固体核磁共振基础原理讲课讲稿
- 格式:doc
- 大小:253.50 KB
- 文档页数:19
固体核磁共振19.1 固体核磁共振基本原理19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用如果我们将样品分子视为一个整体,则可将固体核磁中探测到的相互作用分为两大类:样品部的相互作用及由外加环境施加与样品的作用。
前者主要是样品在的电磁场在与外加电磁场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于在电磁场屏蔽外磁场的强度、方向等),分子与分子间偶极自旋偶合相互作用,对于自旋量子数为>1/2的四极核尚存在四极作用。
外部环境施加与样品的主要作用有:1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用(Zeeman Interaction), 核子相对映的频率为拉莫尔频率(Larmor Frequency);2) 由处于x-y平面的振荡射频场产生的作用与待测样品的扰动磁场。
与溶液核磁共振技术测定化学结构的基本思路,在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发生分裂,例如对于自旋量子数I=1/2的核会产生两个能级,一个顺着静磁场方向从而导致体系的能量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。
经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理:即处于低能级的核子数目较多而高能级的数目较少,最终产生一个沿竖直向上的净磁化矢量。
此磁化矢量在受到沿x-y平面的振荡射频磁场作用后产生一扭矩最终将沿竖直方向的磁化矢量转动一特定的角度。
由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。
在磁化矢量的恢复过程中,溶液核磁中主要存在的相互作用有:化学位移,J-偶合等相对较弱的相互作用,而相对较强的分子间偶极自旋偶合相互作用在大多数体系中由于分子的热运动而被平均化。
但是在固体核磁共振实验中,由于分子处于固体状态从而难以使体系中的偶极自旋偶合作用通过分子热运动而平均化。
固体核磁铝谱固体核磁共振(NMR)技术是一种强大的分析工具,用于研究固体材料中原子核的磁性质。
在众多类型的固体NMR中,铝谱(即针对^{27}Al原子核的谱图)在材料科学领域,尤其是对含铝材料的研究中扮演着至关重要的角色。
本文旨在深入探讨固体核磁铝谱的基本原理、实验技术及其在材料表征中的应用。
一、基本原理固体核磁共振是基于原子核的磁矩在非均匀磁场中的能级分裂和跃迁现象。
当外部磁场作用于具有核磁矩的原子核时,这些原子核的能级会发生分裂。
通过施加射频场,可以激发这些能级间的跃迁,从而产生共振信号。
^{27}Al原子核具有自旋量子数I=5/2,因此在磁场中展现出六个能级。
这些能级间的跃迁构成了铝谱的复杂结构。
二、实验技术1. 样品制备:对于固体NMR实验,样品的制备至关重要。
通常需要将样品研磨成粉末,以获得更好的信号强度和分辨率。
在某些情况下,还需要进行化学处理以消除可能干扰NMR信号的杂质。
2. 磁场和射频场的应用:固体NMR实验需要在强磁场环境中进行。
磁场的强度和均匀性对实验结果有显著影响。
同时,通过调整射频场的频率,可以选择性地激发不同能级间的跃迁。
3. 数据采集与处理:实验过程中,NMR信号被接收器捕获并转换为数字信号。
随后,通过傅里叶变换等数学处理,将这些信号转换为频率域的谱图。
在铝谱中,不同化学环境中的^{27}Al原子会产生不同的共振峰,从而提供关于材料结构的信息。
三、应用固体核磁铝谱在材料科学中的应用广泛,主要涉及以下几个方面:1. 催化剂研究:许多重要的工业催化剂都含有铝元素。
通过铝谱,可以研究催化剂中铝的配位环境、氧化态以及与其他元素的相互作用,从而理解催化剂的活性和选择性。
2. 陶瓷材料:陶瓷材料中的氧化铝(Al₂O₃)是一种常见的组分。
铝谱可以提供关于氧化铝相(如α-Al₂O₃、γ-Al₂O₃等)的信息,以及氧化铝与其他组分的界面相互作用。
3. 沸石和分子筛:这类材料在吸附、分离和催化等领域有广泛应用。
固体核磁共振原理核磁共振(Nuclear Magnetic Resonance,NMR)是一种基于原子核的微弱磁矩在外加磁场作用下发生共振现象的物理现象。
固体核磁共振是在固体材料中应用核磁共振技术的一种重要方法,其原理和应用在化学、生物、医学以及材料科学等领域都有广泛应用。
在固体核磁共振中,由于样品是固态的,与液态核磁共振相比,其结构和动力学性质更加复杂,因此需要特殊的技术手段和方法来解析和研究。
固体核磁共振的原理基本上与液体核磁共振相同,都是基于核磁共振现象。
核磁共振是当样品置于外加磁场中时,其核自旋会在外磁场的作用下产生共振现象,从而产生共振信号。
这些共振信号可以被探测和分析,从而获得有关样品的结构、成分和性质等信息。
液态核磁共振中,由于分子间的运动造成了高度的信号混杂,因此谱线通常较宽,信噪比较低。
而在固体核磁共振中,由于样品是固态的,分子间运动非常有限,因此谱线较窄,信噪比较高。
因此,固体核磁共振可用于研究固体材料的结构和动力学性质。
在固体核磁共振中,一个重要的参数是回旋频率,即共振频率。
外加磁场会引起样品中核自旋的能级分裂,而共振频率正是能级之间跃迁所对应的频率。
通过测量共振频率,可以获得有关样品的结构和性质等信息。
此外,固体核磁共振还可以应用于研究核自旋弛豫时间、化学位移、偶合常数等参数,从而揭示样品的结构和动力学性质。
固体核磁共振的原理与技术非常复杂,涉及到量子力学、固体物理学、磁共振技术等多个学科领域。
在固体核磁共振中,常用的技术包括固体核磁共振谱仪、脉冲序列技术、魔角旋转技术、动态核极化技术等。
这些技术手段可以有效地应用于固体材料的研究和分析,从而获得关于样品结构和性质的重要信息。
固体核磁共振在化学领域中有着重要的应用。
固体核磁共振可以用于分析固态化合物结构、表征材料性质、研究固相反应和固体界面等。
比如,固体核磁共振可以用于研究催化剂、纳米材料、聚合物材料等的结构和性质。
此外,固体核磁共振还可以用于研究生物材料中的含水量、结构和功能等。
《核磁共振基本原理》课件课程目标:1. 理解核磁共振的定义和原理;2. 掌握核磁共振的数学表达式;3. 了解核磁共振的应用领域。
第一部分:核磁共振的定义和原理一、核磁共振的定义1. 核磁共振是指在外加磁场的作用下,原子核发生能级跃迁,产生电磁辐射的现象。
二、核磁共振的原理1. 原子核的磁矩:原子核具有质量和电荷,具有磁矩。
在外加磁场的作用下,原子核会受到磁力作用,产生磁矩的旋转。
2. 能级跃迁:原子核的磁矩旋转会导致能级的升降,当原子核从低能级跃迁到高能级时,会吸收能量;当原子核从高能级跃迁到低能级时,会释放能量。
3. 电磁辐射:原子核在能级跃迁过程中,会发射或吸收电磁辐射,这就是核磁共振现象。
第二部分:核磁共振的数学表达式一、核磁共振的量子力学表达式1. 哈密顿算子:描述原子核在磁场中的运动状态的算子;2. 能级表达式:通过解哈密顿算子,得到原子核的能级表达式;3. 跃迁概率:根据能级表达式,计算原子核跃迁的概率。
二、核磁共振的宏观表达式1. 拉莫尔进动频率:描述原子核在外加磁场中的进动频率;2. 拉莫尔进动半径:描述原子核在外加磁场中的进动半径;3. 核磁共振信号强度:描述核磁共振信号的强度。
第三部分:核磁共振的应用领域一、核磁共振成像(MRI):通过核磁共振现象,获取人体内部结构的图像,广泛应用于医学诊断。
二、核磁共振谱(NMR):通过核磁共振现象,分析物质的结构和性质,广泛应用于化学、物理等领域。
三、核磁共振传递(NMR):利用核磁共振现象,实现信息的传递和处理,广泛应用于通信、计算等领域。
总结:通过本节课的学习,我们了解了核磁共振的定义和原理,掌握了核磁共振的数学表达式,并了解了核磁共振的应用领域。
希望大家能够将这些知识应用到实际生活和工作中,发挥核磁共振技术的作用。
科学性评估:1. 内容准确性:课件中提供的核磁共振的定义、原理、数学表达式以及应用领域等内容是否与科学研究相符合,是否引用了权威的参考资料。
固体核磁共振波谱仪基本原理是利用射频场引起有磁矩的原子核与外磁场相互作用而产生的磁能之间的跃迁。
核磁共振谱来源于原子核能级间的跃迁。
只有置于强磁场中的某些原子核才会发生能级分裂,当吸收的辐射能量与核能级差相等时,就发生能级跃迁而产生核磁共振信号。
用一定频率的电磁波对样品进行照射,可使特定化学结构环境中的原子核实现共振跃迁,在照射扫描中记录发生共振时的信号位置和强度,就得到核磁共振谱。
第一章核磁共振基础知识核磁共振(NMR)是指核磁矩不为零的核,在外磁场的作用下,核自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。
核磁共振是波谱学的一个分支,研究核磁共振现象与原子所处环境如分子结构,构象,分子运动的关系及其应用。
生物化学,分子生物学的发展对生物大分子空间结构的测定提出越来越高的要求,而逐渐形成一门新兴的交叉学科即结构生物学。
结构生物学已成为生命科学研究的前沿领域和热点。
核磁共振波谱学是结构生物学的一种重要的研究手段,核磁共振波谱学各种最新技术的出现和发展往往与结构生物学密切相关。
如3D,4DNMR。
简史:1924 Pauli从光谱的超精细结构推测某些原子核有核磁距,能级裂分,共振吸收1936 Gorter试图观察LiF中7Li的吸收,未能成功,因样品弛豫时间太长1945-1946 F.Bloch(Stanford), H2O 感应法E.M.Purcell(Harvard), 石蜡吸收法1946-1948 奠定了理论基础1952年共得诺贝尔物理奖1951 Arnold et al 乙醇1H化学位移精细结构1957 Saunders et al 核糖核酸酶40 MHz的1H谱(1965 Cooley, Tukey FTT)1966 R.R. Ernst 脉冲NMR理论1971 Jeener 2DNMR原理1984 K. Wuethrich用NMR解蛋白质溶液结构1945-1951 奠定理论和实验基础1951-1965 CW-NMR发展,双共振技术1965-1970~PFT-NMR发展1970~--- 2D-NMR,MQT-NMR,SOLID-NMR,自旋成象技术核磁共振可以用于研究有机分子的化学结构,代谢途径,酶反应的立体化学信息,生物大分子的溶液构象,分子间相互作用的细节,化学反应速率,平衡常数,还可用来研究分子动力学,包括分子内的基团运动,以及生物膜的流动性。
细胞和活组织中化学成分的分布及交换过程,等等。
固体核磁共振仪(SSNMR)的测试原理及应用1. 引言固体核磁共振技术(Solid State Nuclear Magnetic Resonance,SSNMR)是一种在固态物质中研究核磁共振的方法。
它利用了固态样品中原子核的磁矩与外加磁场相互作用,从而产生共振的原理。
本文将详细介绍固体核磁共振仪(SSNMR)的测试原理及其在化学结构分析、物理性质研究和生物医学应用等方面的应用。
2. 固体核磁共振仪(SSNMR)的测试原理2.1 核磁共振原理核磁共振是利用原子核自旋磁矩在磁场中的进动与外加电磁辐射相互作用,从而产生共振的现象。
当外加电磁辐射的频率与原子核自旋磁矩的进动频率相同时,原子核将吸收电磁辐射的能量,并发生跃迁,产生共振信号。
2.2 固体核磁共振技术与液体核磁共振技术相比,固体核磁共振技术具有更高的分辨率和更强的抗干扰能力。
在固体核磁共振技术中,样品被制备成粉末或薄片的形式,并置于一个特殊的磁场中。
当外加电磁辐射与样品中的原子核相互作用时,原子核将吸收能量并发生跃迁,产生共振信号。
通过对共振信号的分析和处理,可以获得样品中原子核的种类、数量以及化学环境等信息。
2.3 SSNMR的测试原理固体核磁共振仪(SSNMR)的测试原理是利用高功率脉冲磁场和先进的信号处理技术,对固态样品中的原子核进行共振检测。
高功率脉冲磁场可以快速改变磁场强度,使得原子核能够迅速达到共振状态。
同时,先进的信号处理技术可以对共振信号进行精确测量和解析,从而获得样品中原子核的详细信息。
3. SSNMR的应用3.1 化学结构分析固体核磁共振技术可以用于化学结构分析,通过对样品中不同类型原子核的共振信号进行分析,可以确定分子中各原子的种类、数量以及化学环境等信息。
这对于研究分子的结构、组成以及化学反应机理等方面具有重要意义。
3.2 物理性质研究固体核磁共振技术还可以用于物理性质研究,例如研究材料的磁性、电导性、热稳定性等。
通过对样品中原子核的共振信号进行分析,可以获得材料中原子排列、晶体结构等信息,从而进一步研究材料的物理性质。
固体核磁共振19.1 固体核磁共振基本原理19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用如果我们将样品分子视为一个整体,则可将固体核磁中探测到的相互作用分为两大类:样品内部的相互作用及由外加环境施加与样品的作用。
前者主要是样品内在的电磁场在与外加电磁场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于内在电磁场屏蔽外磁场的强度、方向等),分子内与分子间偶极自旋偶合相互作用,对于自旋量子数为>1/2的四极核尚存在四极作用。
外部环境施加与样品的主要作用有:1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用(Zeeman Interaction), 核子相对映的频率为拉莫尔频率(Larmor Frequency);2) 由处于x-y平面的振荡射频场产生的作用与待测样品的扰动磁场。
与溶液核磁共振技术测定化学结构的基本思路,在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发生分裂,例如对于自旋量子数I=1/2的核会产生两个能级,一个顺着静磁场方向从而导致体系的能量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。
经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理:即处于低能级的核子数目较多而高能级的数目较少,最终产生一个沿竖直向上的净磁化矢量。
此磁化矢量在受到沿x-y平面的振荡射频磁场作用后产生一扭矩最终将沿竖直方向的磁化矢量转动一特定的角度。
由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。
在磁化矢量的恢复过程中,溶液核磁中主要存在的相互作用有:化学位移,J-偶合等相对较弱的相互作用,而相对较强的分子间偶极自旋偶合相互作用在大多数体系中由于分子的热运动而被平均化。
但是在固体核磁共振实验中,由于分子处于固体状态从而难以使体系中的偶极自旋偶合作用通过分子热运动而平均化。
固体核该共振19.1固体核该共振基本原理19.1.1杖城共撅的基本虑理及囲体杖礙中宝要的柏互作用如果我们将样%分子视为一个整体,则可将固体核裁中探测到的相互作用分为两大类:样%内部的相互作用及由外加环境施加与样醃的作用。
前者主要是样%内淮.的电該场淮.与外加电该场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于内准.色该场屛菽外裁场的强度、方向等丿,分子内与分子间偶极自炎偶合柏互作用,对于自炎量子数为>1/2的四极核尚存征叨极作用。
外部环境施加与样氐的主要作用有:1)由处于纵向竖直方向的外加费该场作用于特走的核该活性的核上产生的塞曼相互作用(Zeeman Interaction),核子相对映的频率为拉莫余频率(Larmor Frequency);2)由处于x・y平面的振荡射频场产生的作用与待测样%的扰动滋场。
与徐液核该共振技术测定化学结构的基本思路,柱固体核该共振卖验中也是首先利用强的靜该场是样醃中核子的能级发生分製,例如对于匂炎量子数/=1/2的核会产生两个能级,一个顺着挣该场方向从而导致体糸的能量较低;另一个则逆着费该场排列的方向使得体糸相对能量较嵩。
经能级分裂后,处于嵩能级与低能级的核子数目分布发生改变,并且符合波余誉曼分布原理:即处于低能级的核子数目较多而嵩能级的数目较少,最终产生一个沿竖直向上的净滋化矣量。
此该化矣量淮.受到沿x-y平面的振荡射频该场作用后产生一扭矩最终将沿竖直方向的该化矢量转动一特定的角度。
由于这种対频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体糸中剩下的主要相互作用将会使这种处于热力学不稳定状态的体糸恢复到热力学稳定的初始状态。
柱该化矣量的恢复过程中,涿液核该中主要存莊的相互作用有:化学住移,J■偶合等相对较弱的才目互作用,而柏对较强的分子问偶极自炎偶合柏互作用柱大多数体糸中由于分子的热运动而被平均化。
但是堆.固体核该共振卖验中,由于分子处于固体状态从而难以使体糸中的偶极自炎偶合作用通过分子热运动而平均化。
固体核磁共振基础原理固体核磁共振19.1 固体核磁共振基本原理19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用如果我们将样品分子视为一个整体,则可将固体核磁中探测到的相互作用分为两大类:样品内部的相互作用及由外加环境施加与样品的作用。
前者主要是样品内在的电磁场在与外加电磁场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于内在电磁场屏蔽外磁场的强度、方向等),分子内与分子间偶极自旋偶合相互作用,对于自旋量子数为>1/2的四极核尚存在四极作用。
外部环境施加与样品的主要作用有:1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用(Zeeman Interaction), 核子相对映的频率为拉莫尔频率(Larmor Frequency);2) 由处于x-y平面的振荡射频场产生的作用与待测样品的扰动磁场。
与溶液核磁共振技术测定化学结构的基本思路,在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发生分裂,例如对于自旋量子数I=1/2的核会产生两个能级,一个顺着静磁场方向从而导致体系的能量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。
经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理:即处于低能级的核子数目较多而高能级的数目较少,最终产生一个沿竖直向上的净磁化矢量。
此磁化矢量在受到沿x-y平面的振荡射频磁场作用后产生一扭矩最终将沿竖直方向的磁化矢量转动一特定的角度。
由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。
在磁化矢量的恢复过程中,溶液核磁中主要存在的相互作用有:化学位移,J-偶合等相对较弱的相互作用,而相对较强的分子间偶极自旋偶合相互作用在大多数体系中由于分子的热运动而被平均化。
但是在固体核磁共振实验中,由于分子处于固体状态从而难以使体系中的偶极自旋偶合作用通过分子热运动而平均化。
另外值得指出的是与化学位移,J-偶合等相互作用的强度相比,分子间偶极自旋偶合作用是一种远强于前两者的一种相互作用。
通常情况下,化学位移与J-偶合一般都处于Hz量级,但是偶极自旋偶合作用强度却处于kHz 量级,所以如果不采用特殊手段压制偶极自旋偶合作用带来的谱线展宽,通常静态条件下观察到的核磁共振谱往往是信息被偶极自旋偶合作用掩盖下的宽线谱(图2所示为乙酸胆固醇酯在静态下以通常的去偶方式所得到的图谱与溶于CDCl3后所测得的溶液核磁图谱的对比,从中可看出固体核磁图谱在没有特殊技术处理下呈现的是毫无精细结构的宽包峰。
)。
因此,在固体核磁中只有采用特殊技术首先压制来自强偶极自旋偶合作用导致谱线宽化的影响,才有可能观察到可用于解析物质化学结构的高分辨固体核磁共振谱。
图1 上图蓝线所示为乙酸胆固醇酯的固体13C NMR(静态,未进行强功率去偶)而下图红线记录的是将其溶于CDCl3后的溶液状态的核磁共振谱。
由此可见在固体状态由于化学位移各向异性及强偶极相互作用等因素的存在使谱线展宽为毫无精细结构的图谱。
在固体核磁测试中,虽然质子的自然丰度与旋磁比都比较高,但是由于体系中质子数目多,相互偶极自旋耦合强度远高于稀核,例如13C 和15N等,因此在大多数情况下固体核磁采用魔角旋转技术(Magic Angle Spinning MAS)与交叉极化技术(Cross Polarization CP)可得到高分辨的杂核固体核磁谱。
对于1H 必须采用魔角旋转与多脉冲结合方式(Combined Rotation and Multipulse Spinning CRAMPS)将质子的磁化矢量转至魔角方向方能得到高分辨质子谱。
19.1.2 魔角旋转技术在静态固体NMR谱中主要展现的是化学位移各向异性、偶极自旋耦合和四极相互作用的信息,这些物理作用往往展现出的是宽线谱。
如果在研究中对这些信息不感兴趣,而更多关注于化学位移与J-耦合时,可通过将样品填充入转子,并使转子沿魔角方向高速旋转,即可实现谱线窄化的目的。
这是因为上述作用按时间平均的哈密顿量均含有因子(1-3cos2θ), 因此如果将样品沿θ=54.7°(即正方体的体对角线方向)旋转时,上述强的化学位移各向异性、偶极自旋偶合和四极相互作用被平均化,而其他相对较弱的相互作用便成为主要因素,因此有利于得到高分辨固体核磁共振谱。
值得指出的是由于1H 核的自然丰度非常高,因此1H-1H核之间的偶极作用远强于13C-13C之间的相互作用,因此在不是太高的旋转速度下就可以实现压制13C-13C之间的偶极相互作用,但要实现完全压制1H-1H核之间的偶极作用在许多固体核磁共振谱仪上还是难以实现的。
实验中一般采用两种气流:bearing gas 和driving gas(见图3所示),前者使样品管能够浮起并且在样品管旋转过程中具有使其处于平衡状态的功能,后者通过吹动样品管的锯齿帽而使之沿魔角所在方向进行高速旋转。
图2 魔角旋转实验的示意图,其中白色部分代表样品管,样品管头部的红色条纹代表样品管的锯齿状Kel-F 或BN制成的用于高速旋转的帽。
为使样品管稳定高速旋转必须采用两种气流:bearing gas 和driving gas。
当魔角旋转速度非常高的情况下可将粉末状样品在静态图谱中所呈现的各向异性粉末状图案(Powder pattern)简化为各向同性的化学位移峰逐渐显现,但是当沿魔角旋转速度不够快时,经魔角旋转后所得到的图谱出得到各向同性的表示化学位移的单峰外,尚存在一系列称为旋转边带(Spinning sideband)的卫星峰。
各旋转边带之间的间距(用Hz表示)正好是样品管的旋转速度,并且均匀分布在各向同性的化学位移所在的主峰的两侧。
当旋转速度加快时,旋转边带的间距也加大,具体实例见图4,最终呈现为各向同性的化学位移。
图3 固体核磁共振实验中旋转边带与魔角旋转速度的相互关联关系目前样品管的旋转速度随样品管的尺寸不同可在1-35 kHz范围内调解,这对于自然丰度比较低的核,例如:13C,15N可以有效抑制体系中的同核偶极相互作用,但对于自然丰度很高的核,例如1H,19F等,由于体系中的偶极作用强度往往大于100 kHz,因此如果单纯依靠魔角旋转技术是难以获得高分辨图谱的。
19.1.3 交叉极化技术对于13C,15N等体系虽然通过魔角旋转技术有效地压制了同核偶极相互作用,但是这些核的旋磁比比较小,自然丰度比较低,因此如果采用直接检测这些核的实验方法将导致整个实验过程的灵敏度非常低。
为进一步提高这些核的实验灵敏度,又发展了交叉极化技术。
通过该技术可将1H核的磁化矢量转移到13C或15N等杂核上,从而提高这些杂核的实验灵敏度。
通过交叉极化技术测定固体杂核的核磁共振脉冲程序如下:图4 交叉极化的脉冲序列。
此脉冲序列的净结果是将核磁活性较高的核的磁化矢量传递给核磁活性较低的核的磁化矢量,从而提高相关杂核固体核磁共振实验的灵敏度。
交叉极化过程的详细物理解释需要采用平均哈密顿理论(Average Hamiltonian Theory),在此仅对此过程进行简单的描述。
起初施加于氢核上的90ºx脉冲将氢沿z 方向的初始磁化矢量转变到-y方向,这时施加于氢的脉冲磁场的相位迅速由x-轴转变为-y轴。
经过此相位转变后,氢的磁化矢量就被锁定在-y轴上,因为此时氢的磁化矢量的方向与外在脉冲静磁场的方向一致,即这时沿-y方向的磁场如同外加静磁场所起的作用一样,会使氢的磁化矢量沿脉冲磁场所在的-y方向产生能级分裂,使得在此坐标系中氢的α*H和β*H的数目分布有所不同。
值得指出的是此时杂核在-y方向的磁化矢量为零,其α*X和β*X之间的数目分布相等。
此时若在杂核x上沿-y方向也施加一脉冲磁场,并且使得γH B1(1H)=γx B1(x) (Hartmann-Hahn Condition)时,氢从低能态可吸收来自杂核的偶极相互作用的能量跳到高能态,而相应的杂核的一部分核子则从高能态跳回到低能态,使得原来磁化矢量为零的状态转变为极化状态。
整个极化转移过程可由图6 表示。
图5 交叉极化过程的定性解释在交叉极化进行前由于锁场脉冲磁场的作用如同静磁场一样,因此在脉冲磁场所在的旋转坐标系中产生1H的能级分裂,使其α态与β态数目不同,当在此旋转坐标系中对杂核X施加一脉冲磁场使得体系满足哈特曼-哈恩(Hartmann-Hahn Condition)条件时,即:ωH=ωX,氢核与杂核就可以通过偶极作用发生能量转移,能量转移的结果是氢在α态与β态数目差异减小,而杂核原来低能级与高能级之间本没有数目差异,经此过程后,产生一定的数目差异,所以达到活化杂核的目的,使杂核在固体核磁共振实验中的灵敏度得到极大的提高。
在整个交叉极化过程中由于1H核与X核之间的偶极作用满足如下的关系式:从式中可以看到1H核与X核之间偶极作用只与z方向有关,而与x-y平面无关,然而交叉极化过程是在-y方向完成的,因此在交叉极化前后,总偶极强度保持不XkHi2HXIˆIˆ)1cos3(21Hˆzzkiikd••-=∑>θ变。
因此通过交叉极化过程后,氢核的磁化矢量减少而杂核X的磁化矢量增加,两种核增加与减少的幅度与核的种类、交叉极化的动力学过程等多种因素有关。
19.1.4 固体核磁共振的异核去偶技术在测定杂核的固体核磁共振实验过程中,采用魔角旋转技术能够比较有效地去除同核间的偶极偶合作用(例如:13C-13C;15N-15N等),但是对于这些核与氢核间的偶极偶合作用则比较有限,为此还发展了多种去偶技术抑制这些杂核间的偶极耦合作用。
值得指出的是虽然在溶液核磁体系中已发展了多种去偶技术,但是由于在溶液体系中相应的作用力远小于固体状态的作用力,因此在固体核磁共振实验中所采用的去偶功率往往在100-1000瓦量级,而非溶液状态的瓦级。
固体核磁共振实验中高功率去偶技术的采用带来的一个不可避免的注意事项就是防止样品在照射过程中由于产生的热导致其变性。
固体核磁共振实验中之所以采用高功率去偶技术是为了进一步提高图谱的分辨率与灵敏度。
经过高功率照射后使原来存在偶极作用的氢与杂原子之间的作用消失,这样原来所呈现的多峰就合并为一个,使得谱线的强度增加,并且使谱图的重叠减弱,有利于识谱。
但是不可避免的是在此过程中由于去偶技术的采用也使得反映有关原子周围的化学环境、原子间相对距离等信息被消除19.1.5 固体核磁共振实验的特点(1) 固体核磁共振技术可以测定的样品范围远远多于溶液核磁,由于后者受限于样品的溶解性,对于溶解性差或溶解后容易变质的样品往往比较难以分析,但是这种困难在固体核磁实验中不存在;(2) 从所测定核子的范围看,固体核磁同溶液核磁一样不仅能够测定自旋量子数为1/2的1H,19F,13C,15N,29Si,31P ,207Pb,还可以是四极核,如:2H, 17O等,所以可分析样品的范围非常广泛;(3) 是一种无损分析。