混合搅拌器机械结构设计
- 格式:ppt
- 大小:1.68 MB
- 文档页数:54
搅拌机结构设计范文搅拌机是一种用来将不同物质混合搅拌的设备。
它广泛应用于食品加工、化学工业、制药工业、农业等领域。
搅拌机的结构设计对其功能和性能至关重要。
下面将详细介绍搅拌机的结构设计。
搅拌机的基本结构包括机壳、搅拌器、电机和传动装置。
1.机壳:机壳是搅拌机的外壳,用于容纳搅拌器和传动装置。
机壳应具有足够的强度和刚性,以承受搅拌过程中的力和振动。
同时,机壳还应具有良好的密封性,以防止物料外泄和污染环境。
机壳的材料通常采用不锈钢或钢板,具有抗腐蚀性和耐用性。
2.搅拌器:搅拌器是搅拌机最关键的部件之一,它负责将物料进行混合和搅拌。
搅拌器的设计应考虑到所要混合物料的特性和工艺要求。
通常,搅拌器有几种形式,如桨叶式、螺旋式、锚式等。
选择合适的搅拌器形式需考虑混合物料的黏稠度、密度、流动性等因素。
3.电机:电机是搅拌机的动力源,它提供搅拌器所需的旋转力。
电机的选型应根据搅拌机的功率需求和工作环境进行。
一般而言,电机应具有足够的功率和转速,并且具备良好的耐用性和稳定性。
电机通常应配备过载保护装置,以防止电机因过载而损坏。
4.传动装置:传动装置用于将电机的旋转运动传递给搅拌器。
传动装置的设计应根据搅拌器和电机的特性进行选择。
常见的传动方式有直接传动、间接传动、带传动等。
选用合适的传动装置可以提高搅拌机的效率和稳定性。
除了基本结构,还有一些辅助结构也需要考虑:1.加料装置:加料装置用于向搅拌机中加入物料。
加料装置的设计应方便快捷,并且能够控制物料的加入量和速度。
2.排料装置:排料装置用于将搅拌好的物料排出搅拌机。
排料装置的设计应确保物料能够充分排出,且不会漏出。
3.清洗装置:清洗装置用于清洗搅拌机,防止不同物料之间的交叉污染。
清洗装置应方便易操作,并且能够彻底清洗搅拌机的各个部件。
4.控制系统:控制系统用于控制搅拌机的工作参数,如搅拌时间、搅拌速度等。
控制系统的设计应简单易用,并且能够实现精确的控制。
综上所述,搅拌机的结构设计应综合考虑力学、流体力学和控制工程等多个方面的知识,以保证搅拌机的性能和功能。
1绪论1.1 搅拌器的概述1.1.1搅拌器的应用范围机械搅拌反应器适用于各种物性(如粘度、密度)和各种操作条件(温度、压力)的反应过程,广泛应用于合成材料、合成纤维、合成橡胶、医药、农药、化肥、染料、涂料、食品、冶金、废水处理等行业。
如实验室的搅拌反应器可小至数十毫升,而污水处理、湿法冶金、磷肥等工业大型反应器的容积可达数千立方米。
除用作化学反应器和生物反应器外,搅拌反应器还可大量用于混合、分散、溶解、结晶、萃取、吸收或解吸、传热等操作。
搅拌反应器由搅拌容器和搅拌机两大部分组成。
搅拌容器包括筒体、换热元件及内构件。
搅拌器、搅拌轴、及其密封装置、传动装置等统称为搅拌机。
1.1.2搅拌器的工作原理通常搅拌装置由作为原动机的马达(电动、风动或液压),减速机与其输出轴相连的搅拌抽,和安装在搅拌轴上的叶轮组成减速机体通过一个支架或底板与搅拌容器相连。
当容器内部有压力时,搅拌轴穿过底板进入容器时应有一个密封装置,常用填料密封或机械密封。
通常马达与密封均外购,研究的重点是叶轮。
叶轮的搅拌作用表现为“泵送”和涡流”,即产生流体速度和流体剪切,前者导至全容器中的回流,介质易位,防止固体的沉淀并产生对换热热管束 (如果有)的冲刷;剪切是一种大回流中的微混合,可以打碎气泡或不可溶的液滴,造成“均匀”。
1.1.3化工反应中的搅拌设备根据搅拌器叶轮的形状可以分成直叶桨式、开启涡轮式、推进式、圆盘涡轮式、锚式、螺带式、螺旋式等}根据处理的掖体牯度不同可以分为低粘度液搅拌器。
低粘度液搅拌器,如:三叶推进式、折叶桨叶,6直叶涡轮式、超级混合叶轮式 HR 100,HV 100等;中高粘度液搅拌器如:锚式、螺杆叶轮式、双螺旋螺带叶轮型,MR 205,305超混合搅拌器等等。
1.2化工搅拌器的适应条件和构造1.2.1化工搅拌器的适应条件搅拌加速传热和传质,在化工设备中广泛运用。
化工搅拌器的作用使化工生产中的液体充分混合,以满足化学反应能够最大程度的进行,该设备可以代替手动搅拌对人体有毒或对皮肤有伤害的化工原料减少对人体的危害,同时通过电动机带动轴加速搅拌,提高生产率。
搅拌器设计选型绪论搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。
在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。
搅拌操作分为机械搅拌与气流搅拌。
气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。
与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。
但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。
在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。
搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。
其结构形式如下图:一搅拌装置结构图第一章搅拌装置第一节搅拌装置的使用范围及作用搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,二很多的化工生产都或多或少地应用着搅拌操作。
搅拌设备在许多场合时作为反应器来应用的。
例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。
搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。
搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。
搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。
例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。
化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。
第二节搅拌物料的种类及特性搅拌物料的种类主要是指流体。
第一节 罐体的尺寸确定及结构选型 (一)筒体及封头型式选择圆柱形筒体,采用标准椭圆形封头 (二)确定内筒体和封头的直径发酵罐类设备长径比取值范围是 1.7~2.5,综合考虑罐体长径比对搅拌功率、传热以及物料特性的影响选取/ 2.5i H D =根据工艺要求,装料系数0.7η=,罐体全容积39V m =,罐体公称容积(操作时盛装物料的容积)390.7 6.3g V V m η=•=⨯=。
初算筒体直径iii D H D H D V 442ππ=≈34ηπi gi D H V D ≈即m D i 66.17.05.214.33.643≈⨯⨯⨯=圆整到公称直径系列,去mm DN 1700=。
封头取与内筒体相同内经,封头直边高度mm h 402=, (三)确定内筒体高度H当mm h mm DN 40,17002==时,查《化工设备机械基础》表16-6得封头的容积30.734v m =224(90.734)3.643.14 1.74i V vH m D π--===⨯,取 3.7H m = 核算/i H D 与η/ 3.7/1.7 2.18i H D ==,该值处于1.7~2.5之间,故合理。
226.30.69'1.7 3.70.73444g gi V V V D H vηππ====+⨯⨯+该值接近0.7,故也是合理的。
(四)选取夹套直径表1 夹套直径与内通体直径的关系由表1,取10017001001800j i D D mm =+=+=。
夹套封头也采用标准椭圆形,并与夹套筒体取相同直径 (六)校核传热面积工艺要求传热面积为211m ,查《化工设备机械基础》表16-6得内筒体封头表面积23.34,3.7i A m m =高筒体表面积为21 3.7 3.14 1.7 3.719.75i A D m π=⨯=⨯⨯=总传热面积为3.1419.7523.0911A =+=>故满足工艺要求。
第二节 内筒体及夹套的壁厚计算 (一)选择材料,确定设计压力按照《钢制压力容器》(15098GB -)规定,决定选用0189Cr Ni 高合金钢板,该板材在150C 一下的许用应力由《过程设备设计》附表1D 查取,[]103t MPa σ=,常温屈服极限137s MPa σ=。
机械搅拌机设计计算
1.设计要求
-搅拌机的容积大小
-搅拌机的转速
-搅拌机的功率需求
-搅拌机的结构和材料选择
2.容积大小计算
容积大小的计算是根据所需处理物料的量来确定的。
例如,如果需要混合500升的液体,那么搅拌机的容积应该大于或等于500升。
3.转速计算
转速的选择依赖于所需的混合程度和处理物料的性质。
通常情况下,较高的转速能够更好地实现混合,但是对于一些粘稠物料来说,较低的转速可能更为合适。
根据搅拌机的工作特性和物料性质,选择合适的转速。
4.功率需求计算
搅拌机的功率需要根据搅拌工作的性质来确定。
常见的方法是通过计算转矩和功率来确定所需的电机功率。
转矩的计算是通过考虑搅拌机所需要的最大转矩来确定的。
5.结构和材料选择
搅拌机的结构和材料选择是根据搅拌物料的特点和工作条件来确定的。
例如,对于一些食品或制药行业的应用,搅拌机通常会选择不锈钢等耐腐
蚀材料制作,以满足卫生要求。
6.动力传输系统设计
7.结构强度计算
搅拌机的结构强度计算是为了确保搅拌机在工作过程中不发生结构应
力过大、变形等问题。
针对不同的结构和材料,通过应力分析和材料力学
性质计算,确定搅拌机各个部件的尺寸和结构。
8.平衡性和稳定性计算
以上是关于机械搅拌机设计计算的一些基本内容,当然,具体的设计
计算还需根据具体的实际情况来确定。
设计者需要结合所处理的物料特性、工作环境要求、结构设计要求等方面的考虑进行计算和选择,以保证机械
搅拌机能够满足实际工作需要。
立式搅拌机结构设计与性能分析一、引言立式搅拌机是一种常见的工业设备,广泛应用于食品加工、化工、制药等行业。
本文将从结构设计和性能分析两个角度对立式搅拌机进行探讨,旨在分析其设计原理及性能特点,为工程师和研究人员提供参考和指导。
二、立式搅拌机的结构设计1. 框架结构: 立式搅拌机的主要框架结构通常由底座、立柱和上部支撑平台组成。
底座用于支撑整个设备,立柱则连接底座和上部支撑平台,以实现整体的稳定性和刚性。
2. 搅拌槽设计: 立式搅拌机的搅拌槽通常由圆筒形结构组成,底部设计为锥形,以便搅拌物料的混合和流动。
搅拌槽内还可设置搅拌器,以提高搅拌效果和混合均匀度。
3. 搅拌器设计: 搅拌器是立式搅拌机的核心部件,其设计直接影响到搅拌效果和性能。
常见的搅拌器形式包括单层涡臂式、双层涡臂式、锚形式等。
在选择搅拌器时,需考虑搅拌物料的性质和工艺要求。
4. 传动系统设计: 立式搅拌机的传动系统通常由电机、减速器和轴承组成。
电机通过减速器将转速降低后传递给搅拌器,轴承则支撑转轴的旋转。
在传动系统设计中,需注意选用合适的电机和减速器,以确保设备的稳定运行和可靠性。
5. 安全保护设计: 立式搅拌机在设计中应考虑到安全保护措施,例如设置防护罩、急停按钮、过载保护装置等,以避免意外事故的发生。
此外,设备的易维护性和清洁性也是结构设计中应考虑的因素。
三、立式搅拌机的性能分析1. 搅拌效果: 立式搅拌机的主要目的是将不同性质的物料混合均匀,搅拌效果直接影响到产品质量。
通过调整搅拌器的转速和形状,可以实现不同物料的适应性搅拌和全面混合。
2. 能耗性能: 立式搅拌机在工作过程中需要消耗一定的能量。
优化设备结构和传动系统可以降低能耗,提高能源利用效率。
此外,合理设计的搅拌器形状和大小也可以减少能耗。
3. 运行稳定性: 立式搅拌机在工作过程中需要保持稳定的运行,避免震动和噪音。
合理的结构设计和选用优质的传动系统可以提高设备的运行稳定性,减少故障率。
搅拌机设计搅拌机是一种广泛用于化工、食品、医药、冶金等领域的机械设备。
它主要作用是通过搅拌将混合物中的各种成分均匀混合,从而达到一定目的。
搅拌机的种类繁多,根据用途不同可以分为多种类型,如搅拌缸、搅拌桶、搅拌器等。
本文将重点介绍基于单臂搅拌桶的搅拌机设计。
1. 设计思路单臂搅拌桶搅拌机是搅拌机的一种,其主要结构由搅拌器和桶体组成。
搅拌器作为搅拌桶的核心部分,即负责将搅拌桶内的混合物材料进行均匀混合的部分。
其设计思路主要是根据不同的混合物特性和工艺要求,确定搅拌器的型号、参数、功率等技术指标,采用相应的结构设计、加工工艺和制造工艺来满足混合物材料的混合要求。
2. 设计要素2.1 搅拌器型号搅拌器型号是搅拌机设计中的一个重要因素。
它的选择应该根据混合物的物理和化学特性以及混合要求来决定。
常用的搅拌器类型有桨叶式、桶槽式、锥桶式、螺旋搅拌器等。
2.2 搅拌器参数搅拌器参数是指搅拌器的尺寸、转速、角度、形状等具体参数。
其取值应该在满足混合物材料粘度、密度、粒径等要求的前提下,尽量使搅拌效果更加均匀和充分。
搅拌器设计中应注意到需求和制造技术方案。
2.3 搅拌器功率搅拌器的功率是指搅拌器所需的电力功率。
其取值应该在满足混合物材料的混合要求的前提下,尽量降低能耗,减少搅拌机的能源浪费。
3. 设计流程搅拌机的设计流程通常涉及多个环节,包括参数选取、结构设计、加工制造、安装调试等。
下面将具体介绍搅拌机的设计流程。
3.1 参数选取参数选取阶段是搅拌机设计的第一阶段,也是最基础的阶段。
在这个阶段,设计人员需要确定搅拌器的型号、参数、功率等技术指标。
具体的方法通常是通过实验和理论计算相结合。
3.2 结构设计结构设计阶段是搅拌机设计的关键环节,也是最复杂的环节。
在这个阶段,设计人员需要根据参数要求和制造工艺对搅拌器的结构进行设计,包括搅拌器的尺寸、形状、传动方式、速度控制方式等方面。
3.3 加工制造加工制造阶段是搅拌机设计的另一关键环节,也是最重要的环节。
搅拌设备设计手册搅拌设备设计手册目录一、引言本手册旨在提供关于搅拌设备设计、使用和维护的详细信息,以确保用户能够正确高效地操作设备。
搅拌设备广泛应用于化工、制药、食品、农药等行业,其设计对于设备的性能和效果有着重要影响。
二、设备概述1. 设备结构:搅拌设备主要由搅拌器、电机、减速器、机架等部件组成。
2. 设备特点:a. 高效混合:采用先进的搅拌器设计和材料,确保混合效果完美。
b. 稳定运行:设备结构紧凑,运行稳定可靠。
c. 易于维护:各部件易于拆卸和更换,方便维护。
三、设计原理1. 搅拌方式:搅拌设备主要采用机械搅拌方式,通过搅拌器的旋转或振动实现物料的混合和搅拌。
根据物料特性和工艺要求,可选择不同的搅拌方式。
2. 搅拌器设计:搅拌器是搅拌设备的关键部件,其设计应考虑物料特性、工艺要求和设备运行稳定性。
常用的搅拌器有桨式、齿式、螺带式等。
在设计搅拌器时,应进行详细的结构分析和流体动力学模拟,确保其具有优良的混合效果和较低的能耗。
3. 电机与减速器:电机是搅拌设备的动力源,减速器用于降低转速以适应搅拌器的旋转速度。
选择合适的电机和减速器是保证设备稳定运行的关键。
在设计中,应考虑电机的功率、减速器的传动效率以及设备的维护要求。
4. 机架设计:机架是支撑整个搅拌设备的结构件,其设计应考虑设备的稳定性和安全性。
机架一般采用钢材焊接而成,必要时可采用其他高强度材料。
在设计机架时,应进行详细的力学分析和校核,确保其具有足够的承载能力和抗振性能。
5. 密封与润滑:密封和润滑是搅拌设备正常运行的必要条件。
密封系统应具有良好的密封性能和较长的使用寿命,润滑系统则应保证各运动部件的润滑良好,减少磨损和能耗。
6. 人机界面与自动化控制:为了方便操作和维护,搅拌设备应配备人机界面和自动化控制系统。
人机界面应简单直观,便于操作员监控设备的运行状态和调整工艺参数;自动化控制系统则应具有自动控制、故障诊断和报警等功能,提高设备的可靠性和生产效率。