闪络击穿现象的概念
- 格式:doc
- 大小:195.50 KB
- 文档页数:1
电缆故障测试和电缆预防性试验中放电、击穿及闪络三个术语的含义放电这是一个笼统的概念,泛指在电场作用下,绝缘材料由绝缘状态变为导电状态的跃变现象。
这种跃变现象可能呈“贯通状”发生在电极间,即其中的绝缘材料完全被短接而遭到破坏,此时电极间的电压迅速下降到甚低至或接近零值;跃变现象也可能发生在电极间的局部区域,使其中的绝缘材料局部被短接,其余部分仍有良好的绝缘性能,电极间电压仍能维持一定的数值。
前者称为破坏性放电,后者称为局部放电。
破坏性放电和局部放电可以发生在固体、液体、气体电介质及其组合介质中,换句话说,“放电”一词可以用于所有电介质及其组合中。
然而,放电发生在不同电介质及其组合中时又有特殊的称呼。
当在气体或液体电介质中,电极间发生的破坏性放电称为火花放电,如在空气间隙、油间隙发生的破坏性放电,确切的说应该是火花放电。
可见,火花放电这个词仅限用于气体和液体电介质中。
在固体电介质中发生破坏性放电时,称为击穿。
击穿时在固体电介质中留下痕迹,使固体电介质永久失去绝缘性能。
如绝缘纸板击穿时,会在纸板上留下一个孔。
可见击穿这个词仅限用于固体电介质中。
当在气体或液体电介质中沿固体绝缘表面发生破坏性放电现象,称之为闪络。
常见的是沿气体与固体电介质交界面发生的闪络。
如沿绝缘子串表面、沿套管表面的破坏性放电称之为闪络。
所以闪络这个词仅限用于特殊条件的放电现象。
电缆做预防性试验时,由于电缆局部介质绝缘下降,导致电缆相间或对钢铠的电压迅速下降到甚低至或接近零值,这时薇安表迅速上升,该现象表明电缆存在绝缘问题,需要找出电缆绝缘故障的准确位置,快速修复电缆,电缆修复后,再次进行预防性试验,直至电缆符合运行标准即可。
闪络效应摘要目录1闪络效应2基本介绍3现象分析4机械效应5电压产生6绝缘子运用展开目录1闪络效应2基本介绍3现象分析4机械效应5电压产生6绝缘子运用7现代防雷的原则收起闪络效应当人体被闪电击中后,99%的电流不是通过人体导入地下,而是会以电弧的形式从人体表面穿过,导入地下,降低对人体的伤害,这就是有些人被闪电打击后还能存活的缘故,这种现象就叫闪络效应,也叫闪络现象。
在高电压作用下,气体或液体介质沿绝缘表面发生的破坏性放电。
其放电时的电压称为闪络电压。
发生闪络后,电极间的电压迅速下降到零或接近于零。
闪络通道中的火花或电弧使绝缘表面局部过热造成炭化,损坏表面绝缘。
基本介绍闪络效应,在高电压作用下,气体或液体介质沿绝缘表面发生的破坏性放电。
其放电时的电压称为闪络电压。
发生闪络后,电极间的电压迅速下降到零或接近于零。
闪络通道中的火花或电弧使绝缘表面局部过热造成炭化,损坏表面绝缘.沿绝缘体表面的放电叫闪络。
而沿绝缘体内部的放电则称为是击穿。
沿绝缘体表面的放电叫闪络。
而沿绝缘体内部的放电则称为是击穿。
现象分析1.绝缘子表面和瓷裙内落有污秽,受潮以后耐压强度降低,绝缘子表面形成放电回路,使泄漏电流增大,当达到一定值时,造成表面击穿放电。
2.绝缘子表面落有污秽虽然很小,但由于电力系统中发生某种过电压,在过电压的作用下使绝缘子表面闪络放电。
处理方法是:绝缘子发生闪络放电后,绝缘子表面绝缘性能下降很大,应立即更换,并对未闪络放电绝缘子进行清洁处理。
机械效应闪电击中地面物,闪电电流产生焦耳-楞次热效应,虽然电流峰值很高,但作用时间很短,只能产生局部瞬时高温,可以使较小体积的金属熔化。
有些闪电的半峰值时间较大,则容易造成树林或木结构物的高温燃烧起火。
另一种情况是闪电流过击中物的途径中,物体的焦耳楞次热导致体内的水份剧烈蒸发,产生气体,气体膨胀的机械作用可使树木劈裂,房屋破坏,器物的爆裂、爆炸等。
闪电的热效应和机械效应造成的灾祸仍非常严重,不容轻视,许多新技术设备受损,特别是微电子技术的产品,如大规模和超大规模集成电路接口和模块的损坏,归根到底,仍是闪电电流的热效应所致。
耐压试验中击穿和闪络现象之分析试验,作出定性分析,得出明确的概念.一,击穿和闪络原理电器产品人可触及的导体是用绝缘材料和空气间隙与带电体隔开的.绝缘材料的绝缘性能和空气间隙状况直接涉及人身防触电的安全问题.通过耐压试验对此进行检验考核,如发生击穿或闪络现象,就认为这项安全性能不合格.因此,如何理解击穿和闪络现象十分必要.1.击穿原理材料的导电性能是由它的原子蛄构所决定的.绝缘材料原子的外层电子受原子核的束缚力很大,很不容易挣脱出来,形成自由电子的机会非常4,.对介于两导体之间的绝缘介质施加电压,当电压不断增加时,开始电流极微且不会有多大的变化,但是电压增加到一定的大小之后,电流突然增失,出现击穿现象.这是由于外加电场强制地把外层电子拉出,彤成自由电子,导致电流剧增.换句话说,鲍缘材料并不是绝对不导电,当外加电压足够高时,腥样有很大的电流流经绝缘体,这就所谓的击穿.其伏安特性曲线如图1所示.2.闪络原理具有一定空气间隙的两个带电导体会形成空问电场,该场强的大小与闻隙大小和电场强弱有关.当两导体问空气间隙(电气问隙)足够小和电为了弄清产生击穿的外界因素,设想做一些比较试验.(一)不同材料的击穿特性比较试验该项试验以相同的爬电距离为前提,试验原理如图2.毋2击穿试验席理田(1)木质材料诚骚蛄果,如表1.裹1甘验直w『0l0,5lIl0l5j2,02,5l3.03.5….…olo092『0.1620.264l0,粥I_B】2j击穿/Ⅲ1要…o-嘲0.枸ll_lm2.013l击穿/数据在5秽种内读得.(2)橡皮材料试验蛄果如表2(二)相同材料电气间隙,-k.4,比较试验用相同犀度的橡皮作为鲍缘介质,试验原理如图3和图4,图4是将图3所示的电气问隙缩徽锏晾—卜墨里墨I.星生墅黑.IL—一kv争—_-一L————kV————_J 图5图6爬电距离太小比较试验原理图试验结果:图5在4kv时,击穿;而图6在4kV时,不击穿.(四)相同材料介质,两侧导体形位关系不同的比较试验I.两导体面——面相对如图7所示;2.两导体点——面相对如图8所示.芒…体圉7图8形位关系不同比较试验原理图试验结果如表4.裹4高压试验值w00.510l1.5l2.0253.035l圈700.0260ol0o92lo1830.3霓击穿,I圈8000000.01~l0.011100210.04l006ZD.145 三,试验结果的推断任何试验都在特定条件下进行,而实际情况却有千差万别.不过,我们可以用实验所得结果进行普遍J『生推断.实验所得的几种定量特性进行定性分析.如图9所示:l2108642图9绝馨特性分析原理图①特性曲线,可描述前面表2情况.在击穿之前泄漏电流极其微小,基本上是零.不论高压试验台整定电流继电器设定的动作电流为多少,只要动作就能表明击穿.也就是说,在耐压试验中.要使材料产生击穿现象,与所设定的整定电流无关.象选种情况,不管设在那档整定电流值,只要整定电流继电器动作,便可认为击穿.②特性在击穿之前,泄漏电流也很小,如果将I下转第36页)(上海计量测试)2/1998—31—捌与革新(3)测量杠杆上的调节螺丝尖头磨损严重.应更换新的调节螺丝(4)金钢石压头损坏.更换压头.(5)主轴与工作面同轴度差.调升降丝杆的位置.(6)指示器有故障.修理指示器7.c标尺中的高值舍格,中低值不合格(1)压头锥角表面光洁度差.修整或更换压头.(2)剥试扛杆比不合适.重调杠杆比.(三)试件支承机构不正常1.丝杆不能自由下降.(1)丝杆有损伤.修理丝杆.(2)丝杆与丝母间有杂物或镑蚀.应清洗杂物并除锈上油.(3)丝杆变形.校正丝杆.2工作面不率固(1)工作面辆部与丝杆上端配合间隙过大.更换舍适的工作面.3.转动工作面手柄,丝杆有转动现象.(1)键配合间隙过大更换合适的键.(2)固定在丝杆套内的平键松动,拧紧键的固紧螺钉.‘‘‘‘,■’’,’,,,’’,,,,’,’,’,’,…’,,,,’…,■●’■’’,’,●,,,,’,…,’■,,,’,’,…,,,,,,,,’,,,’●,,【上瑶第32页Jda(ms_眦)丽1丽11:上_(一ff2dL)COSCtODsdL’-‘量仪”的总不确定度占0的数值相接近,因此,严格执行JJG300—82检定规程,进行正常的检定工作精度是完全有保证的.而经该装置检定合格的小角度检定仪,完全可以执行JJG202—90自准直仪检定规程与JJGT12—90电子抽平仪检定规程,开展对高精度自准直仪,电子水平仪等工作计量器具的示值误差等项检定工作.l上摄第31页J整定电流值谩定为2rnA,继电器正好在击穿点动作;可是,③特性却在击穿以前,整定电流继电器就动作了,这样就不能认为继电器动作就是击穿.③,④特性,它们在击穿之前,泄漏电流增长率相同,可是,④特性的击穿点比③特性的击穿点要高.就此而言,④特性的鲍豫材料优于③特性的绝缘材料.就泄漏电流大d,而论,①特性泄漏电流为最小,可是击穿点比其它三种情况都要低. 因此,没有必要将泄漏电流的大d,来作为击穿的判定条件.④特性在击穿之前,应有相当大的泄漏电流,如果耐压试验台的变压器输出容量不足以输出击穿前的那么大的电流,就意味着不足以导致击穿现象,而产生误判断.为此,试验标准对高压变压器的输出容量有规定.另外,从表1和表3中可知,多’殳做耐压试验会降低材料的绝缘性能.所以,在某些产品标准中规定,傲第=次耐压试验时,高压值为第一次的80%综前所述,击穿现象表现为泄漏电流突然上升,会导致高压变压器输出电压跌落.闪络现象表现为强烈的闪光,井导致泄漏电流剧增,同样导致高压跌落.产生击穿现象的因素有,试验时的高压值,试验时间和次数,绝缘材料性质,爬电距离,电气间隙及两导体间形住关系等.试验中绝缘材料在击穿之前,可能有较大的泄漏电流,必须将整定电流值设定在击穿前泄漏电流值以上,只有这样,整定电流继电器动作才能表明材料真正击穿.否则,整定电流继电器动作不能表明绝缘材料真正击穿. 36一’上海计量测试)2/199s。
断路器闪络保护原理
1. 闪络现象概述
2. 闪络原因分析
2.1 大气闪络
2.2 线路闪络
2.3 设备闪络
3. 闪络保护原理
3.1 电场分布原理
1.电场分布情况的影响因素
2.电场分布理论模型
3.2 温度影响原理
1.温度对电介质性能的影响
2.温度效应对闪络的影响
3.3 保护模式原理
1.大气绕击模式
2.线路耦合模式
3.设备损伤模式
3.4 单击固定模式和多击固定模式
4. 闪络保护措施
4.1 预防措施
1.选择合适的工频耐电压等级
2.提高电气设备的绝缘强度
3.加强维护与检修
4.2 隔离措施
1.利用绝缘子防止闪络
2.断开电源进行隔离
4.3 保护措施
1.使用断路器进行保护
2.使用避雷器进行保护
5. 闪络保护技术发展趋势
5.1 新型绝缘材料的引入
1.纳米绝缘材料的应用
2.高分子复合材料的研发
5.2 智能化保护系统的发展
1.传感器的应用
2.自动化控制技术的应用
6. 结论
通过本文的探讨,我们对断路器闪络保护原理有了更深入的理解。
了解了闪络现象的概念和原因分析,进而介绍了闪络保护的原理,包括电场分布、温度影响和保护模式等方面。
同时我们还探讨了闪络保护的各种措施,包括预防措施、隔离措施和保护措施。
最后,我们还讨论了闪络保护技术的发展趋势,包括新型绝缘材料的引
入和智能化保护系统的发展。
随着技术的不断进步,我们有信心在未来能够更好地保护电力系统,防止闪络事故的发生。
浅析固体绝缘材料真空沿面闪络现象摘要:固体绝缘材料沿面闪络是一种发生在高电场下的复杂界面以及表面的物理现象,针对闪络的过程进行分析,需要对绝缘材料的各种参数进行综合考虑。
本文主要针对不同的影响因素进行分析之后提出有效改善的综合评价体系。
关键词:固体绝缘材料;真空;沿面闪络;电极;绝缘子在真空的环境下,复合绝缘系统的绝缘性等会受到多种因素的影响,特别是固体介质表面闪络现象的影响。
用于真空绝缘的材料,不仅需要具备较高的耐电性能,还应该具备较好的致密性,低吸气率放气率等性能,目前陶瓷材料因为具有较好的性能,而被广泛地应用在真空系统的绝缘系统当中。
但是真空沿面闪络现象的发生概率相对较大,我们主要分析固体绝缘材料的真空沿面闪络现象的相关内容,希望能在一定程度上保证真空高压器件的使用性能以及使用安全性。
1、固体绝缘材料真空沿面闪络机理现象研究目前人们对固体绝缘材料真空沿面闪络机理现象的研究关注度相对较高,而关于真空沿面闪络过程,人们普遍认为可以分为三个不同的阶段。
在第1个阶段也就是开始阶段,会产生非常明显的电子现象,第2个阶段是发展阶段,在这个阶段当中,伴随沿面现象,整个电子数量会变得越来越多。
第3个阶段就是击穿,逐步增多的电子会随着惯性原理,使得电子实施通道。
为了能够更好地显示闪络的发展过程,我们就需要结合前期阶段以及最后击穿阶段进行深入地分析,从而实现沿面闪络的发展阶段。
从目前我们了解的情况来看,不同的学者所认可的模型都具有较大的差异,而在经过调研分析,目前解释真空沿面闪络问题的主要模型有两种,分别是二次电子发射雪崩模型以及电子触发极化松弛模型。
针对二次电子发射雪崩模型的相关内容进行分析,电子雪崩主要发生在阴极、真空和绝缘材料的三结合点,从阴极三结合点发射出的初始电子在电场的作用下撞击固体电介质表面产生二次电子,部分二次电子将继续撞击介质表面以产生更多的次级电子(电子倍增过程),最终导致电子雪崩。
在整个撞击电介质的过程当中,电子的运动过程具有一定的独特性,它需要材料的表面实现气体吸附的过程,而这一过程又具备一定的贯穿性。
河间市山石电器有限公司 HeJianShi rock electrical appliances Co., LTD
第 1 页 闪络击穿现象的概念
闪络: 这是一个电力工程上的一个专用名词:指高压电器(如高压绝缘子)在绝缘表面发生的放电现象,称为表面闪络,简称闪络.。
绝缘闪络: 绝缘材料在电场作用下,尚未发生绝缘结构的击穿时,在其表面或与电极接触的空气(离子化气体)中发生的放电现象,称为绝缘闪络。
闪污事故绝缘子在长期运行中,大气中的尘埃微粒沉积到其表面形成污秽层,在干燥气候时,污秽层电阻很大,绝缘性能不会降低,但在雾、露、小雨、雪等气象条件下,污秽层中的电解质湿润后,使表面电导率增加,绝缘性能下降,而其中的灰分等保持水分,促进污秽层进一步受潮,从而溶解更多的电解质,造成绝缘子湿润表面的闪络放电,简称污闪。
绝缘子污闪放电的显著特点是闪络电压低,可能低到10kV 及以下。
标准绝缘子在干燥清洁状态下每片的闪络电压平均为75kV ,在潮湿状态下也有45kV ,污秽绝缘子的沿面放电过程与清洁表面完全不同,不再是一种单纯的空气间隙的击穿现象,而是一种与电、热、化学因素有关的污秽表面气体电离、表面层发热和烘干,以及局部电弧发生、发展的热动力平衡过程。
宏观上可将污闪放电过程分为四个阶段,即绝缘子表面的积污、污秽层的湿润、形成干带、局部放电的产生和发展并导致沿面闪络。
因此污闪的三要素是,绝缘子表面积污、污秽层湿润和电压作用。
什么是冲击闪络法,具体的操作流程冲击闪络法冲击闪络法是指冲击电压达到一定数值时击穿绝缘引起电路闪络现象,在电力电缆测试中冲击闪络法是用于测量泄露性故障,高阻性故障,利用直流电源给电缆施加直流脉冲高压,使故障点击穿放电,通过波形分析法、声测法或声磁同步法来测定故障点的位置,是目前测量电缆故障比较精准的测试方法。
SJGZ01冲击闪络法操作步骤故障发生后,先要仔细检查并查看保护装置报错信息,如果是是确定是电缆发生故障,那么先要判断电缆故障是断线,高阻,低阻还是接地故障,不同的故障类型在测试时采用的方法不同,如果是断线故障,就直接用电缆故障中距离测试仪来测量距离故障点长度,如果是高阻故障就要采用高压冲击闪络法来测量故障点的具体位置,两者的选择取决于故障状态的严重程度,如果使用高压冲击放电法需要辅助设备很多,比如:高压脉冲电容、放电球、限流电阻、电感线圈以及信号取样器等。
第一步:先用电缆故障测试中的路径仪测量故障的路由方向,做好标记,便于下一步的故障点定位。
第二步:查找路径(如果清楚电缆怎么敷设这一步可以省掉),在查找路径时,要给故障电缆加电磁信号,再用接收机接收这个信号,沿着有信号的路径查一遍,就确定了电缆的路径,当磁棒垂直放置,电缆正中心位置没有声音,偏离左侧或右侧都有提示声,如果把磁棒旋转90°时,接收的信号与之前正好相反。
第三步:根据测出的距离来精确定位,当脉冲直流高压注入电缆之后会在故障位置产生放电声音,当从定点仪的耳机听到声音最大的地方时,也就是故障点的位置,如果声音比较小时,可并联两台电容器来测量。
SJGZ06总体来说,高压(冲击)闪络法测量电缆故障是非常准确而且直观的,我们在处理现场故障时反而是希望故障点时高阻故障,高阻故障相比跨步电压法受影响的因素要少,而且测试速度要快。
闪络原理
闪络(Blinking)是一种物理现象,指的是物体在短时间内多
次发生亮度的明显变化。
闪络现象可以出现在各种形式的光源中,如灯光、火焰等。
引起闪络的原因是物体表面的光线反射或散射所导致的干涉效应。
当入射光线的波长和物体表面的特定结构尺度相近时,光的干涉效应便会出现,导致观察者在特定角度或条件下看到物体表面的亮度明显变化。
闪络的原理和物体表面的微观结构密切相关。
当物体表面有微小的凹凸、纹理或周期性的结构时,入射光线会发生反射、散射和干涉等现象。
这些干涉效应会导致不同角度观察的光线相位差发生变化,进而引起亮度的变化。
例如,当光线与物体表面的凹槽平行时,光线会不断被凹槽和凸起反射,产生一系列的干涉,使得物体在观察者的视野中忽明忽暗。
闪络现象在日常生活中常常出现在光线照射到水面、水体中的角度对应物体的表面微观结构时。
例如,当太阳光照射到湖泊或海洋的表面时,光线会与水波的起伏发生干涉,形成漂亮的闪光效果,给人们带来美丽的景色。
总之,闪络是由光线的干涉效应所引起的亮度明显变化现象。
它依赖于物体表面的微观结构和入射光线的波长,为我们带来了许多美丽的景色。
闪络:在高电压作用下,气体或液体介质沿绝缘表面发生的破坏性放电。
其放电时的电压称为闪络电压。
发生闪络后,电极间的电压迅速下降到零或接近于零。
闪络通道中的火花或电弧使绝缘表面局部过热造成炭化,损坏表面绝缘.沿绝缘体表面的放电叫闪络。
而沿绝缘体内部的放电则称为是击穿。
电晕:在110kV以上的变电所和线路上,时常能听到“陛哩”的放电声和淡蓝色的光环,这就是电晕。
长期以来,电晕被默认是“永不消失的”,电晕真的永不消失吗?电晕的产生是因为不平滑的导体产生不均匀的电场,在不均匀的电场周围曲率半径小的电极附近当电压升高到一定值时,由于空气游离就会发生放电,形成电晕。
因为在电晕的外围电场很弱,不发生碰撞游离,电晕外围带电粒子基本都是电离子,这些离子便形成了电晕放电电流。
简单地说,曲率半径小的导体电极对空气放电,便产生了电晕。
高压电机定子绕组在通风槽口及直线出槽口处、绕组端部电场集中,当局部位置场强达到一定数值时,气体发生局部电离,在电离处出现蓝色荧光,这即是电晕现象。
电晕产生热效应和臭氧、氦的氧化物,使线圈内局部温度升高,导致胶粘剂变质、碳化,股线绝缘和云母变白,进而使股线松散、短路,绝缘老化。
---高压电机定于线困在通风槽口及出槽口处,其绝缘表面的电场分布是极不均匀的。
当局部场强达到一定数值时,气体发生局部游离,在电窝处出现蓝色晕光,产生电晕。
电晕的发生伴随着热、奥、氧、氮的氧化物的产生,这些对电机绝缘都是极其有害的。
另外由于热固性绝缘表面与槽壁接触不良或不稳定时,在电磁振动的作用下,将引起槽内间隙火花放电。
这种火花放电造成的局部温升将使绝缘表面受到严重侵蚀。
这一切都将对电机绝缘造成极大的损害。
为了有效的消除这种电晕现象,正确地确定防晕结构参数和选用良好的防晕材料是十分重要的。
闪络在高电压作用下,气体或液体介质沿绝缘表面发生的破坏性放电。
其放电时的电压称为闪络电压。
发生闪络后,电极间的电压迅速下降到零或接近于零。
高电压技术-名词解释题绝缘配合:综合考虑系统中可能出现的各种过电压、保护装置特性及设备的绝缘特性,确定设备的绝缘水平及其使用,从而使设备绝缘故障率或停电事故率降低到经济上和运行上可以接受的水平。
吸收比:指被试品加压60秒时的绝缘电阻与加压15秒时的绝缘电阻之比。
雷击跳闸率:指每100KM线路每年由雷击引起的跳闸次数。
雷暴日:指某地区一年四季中有雷电放电的天数,一天中只要听到一次及以上雷声就是一个雷暴日。
伏秒特性:对某一冲击电压波形,间隙的击穿电压和击穿时间的关系称为伏秒特性。
气体击穿:气体由绝缘状态变为导电状态的现象称为击穿。
耐雷水平:雷击时线路绝缘不发生闪络的最大雷电流幅值。
自恢复绝缘:发生击穿后,一旦去掉外加电压,能恢复其绝缘性能的绝缘。
输电线路耐雷水平:雷击时线路绝缘不发生闪络的最大雷电流幅值。
进线段保护:进线段保护就是在接近变电所1~2km的一段线路上架设避雷线谐振过电压:当系统进行操作或发生故障时,某一回路自振频率与电源频率相等时,将发生谐振现象,导致系统中某些部分(或设备)上出现的过电压。
电气距离:避雷器与各个电气设备之间不可避免地要沿连接线分开一定的距离。
绝缘配合:就是综合考虑电气设备在系统中可能承受的各种作用电压,合理地确定设备必要的绝缘水平,达到在经济上和安全运行上总体效益最高的目的。
自持放电:不需要靠外界电力因数的作用,由放电过程本身就可以不断地供给引起后继电子崩的二次电子。
雷电日和雷电小时:雷电日是该地区1年中有雷电的天数。
雷电小时是该地区1年中有雷电的小时数。
击杆率.雷击杆塔次数与雷击线路总次数之比。
50%冲击放电电压U50% :放电概率为50%时的冲击放电电压避雷线的保护角指避雷线和外侧导线的连线与避雷线的垂线之间的夹角,用来表示避雷线对导线的保护程度。
保护角愈小,避雷线就愈可靠地保护导线免遭雷击。
接地电阻接地装置对地电位u与通过接地极流入地中电流i的比值称为接地电阻。
河间市山石电器有限公司 HeJianShi rock electrical appliances Co., LTD
第 1 页 闪络击穿现象的概念
闪络: 这是一个电力工程上的一个专用名词:指高压电器(如高压绝缘子)在绝缘表面发生的放电现象,称为表面闪络,简称闪络.。
绝缘闪络: 绝缘材料在电场作用下,尚未发生绝缘结构的击穿时,在其表面或与电极接触的空气(离子化气体)中发生的放电现象,称为绝缘闪络。
闪污事故绝缘子在长期运行中,大气中的尘埃微粒沉积到其表面形成污秽层,在干燥气候时,污秽层电阻很大,绝缘性能不会降低,但在雾、露、小雨、雪等气象条件下,污秽层中的电解质湿润后,使表面电导率增加,绝缘性能下降,而其中的灰分等保持水分,促进污秽层进一步受潮,从而溶解更多的电解质,造成绝缘子湿润表面的闪络放电,简称污闪。
绝缘子污闪放电的显著特点是闪络电压低,可能低到10kV 及以下。
标准绝缘子在干燥清洁状态下每片的闪络电压平均为75kV ,在潮湿状态下也有45kV ,污秽绝缘子的沿面放电过程与清洁表面完全不同,不再是一种单纯的空气间隙的击穿现象,而是一种与电、热、化学因素有关的污秽表面气体电离、表面层发热和烘干,以及局部电弧发生、发展的热动力平衡过程。
宏观上可将污闪放电过程分为四个阶段,即绝缘子表面的积污、污秽层的湿润、形成干带、局部放电的产生和发展并导致沿面闪络。
因此污闪的三要素是,绝缘子表面积污、污秽层湿润和电压作用。