分数乘法分配律
- 格式:ppt
- 大小:590.01 KB
- 文档页数:15
分数乘法知识点归纳一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如:98×43表示求98的43是多少? (二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“÷”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量。
第二单元《分数乘法》必背知识点一、分数乘法的意义:1。
分数与整数相乘:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2。
整数乘分数的意义:求一个数的几分之几是多少.3.分数乘分数的意义:就是求一个分数的几分之几是多少。
二、分数乘法的计算方法:1.分数乘整数的计算方法:用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
2。
分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。
(计算结果要求是最简分数。
)3.因为整数可以看成分母是1的分数,所以分数乘分数的计算法则也适用于分数和整数相乘。
4.带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。
一个数(0除外)乘1,积等于这个数.一个数(0除外)乘大于1(带分数)的数,积大于这个数。
四、分数混合运算的运算顺序与整数的运算顺序相同:整数加法的交换律结合律,对分数乘法同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc五、分数乘法的解决问题:1。
求一个数的几分之几是多少,用乘法。
(即已知整体和部分量相对应的分率,求部分量,用乘法)2.画线段图:①两个量的关系:画两条线段图;②部分和整体的关系:画一条线段图。
3。
找单位“1”:①在分率句中分率的前面;②在“占”、“是”、“比”、“相当于”“等于”的后面。
4。
写数量关系式的技巧:①“的”相当于“×”,“占”、“是”、“比"相当于“=”.②分率前是“的”:单位“1”的量×分率=分率对应量③求一个数的几倍:一个数×几倍④求一个数的几分之几是多少:一个数×几分之几(分值)⑤分率前面是“多或少”的意思:单位“1”的量×分率=分率对应量六、倒数:1。
利用乘法分配律解决含有分数的算式题目在数学中,乘法分配律是一项基本原则,可以用于解决含有分数的算式题目。
乘法分配律指出,当一个数与一对括号中的两个数的和相乘时,可以先分别将该数与括号中的两个数分别相乘,然后将两个结果相加。
通过利用乘法分配律,我们可以简化复杂的算式,使得计算更加方便和准确。
乘法分配律可以用于解决各种不同形式的算式。
下面将通过例题来说明如何利用乘法分配律解决含有分数的算式题目。
例题1:计算下列算式的值:2/3 × (1/4 + 2/5)解题过程:首先,我们根据乘法分配律展开括号:2/3 × 1/4 + 2/3 × 2/5然后,我们分别计算乘积结果:2/12 + 4/15由于两个分数的分母不同,我们需要找到一个公共的分母,并将分数进行转换:2/12可以化简为1/6,两个分数的公共分母为60,所以我们可以将1/6转换为10/60。
现在,我们可以重新计算乘积结果:10/60 + 4/15由于两个分数的分母相同,我们可以直接将分子相加:10/60 + 4/15 = 10/60 + 16/60最后,我们将分子相加得到的结果:10/60 + 16/60 = 26/60所以,原算式的值为26/60,我们可以继续化简这个分数:26/60可以约分为13/30,所以最终结果为13/30。
通过以上例题,我们可以看到如何利用乘法分配律解决含有分数的算式题目。
首先,我们根据乘法分配律展开括号,然后将分数进行转换,并计算乘积结果。
最后,将分子相加,并对结果进行化简,得到最终的答案。
需要注意的是,在进行计算的过程中,我们需要保持对分数的正确化简和转换,确保最终结果的准确性。
此外,我们还可以进一步练习和掌握乘法分配律的应用,以提高解题的速度和准确性。
总结起来,利用乘法分配律解决含有分数的算式题目是一种简化计算的方法。
通过合理运用乘法分配律,我们可以化简复杂的算式,使得解题过程更加高效和准确。
人教6年级分数乘法分配律专项知识一、什么是分数乘法分配律?分数乘法分配律是指当分数a、b、c满足a>b时,有a×(b+c)=a×b+a×c。
在进行分数乘法运算时,可以利用分配律简化计算过程,使计算更加简便快捷。
二、分数乘法分配律的应用示例示例1:计算2/3×(5/6+1/2)按照分数乘法分配律,可将乘法运算拆分为两个部分:首先计算2/3×5/6,结果为10/18;然后计算2/3×1/2,结果为2/6;最后将两个部分的结果相加,得到10/18+2/6=20/18;化简得到20/18=10/9。
2/3×(5/6+1/2)=10/9。
示例2:计算4/5×(3/4-1/3)同样按照分数乘法分配律,首先计算4/5×3/4,结果为12/20;然后计算4/5×1/3,结果为4/15;最后将两个部分的结果相减,得到12/20-4/15=36/60-16/60;化简得到36/60-16/60=20/60=1/3。
4/5×(3/4-1/3)=1/3。
三、分数乘法分配律的注意事项1. 在应用分数乘法分配律时,需要保持清晰的思维和逻辑推理能力,确保拆分和合并计算结果准确无误。
2. 在进行分数乘法运算时,应注意化简结果,得到最简分数形式。
3. 分数乘法分配律是分数乘法运算中的重要方法,熟练掌握分数乘法分配律能够有效提高计算效率,减少因计算复杂而出现的错误。
四、分数乘法分配律的练习题1. 计算下列分数乘法:a) 3/4×(1/2+2/3)b) 5/6×(2/3-1/4)c) 7/8×(3/4+5/6)d) 2/5×(3/4+1/2)2. 根据分数乘法分配律,验证下列等式是否成立:a) 2/3×(5/6+1/2)=10/9b) 4/5×(3/4-1/3)=1/3通过这些练习题,可以巩固分数乘法分配律的应用和理解,同时加深对分数乘法的掌握。
分数的分配律,结合律,交换律一、分数乘法中的交换律、结合律和分配律1. 分数乘法交换律- 定义:两个分数相乘,交换因数的位置,它们的积不变。
- 用字母表示:如果a、b是分数(a=(m)/(n),b = (p)/(q)),那么a× b=b×a,即(m)/(n)×(p)/(q)=(p)/(q)×(m)/(n)。
- 例如:(2)/(3)×(3)/(4)=(3)/(4)×(2)/(3),(2)/(3)×(3)/(4)=(2×3)/(3×4)=(6)/(12)=(1)/(2),(3)/(4)×(2)/(3)=(3×2)/(4×3)=(6)/(12)=(1)/(2)。
2. 分数乘法结合律- 定义:三个分数相乘,先把前两个分数相乘,再乘第三个分数,或者先把后两个分数相乘,再和第一个分数相乘,它们的积不变。
- 用字母表示:如果a、b、c是分数(a=(m)/(n),b=(p)/(q),c=(r)/(s)),那么(a× b)× c = a×(b× c),即((m)/(n)×(p)/(q))×(r)/(s)=(m)/(n)×((p)/(q)×(r)/(s))。
- 例如:((1)/(2)×(2)/(3))×(3)/(4)=(1)/(2)×((2)/(3)×(3)/(4))。
- 先计算左边:((1)/(2)×(2)/(3))×(3)/(4)=(1×2)/(2×3)×(3)/(4)=(2)/(6)×(3)/(4)=(2×3)/(6×4)=(6)/(24)=(1)/(4)。
- 再计算右边:(1)/(2)×((2)/(3)×(3)/(4))=(1)/(2)×(2×3)/(3×4)=(1)/(2)×(6)/(12)=(1)/(2)×(1)/(2)=(1×1)/(2×2)=(1)/(4)。
分数乘法————————————————————————————————作者: ————————————————————————————————日期:ﻩ分数乘法一、分数乘法ﻫ(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)ﻫ2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
ﻫ3、为了计算简便,能约分的要先约分,再计算。
ﻫ注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
ﻫ一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a ×b= b ×aﻫ乘法结合律: ( a× b )×c = a ×(b × c )ﻫ乘法分配律: (a + b )×c = a c+b c ac+ b c =( a + b )×cﻫ二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。
ﻫ3、写数量关系式技巧:ﻫ(1)“的”相当于“×”“占”、“是”、“比”相当于“ =”(2)分率前是“的”:单位“1”的量×分率=分率对应量ﻫ(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量三、倒数ﻫ1、倒数的意义:乘积是1的两个数互为倒数。
ﻫ强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
分数四则混合运算中应该注意的地方分数四则混合运算中应该注意的地方1、引言分数四则混合运算是数学中一个重要的概念,它涉及到分数的加减乘除等运算。
对于学习者来说,掌握和理解这个概念至关重要。
本文将从深度和广度的角度,全面评估分数四则混合运算中需要注意的地方,并分享个人对这个概念的观点和理解。
2、基本概念在介绍分数四则混合运算中需要注意的地方之前,我们先来回顾一下一些基本概念。
(1)分数的定义:分数是表示整体中的一部分的数,由分子和分母两部分构成,分子表示整体中的份额,分母表示整体被分为几等分。
如1/2、3/4等。
(2)分数的四则运算:分数的四则运算包括加法、减法、乘法和除法。
在进行这些运算时,需要注意分数的通分、约分、同分母以及乘法分配律等规则。
3、深入解析在分数四则混合运算中,有几个需要特别注意的地方。
(1)分数的通分和约分:在进行加减运算时,通常需要将分数的分母修改为相同的数,以便进行计算。
这个过程称为通分。
而在进行乘除运算时,通常需要将分数约分为最简形式,即分子和分母没有公因数。
这个过程称为约分。
(2)同分母运算:在进行加减运算时,如果分数的分母相同,就可以直接对分子进行加减操作,而分母保持不变。
这个运算规则可以简化计算过程,但需要注意保持分母不变。
(3)乘法分配律:在进行分数的乘法运算时,需要注意乘法分配律的运用。
即分数相乘时,可以先计算分子相乘,再计算分母相乘。
需要留意分子和分母的正负号。
(4)除法运算:在进行分数的除法运算时,需要将除法转化为乘法,即将除法式子转化为分数的倒数乘法形式。
需要注意被除数和除数的正负号。
4、个人观点和理解个人认为,分数四则混合运算是数学中一个基础而又关键的概念。
对于学习者来说,掌握和理解这个概念不仅有助于他们提高数学能力,还可以培养他们的逻辑思维和解决问题的能力。
在实践中,我发现学生在进行分数四则混合运算时最容易出错的地方是忽略了通分和约分。
通分和约分是分数运算中的基本操作,它们可以帮助我们简化运算,减少错误的概率。
分数乘法的简便计算方法
1. 嘿呀,咱先来说说乘法分配律吧!比如计算36×4/9 + 36×5/9,这不就可以把 36 提出来,变成36×(4/9 + 5/9),结果一下子就出来啦,是不是超简单呀!
2. 还有呀,凑整法也很棒哦!像计算25×3/4×4,那后面的3/4×4 不就等于 3 嘛,这样就变成25×3,多轻松呀!
3. 约分也很重要呀!想想看4/5×10/8,约约分,分子分母同除以 2,不就变成2/5×5/4 等于 1/2 嘛,多厉害呀!
4. 把分数变成小数有时候也管用呢!比如说计算×4/5,把变成 1/4,不就很容易算出来了嘛,这招不错吧?
5. 交换律也别忘呀!看3/4×5/7×4/3,交换一下位置,变成
3/4×4/3×5/7,一下子就简洁多啦!
6. 把带分数化成假分数也能简化计算哦!像计算 1 又1/2×3/4,先把 1 又1/2 变成 3/2,然后再相乘,就容易多啦!
7. 有时候拆分数也行呀!比如计算3/8×37,把 37 拆成 36+1,不就可以变成3/8×36 + 3/8×1,是不是很有意思?
8. 还有呀,遇到混合运算别慌张!咱一步步来,像计算1/2×(2/3 + 3/4),先算括号里的,再相乘,肯定能算出结果的呀!
哇塞,分数乘法的简便计算方法真的好多呀!只要咱们掌握了这些方法,那计算分数乘法就不是事儿啦!。