) 1,1,2,3,5,8,13。
一个数列中从左至右的第n个数,称为这个数列的第n项。
如,数列(1)的第3项是3,数列(2)的第3项是4。
一般地,我们将数列的第n项记作an。
数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。
许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。
数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项an=n。
数列(2)的规律是:后项=前项×2,或第n项数列(3)的规律是:“1,0,0”周而复始地出现。
数列(4)的规律是:从第三项起,每项等于它前面两项的和,即a 3=1+1=2,a4=1+2=3,a5=2+3=5,a 6=3+5=8,a7=5+8=13。
常见的较简单的数列规律有这样几类:第一类是数列各项只与它的项数有关,或只与它的前一项有关。
例如数列(1)(2)。
第二类是前后几项为一组,以组为单元找关系才可找到规律。
例如数列(3)(4)。
第三类是数列本身要与其他数列对比才能发现其规律。
这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。
例1找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)4,7,10,13,( ),…(2)84,72,60,( ),( );(3)2,6,18,( ),( ),…(4)625,125,25,( ),( );(5)1,4,9,16,( ),…(6)2,6,12,20,( ),( ),…解:通过对已知的几个数的前后两项的观察、分析,可发现(1)的规律是:前项+3=后项。
所以应填16。
(2)的规律是:前项-12=后项。
目录第一讲寻找规律第二讲巧求周长第三讲平均数问题第四讲图形的计数第五讲定义新运算第六讲简单的逻辑推理第七讲数阵图第八讲等差数列求和第九讲巧算时间第十讲方阵问题第十一讲加法原理和乘法原理第十二讲统筹规划第一讲寻找规律一.知识要点图形的变化或一组数的排列都是有一定规律可循的。
在数学中,许多问题也有规律可循。
要解答这些带有规律性的问题,一定要善于观察,分析比较,认真思考,不仅要发现规律,还要运用规律。
二.范例分析例1 下面三个正方形内的数有相同的规律,请你找出它们的规律并填出B、C,然后确定A,那么A是。
【分析与解】通过观察可以发现,各方框中右上、左下、右下的数分别为1、2、3;2、3、4;3、4、5才能形成规律,故B=4,C=5。
还可以发现,9=(2+1)×3,20=(2+3)×4,所以A= (3+4)×5=35。
例2 观察下面各列数的排列规律,在( )里填上合适的数。
(1)2,9,16,23,( ),37(2)4,9,16,25,( ),49(3)1,2,4,6,7,10,10,14,13,18,( ),( )(4)4,2,11,7,32,22,95,67,284,202,( ),( )【分析与解】(1)经过观察可以发现,相邻两个数的差都是7,因此,( )里应填“30”。
(2)仔细观察不难发现:4=2×2,9=3×3,16=4×4,25=5×5,所以,后面紧接着的应是6×6,因此,( )里应填“36”。
(3)这列数从表面上看,排列得比较乱,如果仅从相邻两数的关系人手,不易发现它们的排列规律,可以将这列数相隔分成两列数,分别寻找它们各自的变化规律。
相隔分成两列数,分别是:1,4,7,10,13,( )2,6,10,14,18,()上述两列数,相邻两数的差分别是3和4,因此,( )里应分别填上“16”、“22”。
(4)可以像(3)题那样,将这列数相隔分成两列数:4,11,32,95,284,( )2,7,22,67,202,( )仔细观察,可以发现有如下规律:所以,( )里应分别填上“851”、“607”。
小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
第六讲简单的找规律前续知识点:一年级第一讲;XX模块第X讲后续知识点:X年级第X讲;XX模块第X讲阿瓜萱萱阿呆小高墨莫卡莉娅阿呆阿呆阿呆小高小山羊路人甲路人乙路人丙阿呆把相应的人物换成红字标明的人物.找规律可以分为图形规律和数列规律,我们先来结合图形的变化规律找一找数字的变化规律.【提示】每个方框里小球的数量有什么规律?找规律,补全空白方框.上面的图形除了有图形规律,还有数的规律,我们还可以根据图形数量之间的规律来判断某个位置的图形.同样的,通过数与数之间的规律关系也可以找到某个位置的数.【提示】动手画一画.大淘去采蘑菇,2格2格地跳,每跳一下画一个“○”.大淘都跳在哪些点上?例题2小青蛙从A 向B 跳,3格3格地跳,每跳一下画一个“○”.小青蛙都跳在了哪些点上?这些点上的数有什么规律?123456789 10 11 12BA 例题1 找规律,补全空白方框.练习1 练习2【提示】找到相邻数之间的关系.每个小动物身上都有数,这些数都是按规律排列的,请你在空白处填上正确的数.前面都是找图形与数之间的规律,以及数列的规律,接下来我们在前面学习的基础上继续研究算式之间的规律.15 12 9 618例题3每个小朋友都报了一个数,这些数按一定的规律排列.第六个小朋友报的数是几?8 10 12 2014 16 012 3 4 5 6 7 8 9 10 11 12练习3【提示】观察算式之间的关系.找到算式中的规律,补全算式.例题4根据算式规律,在横线上填数,并计算结果.1 +2 =3 2 + 3 = 5 3 +4 = 7 4 +5 = 9 5 +__ =__ __+__ =__练习4【提示】第一排与第二排数之间的关系是什么?例题6 根据算式规律,在横线上填数,并计算结果.5+15=20 10+12=22 15+ 9=24 20+ 6=__ __+__=__例题5下面母鸡、鸡蛋和小鸡身上的编号都是按照一定规律排列的,找到规律,并在下面的空圆圈内填上适当的数.123 2135 38836【提示】观察算式之间的关系.课外阅读兔子数列在1、1、2、3、5、8、13、21……中,从第三个数开始,每个数都等于前两个数的和.这一奇特的数列是由意大利数学家斐波那契从兔子繁殖问题中提出的,为了纪念他,人们就把这种数列称为斐波那契数列,也称兔子数列.斐波那契发现兔子繁殖非常快,几个月后,1对兔子就变成了几十对.每对成年兔每个月都能生出1对兔宝宝,而兔宝宝一个月后便有生殖能力,两个月后就能生下第一对小兔.这样一月初有1对兔宝宝,二月初小兔交配,三月初新生1对兔宝宝,有2对兔子,四月初再生1对小兔,有3对兔子,五月初比上月多生1对兔宝宝(三月出生的小兔生的),有2对兔宝宝,共有5对兔子,六月初又比上月多生1对兔宝宝(四月出生的小兔生的),共8对.这样一到六月兔子的对数就是1、1、2、3、5、8,从第三个数开始,每个数都是前两个数的和,继续推理下去仍是如此.作业1. 找规律,补全空白方框.2. 从0开始4格4格地跳,每跳一下画一个“○”,它跳到了哪些点上呢?0 1 2 3 4 5 6 7 8 9 10 11 12 3. 找出藏在大树后面的数,在对应的空格里写出来.20 17 14 84. 茶壶爷爷请小朋友们帮忙填算式.根据算式规律,在空白处填算式,并计算结果.5. 下面各种图形上的编号都是按照一定规律排列的,找出规律,并在下面空着的圆圈里填上适当的数.2 3325562217+ 2 =19 16+ 3 =19 15+ 4 =19 14+__=__第六讲 简单的找规律1. 例题1答案:详解:通过观察可以发现本题中,从第二个方框开始,后一个方框里的小球是在前一个方框里的小球的基础上增加一排小球.所以可以得出第五个方框中有5排小球,第5排有5个小球,所以一共有1234515++++=(个)小球. 2. 例题2答案:详解:因为小青蛙从A 向B 3格3格地跳,从整体看,跳到的点数越来越大,所以小青蛙跳的点数是0、3、6、9、12,把这些点数都画上“○”,并观察这些点之间存在的关系是每两个相邻的数之间相差3. 3.例题3 答案:18 详解:从整体看,后面的数比前面的数大,观察每相邻两个数之间的规律,相邻的两个数相差2.后一个数是前一个数加上2. 4.例题4答案:从上到下,从左到右依次是6、11、6、7、13 详解:从整体看,把算式从“+”分前后两部分,“+”前面的数组成一个数列:1、2、3、4、5……题中都是加法算式,每个算式后面的数比前面的数大,相邻两数之间的差1,后一个数是前一个数+1,由此可以判断“5”后面是“6”.“+”后面的数组成一个数列:2、3、4、5、6,由此可以判断算式“56+”下面的算式是“6713+=”. 5.例题5答案:从上到下,从左到右依次是5、10、18详解:从整体观察,共有5排数,可以得到这样的规律:下面一排中图形上的编号是上一排中与它相邻的左上角和右上角两个编号相加的和,通过其他的编号也可以验证这个规律.依次推理,可填出全部的数. 6.例题6答案:从上到下,从左到右依次是26、25、3、28详解:从整体看,都是加法算式.20626+=.把算式从“+”分前后两部分,“+”前面的数组成一个数列:5、10、15、20、___从整体看,后面的数比前面的数大,相邻两数之间的差为5,后一个数是前一个数+5.由此可以判断“20”下面是“25”.“+”后面的数组成一个数列:15、12、9、6、___.从整体看,后面的数比前面的数小,相邻两数之间的差是3,后一个数是前一个数减去3.由此可以判断“6”下面是“3”.25328+=.23456789 10 11 12BA7. 练习1答案:简答:通过观察可以发现本题中,从第二个方框开始,后一个方框里的小球是在前一个方框里的小球的基础上减少一排小球.所以可以得出第五个方框中有1排小球,有1个小球.8. 练习2答案:简答:从整体看,跳到的点数越来越小,所以灰太狼的点数是12、10、8、6、4、2、0把这些点数都画上“○”,并观察这些点之间存在的关系.发现,每两个相邻的数之间相差2.9. 练习3答案:3简答:从整体看,后面的数比前面的数小,观察每相邻两个数之间的规律,相邻的两个数相差3.后一个数是前一个数减去3.10. 练习4答案:从上到下,从左到右依次是7、17、10、19简答:从整体看,都是加法算式.把算式从“+”分前后两部分,“+”前面的数组成一个数列:5、6、___、8、9……从整体看,后面的数比前面的数大,相邻两数之间的差为1,后一个数是前一个数加1.由此可以判断“6”后面是“7”.“+”后面的数组成一个数列:6、7、8、9、___.从整体看,后面的数比前面的数大,相邻两数之间的差是1,后一个数是前一个数加1,由此可以判断“9”后面是“10”.11. 作业1答案:如下图所示简答:通过观察可以发现,从第二个方框开始,后一个方框里比前一个方框里多3个圆.所以可以得出第五个方框中有13个圆.12. 作业2答案:4、8、120 1 2 3 4 5 6 7 8 9 10 1112简答:跟着箭头把小动物跳的路线画出来,并对应的把“○”标出来.13.作业3答案:从左到右依次是11、5简答:通过观察可以发现车厢上的数的规律是:两个相邻的数之间的差是3.20317-=,-=,17314-=.-=,835-=,11381431114.作业4答案:从左到右依次是5、19简答:通过观察可以发现前面三个算式中,“+”号前面的数依次是17、16、15、14,它们之间的规律是相邻两个数之间的差是1;“+”号后面的数依次是2、3、4、___,它们之间的规律是相邻两个数之间的差是1,所以第四个数是5;“=”右边的数都是19;最后的算式与结果:14519+=.15.作业5答案:从左到右依次是11、11简答:通过观察可以发现第二排第一个数“5”是第一排中第一个数与第二个数相加的和,即:=+,所以可以得到这样的规律:下面一排图形上的编号是上一排与它相邻的左上角和右上角523两个编号相加的和,通过其他的编号也可以验证这个规律.。
第1讲简单的数列问题〔一〕例题1〔1〕一个等差数列共有13项,每一项都比它的前一项大2,并且首项为33,则末项是多少?〔2〕一个等差数列共有13项,每一项都比它的前一项小2,并且首项为33,则末项是多少?练习1一个等差数列共有10项,每一项都比它的前一项大1,并且首项为21,则末项是多少?例题2〔1〕一个等差数列共有10项,每一项都比它的前一项大7,并且末相为125,则首项是多少?〔2〕一个等差数列共有10项,每一项都比它的前一项小7,并且末相为125,则首项是多少?练习2一个等差数列共有12项,每一项都比它的前一项小4,并且末相为56,则首项是多少?例题3〔1〕一个等差数列首项为7,第10项为61,则这个等差数列的公差等于多少?〔2〕一个等差数列第4项为7,第10项为61,则这个等差数列的公差等于多少?练习3一个等差数列第5项为25,第16项为91,则这个等差数列的公差等于多少?例题4〔1〕一个等差数列首项为5,末项为93,公差为8,则这个等差数列一共有多少项?〔2〕一个等差数列第3项为50,末项为130,公差为8,则这个等差数列一共有多少项?练习4等差数2,9,16,23,30,…则709是其中第几项?例题5一个等差数列的首项为11,第10项为200,这个等差数列的公差是多少?第19项等于多少?305是第几项?例题6下面的各算式是按规律排列的:1+1,2+3,3+5,1+7,2+9,3+11,1+13,2+15,3+17,…请写出其中所有结果为98的算式。
作业1. 一个等差数列共有10项,每一项都比它的前一项大2,并且末项为75,则首项是多少?2. 一个等差数列共有10项,每一项都比它的前一项小2,并且末项为75,则首项是多少?3.一个等差数列首项为13,第9项为29,则这个等差数列的公差等于多少?第20项等于多少?4. 一个等差数列第5项为47,第15项为87,则这个等差数列的公差等于多少?63是第几项?5.如下图,有一堆按规律摆放的砖,从上往下数,第1层有1块砖,第2层有5块砖,第3层有9块砖,……,按照这个规律,第19层有多少块砖?第2讲简单的数列问题〔二〕例题1计算下面各题:〔1〕3+6+9+12+15+18+21+24+27+30〔2〕41+37+33+29+25+21+17+13+9+5+1 练习1计算:6+11+16+21+26+31+36+41+46 例题2计算以下各题:〔1〕5+11+17+…+77+83 〔2〕82+77+72+…+12+7 练习2计算:100+92+84+…+12 例题3计算下面各题:〔1〕12+18+24+… 〔2〕193+187+181+…练习3 计算:〔1〕10+13+16+… 例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完,请问:萱萱一共对了多少天,这本课外书共有多少页? 练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米。
学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课T (同步知识主题) C (专题方法主题)T (学法与能力主题)类型授课日期时段教学内容第六讲:找规律填数(二)我们常将一个数列与一些规律简单的数列进行比较,例如,偶数数列2,4,6,8…的第100项显然是200,而1 990址第995项,将奇数数列1,3,5,7,…与偶数列比较,就知道第100个奇数是200 -1= 199.而1 989是第995个奇数下面的例1显示一个数列与它的“差数列”间的关系..找出数列的规律,并在括号内填入适当的数:1,2,4,7,l1,16,( ),( ) .从第2项起,每一项减去前一项得数列l,2,3,4,5,…,这个由差组成的“差数列”,第6、7项分别是6、7.所以原数列的第7、8项分别是16+6=22.22+7=29.即括号内应填入22,29.找规律,在括号内填入适当的数:2,6,12,20,30,42,( ) ..找出数列的规律,并在括号内填入适当的数:25,3,22,3,l9,3,( ),( )由观察可以知道,所有偶数项数的项全由3组成.再来看一下奇数项数的项25,22,19,….从22起,每一个都比前一个少3.所以括号内应该填入16,3.发现规律,并在括号内填入适当的数:15,6,3,7,11,8,( ),( ) .例2表示,有些数列可以拆成两个数列(或者说,由两个数列组成),分别由奇数项数的项和偶数项数的项构成.而这两个数列的规律都不难发现.)已知算式:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,….问:第几个算式的得数是1 992?不难看出,各个算式中,被加数是l,2,3,4,每4个循环一次.加数是1,3,5,7,9,11,13,15,17,…,正好是奇数数列,如果和是1992,那么被加数是l或3(因为2或4加上奇数,不会等于偶数1 992),从而加数是1 991或1 989.因为(1 989 +1)÷2=995所以1989是上面奇数数列的第995项.1 991是第996项又因为995=4×248+3.所以,第995个算式是3+1 989第996个算式是4+1 991没有算式1+1 991.所以第995个算式的得数是1 992.发现规律,在括号内填入适当的数:2,5,8,11,10,13,16,19,18,( ),( )自然数按一定规律排成下表,问第200行的第5个数是多少?12 34 5 67 8 9 10……第1行1个数,第2行2个数,第3行3个数,…,第199行199个数,因此前199行共有1+2+3+…+199=(1+199)×199÷2=19 900个数,即前199行的最末一个数是19 900.第200行第5个数是19 900 +5=19 905上面的表中,100是第几行第几个数?.如右图,将自然数1,2,3,4,…按箭头所指方向顺序排列,依次在2,3,5,7,10,…的位置处拐弯,如果2算第1次拐弯,3算第2次拐弯,那么第13次拐弯处的数是什么?首先,注意到第1次拐弯在东北,笫2次拐弯在东南,第3次拐弯在西南,第4次拐弯扯西北,依此类推,每过4次拐弯就使方向循环出现.因为13=3×4+1所以第13次拐弯在东北其次,东北拐弯处的数组成数列2,10,26,…,它的每一项比数列1,9,25,…的相应项多1.数列1,4,9,16,25,36,49,64,81,100,121,…也就是1×1,2×2,3×3,4×4,5×5,6×6,…叫做平方数数列.数列1,9,25,40,…也就是1×1,3×3,5×5,7×7,…是由奇数平方组成的数列,因此,上述数列(即东北拐弯处的数列)中,26的后一项是7×7 +1=50.即第13个拐弯处的数是50.上图中第21个拐弯处的数是多少?。
[二年级数学]二年级奥数上册1二年级奥数上册:第一讲速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=1112这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-63=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减 1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 41,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是 5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是 5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是 6=30 共有5个数5(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=806共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+987解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是 5.习题一1.计算:(1)18+28+72=(2)87+15+13=(3)43+56+17+24=8(4)28+44+39+62+56+21=2.计算:(1)98+67=(2)43+28=(3)75+26=3.计算:(1)82-49+18=(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+359(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5 10二年级奥数上册:第一讲速算与巧算习题解答111213141516171819第一层 1个第二层 2个第三层 3个第四层 4个第五层 5个20第六层 6个第七层 7个第八层 8个第九层 9个第十层 8个第十一层7个第十二层6个第十三层 5个第十四层 4个第十五层 3个第十六层 2个第十七层 1个总数1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1 =(1+2+3+4+5+6+7+8+9)+(8+7+6+5+4+3+2+1) =45+36=81(利用已学过的知识计算).21第一层 1个第二层 3个第三层 5个第四层 7个第五层 9个第六层 11个第七层 13个第八层 15个第九层 17个总数:1+3+5+7+9+11+13+15+17=81(利用已学过的知识计算).22×101+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想: 1=1×11+2+1=2×21+2+3+2+1=3×31+2+3+4+3+2+1=4×41+2+3+4+5+4+3+2+1=5×5231+2+3+4+5+6+5+4+3+2+1=6×61+2+3+4+5+6+7+6+5+4+3+2+1=7×71+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×8×91+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×101+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.?由方法2和方法3也可以得出下式:1+3+5+7+9+11+13+15+17+19=10×10.即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=2×21+3+5=3×31+3+5+7=4×41+3+5+7+9=5×5241+3+5+7+9+11=6×61+3+5+7+9+11+13=7×71+3+5+7+9+11+13+15=8×81+3+5+7+9+11+13+15+17=9×91+3+5+7+9+11+13+15+17+19=10×10还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有: AB AC AD AE AF 5条.以B点为共同左端点的线段有:BC BD BE BF 4条.以C点为共同左端点的线段有:CD CE CF 3条.25以D点为共同左端点的线段有:DE DF 2条.以E点为共同左端点的线段有:EF1条.总数5+4+3+2+1=15条.26272829二年级奥数上册:第三讲数数与计数(二)习题3031323334二年级奥数上册:第四讲认识简单数列35363738二年级奥数上册:第四讲认识简单数列习题39二年级奥数上册:第四讲认识简单数列习题解答404142二年级奥数上册:第五讲自然数列趣题第五讲自然数列趣题本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它.例1 小明从1写到100,他共写了多少个数字“1”,解:分类计算:“1”出现在个位上的数有:1,11,21,31,41,51,61,71,81,91共10个;“1”出现在十位上的数有:10,11,12,13,14,15,16,17,18,19共10个;“1”出现在百位上的数有:100共1个;共计10+10+1=21个.43例2 一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字,解:分类计算:从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是: 9+180+3=192(个).44解:(见图5—1)先按题要求,把1到100的一百个自然数全部写出来,再分类进行计算:如图5—1所示,宽竖条带中都是个位数字,共有10条,数字之和是: (1+2+3+4+5+6+7+8+9)×10=45×10=450.窄竖条带中,每条都包含有一种十位数字,共有9条,数字之和是:1×10+2×10+3×10+4×10+5×10+6×10+7×10+8×10+9×10=(1+2+3+4+5+6+7+8+9)×10=45×10,450.另外100这个数的数字和是1+0+0=1.所以,这一百个自然数的数字总和是:45450+450+1=901.顺便提请同学们注意的是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力.比如说这道题就还有更简洁的解法,试试看,你能不能找出来,二年级奥数上册:第五讲自然数列趣题习题1.有一本书共200页,页码依次为1、2、3、,,、199、200,问数字“1”在页码中共出现了多少次,2.在1至100的奇数中,数字“3”共出现了多少次,3.在10至100的自然数中,个位数字是2或是7的数共有多少个,4.一本书共200页,如果页码的每个数字都得用一个单独的铅字排版(比如,“150”这个页码就需要三个铅字“1”、“5”和“0”),问排这本书的页码一共需要多少个铅字,5.像“21”这个两位数,它的十位数字“2”大于个位数字“1”,问从1至100的所有自然数中有多少个这样的两位数,6.像“101”这个三位数,它的个位数字与百位数字调换以后,数的大小并不改变,问从100至200之间有多少个这样的三位数,467.像11、12、13这三个数,它们的数位上的各个数字相加之和是(1+1)+(1+2)+(1+3)=9.问自然数列的前20个数的数字之和是多少,8.把1到100的一百个自然数全部写出来,用到的所有数字的和是多少,9.从1到1000的一千个自然数的所有数字的和是多少,习题五解答1.解:分类计算,并将有数字“1”的数枚举出来.“1”出现在个位上的数有:1,11,21,31,41,51,61,71,81,91,101,111,121,131,141,151,161,171,181,191 共20个;“1”出现在十位上的数有:10,11,12,13,14,15,16,17,18,19110,111,112,113,114,115,116,117,118,119 共20个;47“1”出现在百位上的数有:100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 共100个;数字“1”在1至200中出现的总次数是:20+20+100=140(次).2.解:采用枚举法,并分类计算:48“3”在个位上:3,13,23,33,43,53,63,73,83,93共10个;“3”在十位上:31,33,35,37,39共5个;数字“3”在1至100的奇数中出现的总次数:10+5=15(次).3.解:枚举法:12,17,22,27,32,37,42,47,52,57,62,67,72,77,82,87,92,97共18个.4.解:分段统计,再总计.页数铅字个数1,9共9页1×9=9(个)(每个页码用1个铅字)10,90共90页2×90=180(个)(每个页码用2个铅字)100,199共100页3×100=300(个)(每个页码用3个铅字)第200页共1页3×1=3(个)(这页用3个铅字)总数:9+180+300+3=492(个).5.解:列表枚举,分类统计:10 1个4920 21 2个30 31 32 3个40 41 42 43 4个50 51 52 53 54 5个60 61 62 63 64 65 6个70 71 72 73 74 75 76 7个80 81 82 83 84 85 86 87 8个90 91 92 93 94 95 96 97 98 9个总数1+2+3+4+5+6+7+8+9=45(个).6.解:枚举法,再总计:101,111,121,131,141,151,161,171,181,191共10个.5051二年级奥数上册:第六讲找规律(一)525354二年级奥数上册:第六讲找规律(一)习题5556二年级奥数上册:第六讲找规律(一)习题解答575859二年级奥数上册:第七讲找规律(二) 60。
第六讲找简单数列的规律日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7, (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项。
如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45.根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律.例1观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.①2,5,8,11,(),17,20。
②19,17,15,13,(),9,7。
③1,3,9,27,(),243。
④64,32,16,8,(),2。
⑤1,1,2,3,5,8,(),21,34…⑥1,3,4,7,11,18,(),47…⑦1,3,6,10,(),21,28,36,()。
⑧1,2,6,24,120,(),5040。
⑨1,1,3,7,13,(),31。
⑩1,3,7,15,31,(),127,255。
(11)1,4,9,16,25,(),49,64。
(12)0,3,8,15,24,(),48,63。
(13)1,2,2,4,3,8,4,16,5,().(14)2,1,4,3,6,9,8,27,10,()。
分析与解答①不难发现,从第2项开始,每一项减去它前面一项所得的差都等于3.因此,括号中应填的数是14,即:11+3=14.②同①考虑,可以看出,每相邻两项的差是一定值2。
第六讲找简单数列的规律日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7, (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。
根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律。
例1观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.①2,5,8,11,(),17,20。
②19,17,15,13,(),9,7。
③1,3,9,27,(),243。
④64,32,16,8,(),2。
⑤1,1,2,3,5,8,(),21,34…⑥1,3,4,7,11,18,(),47…⑦1,3,6,10,(),21,28,36,().⑧1,2,6,24,120,(),5040。
⑨1,1,3,7,13,(),31。
⑩1,3,7,15,31,(),127,255。
(11)1,4,9,16,25,(),49,64。
(12)0,3,8,15,24,(),48,63。
(13)1,2,2,4,3,8,4,16,5,().(14)2,1,4,3,6,9,8,27,10,().分析与解答①不难发现,从第2项开始,每一项减去它前面一项所得的差都等于3.因此,括号中应填的数是14,即:11+3=14。
②同①考虑,可以看出,每相邻两项的差是一定值2.所以,括号中应填11,即:13—2=11。
不妨把①与②联系起来继续观察,容易看出:数列①中,随项数的增大,每一项的数值也相应增大,即数列①是递增的;数列②中,随项数的增大,每一项的值却依次减小,即数列②是递减的.但是除了上述的不同点之外,这两个数列却有一个共同的性质:即相邻两项的差都是一个定值.我们把类似①②这样的数列,称为等差数列.③1,3,9,27,(),243。
此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3, 27=9×3.因此,括号中应填 81,即 81= 27×3,代入后, 243也符合规律,即 243=81×3。
④64,32,16,8,(),2与③类似,本题中,从第1项开始,每一项是其后面一项的2倍,即:因此,括号中填4,代入后符合规律。
综合③④考虑,数列③是递增的数列,数列④是递减的数列,但它们却有一个共同的特点:每列数中,相邻两项的商都相等.像③④这样的数列,我们把它称为等比数列。
⑤ 1, 1, 2, 3, 5, 8,(), 21, 34…首先可以看出,这个数列既不是等差数列,也不是等比数列.现在我们不妨看看相邻项之间是否还有别的关系,可以发现,从第3项开始,每一项等于它前面两项的和.即2=1+1,3=2+1,5=2+3,8=3+5.因此,括号中应填的数是 13,即 13=5+8, 21=8+13, 34=13+21。
这个以1,1分别为第1、第2项,以后各项都等于其前两项之和的无穷数列,就是数学上有名的斐波那契数列,它来源于一个有趣的问题:如果一对成熟的兔子一个月能生一对小兔,小兔一个月后就长成了大兔子,于是,下一个月也能生一对小兔子,这样下去,假定一切情况均理想的话,每一对兔子都是一公一母,兔子的数目将按一定的规律迅速增长,按顺序记录每个月中所有兔子的数目(以对为单位,一月记一次),就得到了一个数列,这个数列就是数列⑤的原型,因此,数列⑤又称为兔子数列,这些在高年级递推方法中我们还要作详细介绍。
⑥1, 3, 4, 7, 11, 18,(),47…在学习了数列⑤的前提下,数列⑥的规律就显而易见了,从第3项开始,每一项都等于其前两项的和.因此,括号中应填的是29,即 29=11+18。
数列⑥不同于数列⑤的原因是:数列⑥的第2项为3,而数列⑤为1,数列⑥称为鲁卡斯数列。
⑦1,3,6,10,(), 21, 28, 36,()。
方法1:继续考察相邻项之间的关系,可以发现:因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即45=36+9.代入验算,正确。
方法2:其实,这一列数有如下的规律:第1项:1=1第2项:3=1+2第3项:6=1+2+3第4项:10=1+2+3+4第5项:()第6项:21=1+2+3+4+5+6第7项:28=1+2+3+4+5+6+7第8项;36=1+2+3+4+5+6+7+8第9项:()即这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,第五项为15,即:15= 1+ 2+ 3+ 4+ 5;第九项为45,即:45=1+2+3+4+5+6+7+8+9。
⑧1,2,6,24,120,(),5040。
方法1:这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即 720=120×6。
方法2:受⑦的影响,可以考虑连续自然数,显然:第1项 1=1第2项 2=1×2第3项 6=1×2×3第4项 24=1×2×3×4第5项 120=1×2×3×4×5第6项()第7项 5040=1×2×3×4×5×6×7所以,第6项应为 1×2×3×4×5×6=720⑨1,1,3,7,13,(),31与⑦类似:可以猜想,数列⑨的规律是该项=前项+2×(项数-2)(第1项除外),那么,括号中应填21,代入验证,符合规律。
⑩1,3,7,15,31,(),127,255。
则:因此,括号中的数应填为63。
小结:寻找数列的规律,通常从两个方面来考虑:①寻找各项与项数间的关系;②考虑相邻项之间的关系.然后,再归纳总结出一般的规律。
事实上,数列⑦或数列⑧的两种方法,就是分别从以上两个不同的角度来考虑问题的.但有时候,从两个角度的综合考虑会更有利于问题的解决.因此,仔细观察,认真思考,选择适当的方法,会使我们的学习更上一层楼。
在⑩题中,1=2-13=22-17=23-115=24-131=25-1127=27-1255=28-1所以,括号中为26-1即63。
(11)1,4,9,16,25,(),49,64.1=1×1, 4=2×2, 9=3×3, 16=4×4, 25=5×5,49= 7×7,64=8×8,即每项都等于自身项数与项数的乘积,所以括号中的数是36。
本题各项只与项数有关,如果从相邻项关系来考虑问题,势必要走弯路。
(12)0,3,8,15,24,(), 48, 63。
仔细观察,发现数列(12)的每一项加上1正好等于数列(11),因此,本数列的规律是项=项数×项数-1.所以,括号中填35,即 35= 6×6-1。
(13)1, 2, 2, 4, 3, 8,4, 16, 5,()。
前面的方法均不适用于这个数列,在观察的过程中,可以发现,本数列中的某些数是很有规律的,如1,2,3,4,5,而它们恰好是第1项、第3项、第5项、第7项和第9项,所以不妨把数列分为奇数项(即第1,3,5,7,9项)和偶数项(即第2,4,6,8项)来考虑,把数列按奇数和偶数项重新分组排列如下:奇数项:1,2,3,4,5偶数项:2,4,8,16 可以看出,奇数项构成一等差数列,偶数项构成一等比数列.因此,括号中的数,即第10项应为32(32=16×2)。
(14) 2, 1, 4, 3, 6, 9, 8, 27, 10,()。
同上考虑,把数列分为奇、偶项:偶数项:2,4,6,8,10奇数项:1,3,9,27,().所以,偶数项为等差数列,奇数项为等比数列,括号中应填81(81=27×3)。
像(13)(14)这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列。
例2下面数列的每一项由3个数组成的数组表示,它们依次是:(1,3,5),(2,6,10),(3,9,15)…问:第100个数组内3个数的和是多少?方法1:注意观察,发现这些数组的第1个分量依次是:1,2,3…构成等差数列,所以第 100个数组中的第 1个数为100;这些数组的第2个分量 3,6,9…也构成等差数列,且3=3×1,6=3×2,9=3×3,所以第100个数组中的第2个数为3×100=300;同理,第3个分量为5×100=500,所以,第100个数组内三个数的和为100+300+500=900。
方法2:因为题目中问的只是和,所以可以不去求组里的三个数而直接求和,考察各组的三个数之和。
第1组:1+3+5=9,第2组:2+6+10=18第3组:3+ 9+ 15= 27…,由于9=9×1,18= 9×2,27= 9×3,所以9,18,27…构成一等差数列,第100项为9×100=900,即第100个数组内三个数的和为900。
例3 按下图分割三角形,即:①把三角形等分为四个相同的小三角形(如图(b));②把①中的小三角形(尖朝下的除外)都等分为四个更小的三角形(如图(C))…继续下去,将会得到一系列的图,依次把这些图中不重叠的三角形的个数记下来,成为一个数列:1,4,13,40…请你继续按分割的步骤,以便得到数列的前5项.然后,仔细观察数列,从中找出规律,并依照规律得出数列的第10项,即第9项分割后所得的图中不重叠的小三角形的个数.分析与解答第4次分割后的图形如左图:因此,数列的第5项为121。