高中数学学案:《函数的概念和图象(2)》必修一
- 格式:doc
- 大小:81.50 KB
- 文档页数:5
第五章函数的应用(二)4.5.3 函数模型的应用本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。
函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。
本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。
课程目标学科素养1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力.a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;d.直观想象:运用函数图像分析问题;e.数学建模:由实际问题建立函模型;f.数据分析:通过数据分析对应的函数模型;教学重点:利用给定的函数模型或建立确定性函数模型解决实际问题.教学难点:利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.多媒体教学过程设计意图核心教学素养目标(一)创设问题情境1.常见函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模拟y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1) (4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a>0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)2.建立函数模型解决问题的基本过程(二)问题探究我们知道,函数是描述客观世界变化规律的数学模型,不同的变化规律需要用不同的函数模型来刻画.面临一个实际问题,该如何选择恰当的函数模型来刻画它呢?通过对常见函数模型的回顾,提出新的问题,提出运用函数模型分析解决实际问题,培养和发展数据分析、数学建模和数学抽象、直观想象的核心素养。
函数相等(教师叙述:上一节课我们学习了函数的基本概念,知道了函数的三要素:值域、定义域、对应法则,这一节课我们来学习一下函数相等.类比我们前面所学习的集合相等,我们知道,若是两个集合相等,那么这两个集合的所有元素应该是相同的.那么两个函数相等呢?两个函数相等应该满足什么样的条件呢?这就是我们这节课要学习的内容.下面我们来看一下这节课的学习目标)一、【学习目标】(约2分钟)(自学引导:课前第一要对函数三要素复习,第二要完成对本节课的预习)1、进一步理解函数的三要素;进一步熟悉区间的写法;2、深刻理解函数相等的含义,并会用此解决相关题目.【教学效果】:学习目标的出示,引起学生极大的学习兴趣.对于函数三要素的复习,起到了良好的作用.注意复习时引入一个实际函数是很有利于学生的理解的.二、【自学内容和要求及自学过程】(约10分钟)阅读下列材料,然后回答问题(自学引导:最重要的是我们要知道为什么两个函数相等不是三要素都相同,而是只用定义域和对应法则相等?同学们要尽量在课前就搞清楚)材料一:通过上一节课的学习,我们可以知道,构成一个函数的三要素是:定义域、值域和对应关系,譬如函数2f=的三要x)(x素为定义域:R;对应法则:2xx→;值域:[]∞,+材料二:教材18页函数相等部分内容<1>指出构成函数y=x+1和函数y=t+1的定义域和对应法则;指出二者的值域相同吗?由此你可以得出一个什么结论?<2>由题目<1>,你能理解函数相等的真正含义吗?<1>函数y=x+1的构成要素为:定义域R,对应关系:x→x+1;函数y=t+1的构成要素为:定义域R,对应关系:t→t+1;二者的值域都是R,相同;由此我们可以知道,两个函数若是定义域和对应关系完全相同,则两个函数的值域相同;<2>如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.(引申:若两个函数的值域和对应法则相同,两个函数相等吗?你能说出原因吗?)【教学效果】:对于材料一和材料二,由于教学内容很艰涩,所以要注意领学.领学占主要部分,学生的自学,在这一节要站次要部分.教学中出现一些问题,譬如学生实在是搞不清楚到底为什么三要素相同函数就相等?为什么只要定义域和对应法则相同值域就确定?这些问题的出现都是很正常的,关键是我们要在习题课作辅导,通过练习,让学生逐渐的明白其中的含义.三、【练习与巩固】(约17分钟)阅读教材第18页例2,做练习一、二(约15分钟)练习一:判断下列各组的两个函数是否相同,并说明理由(约15分钟)① y=x-1,x∈R 与y=x-1,x∈N ; ② ②y=4-x 2与y=2-x ·2x +; ③y=1+x 1与u=1+x 1; ④y=x 2与y=x 2x ;⑤y=2|x|与y=⎩⎨⎧<-≥;0,2,0,2x x x x ; ⑥y=f(x)与y=f(u).和对应法则,若两个函数的值域明显不相同,则这两个函数肯定不相等.【教学效果】:这一部分的教学效果不是很理想,学生对于定义域、对应法则、函数的值域,还是很模糊的.练习二:教材第19页练习3(约2分钟)【教学效果】:对于第一个,学生们都能从定义域看出来,两个函数的定义域是不同的.但是对于第二个,学生们还是分的还是很不清楚.要加强训练和锻炼.四、【作业】1、必做题:教材第24页习题1.2第2题(注意:两个函数相等主要是看它们的定义域和对应法则是否相同)2、选做题:教材第24页习题1.2第7题第(2)小题(考察函数图像的画法和对函数的进一步的理解)五、【小结】这节课主要讲了函数相等这一个数学内容,其中着重的复习了函数的定义域值域对应法则的相关知识.本节课的重点是理解定义,运用定义做题.但是由于刚刚的学习了区间的写法,应当注。
对数函数的图像及其性质一、教学目标:知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.二、重点难点重点:对数函数的定义、图象和性质;难点:底数a 对图象的影响.三、教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.四、教学过程(1)情景导学;师:如2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用t =log573021P估算出土文物或古遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P ,通过对应关系t =log573021P ,都有唯一确定的年代t 与它对应,所以,t 是P 的函数.设计意图:由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力(2)问题探究: 对数函数概念一般地,函数y =log a x (a >0,且a ≠1)叫做对数函数,由对数概念可知,对数函数y =log a x 的定义域是(0,+∞),值域是R .探究1:(1)在函数的定义中,为什么要限定a >0且a ≠1.(2)为什么对数函数log a y x (a >0且a ≠1)的定义域是(0,+∞).探究2. 对数函数的图象.借助于计算器或计算机在同一坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求它们之间的关系.(1)y =2x ,y =log 2x ; (2)y =(21)x ,y =log 21x .2.当a >0,a ≠1时,函数y =a x ,y =log a x 的图象之间有什么关系?对数函数图象有以下特征图象的特征(1)图象都在y 轴的右边(2)函数图象都经过(1,0)点(3)从左往右看,当a >1时,图象逐渐上升,当0<a <1时,图象逐渐下降 .(4)当a >1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0. 当0<a <1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0 .对数函数有以下性质0<a <1 a >1图 象定义域 (0,+∞)值域 R性 质 (1)过定点(1,0),即x =1时,y =0(2)在(0,+∞)上是减函数(2)在(0,+∞)上是增函数设计意图:由特殊到一般,培养学生的观察、归纳、概括的能力.例1 求下列函数的定义域:(1)y =log a x 2; (2)y =log a 1-x (a >0,a ≠1)解:(1)由x 2>0,得x ≠0. ∴函数y =log a x 2的定义域是{x |x ≠0}.(2)由题意可得1-x >0,又∵偶次根号下非负,∴x -1>0,即x >1.∴函数y =log a 1-x (a >0,a ≠1)的定义域是{x |x >1}.小结:求函数的定义域的本质是解不等式或不等式组.例2 求证:函数f (x )=lg x x+-11是奇函数.证明:设f (x )=lg x x +-11,由xx +-11>0,得x ∈(-1,1),即函数的定义域为(-1,1), 又对于定义域(-1,1)内的任意的x ,都有f (-x )=lgx x -+11=-lg x x +-11=-f (x ), 所以函数y =lg xx +-11是奇函数. 注意:函数奇偶性的判定不能只根据表面形式加以判定,而必须进行严格的演算才能得出正确的结论.例3 溶液酸碱度的测量.溶液酸碱度是通过pH 刻画的.pH 的计算公式为pH=-lg [H +],其中[H +]表示溶液中氢离子的浓度,单位是摩尔/升.(1)根据对数函数性质及上述pH 的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯净水中氢离子的浓度为[H +]=10-7摩尔/升,计算纯净水的pH.解:根据对数的运算性质,有pH=-lg [H +]=lg [H +]-1=lg ]H [1+.在(0,+∞)上,随着[H +]的增大,]H [1+减小,相应地,lg ]H [1+也减小,即pH 减小.所以,随着[H +]的增大,pH 减小,即溶液中氢离子的浓度越大,溶液的酸度就越小.(2)当[H +]=10-7时,pH=-lg10-7,所以纯净水的pH 是7. 事实上,食品监督监测部门检测纯净水的质量时,需要检测很多项目,pH 的检测只是其中一项.国家标准规定,饮用纯净水的pH 应该在5.0~7.0之间.五、课堂小结1.对数函数的定义.2.对数函数的图象和性质.六、课后作业课时练与测七、教学反思备选例题;例1 求函数)416(log )1(x x y -=+的定义域.【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x .∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象.【解析】函数的定义域为{x |x ≠0,x ∈R }.函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x x x , 其图象如图所示(其特征是关于y 轴对称).。
《函数的概念及其表示》单元教学设计一、内容及其解析(一)内容1 函数的三个要素:定义域,值域,对应关系2 “对应说”的函数概念3 函数的表示法:解析法,图象法,表格法4 分段函数的概念及表示(二)内容解析1. 内容本质:两个数集之间建立对应关系(单射)是函数概念的本质,用集合语言和对应关系刻画函数概念是数学抽象素养得到提升的重要标志。
用解析式、图象与表格等不同方法表示函数,是进一步理解函数、认识函数对应关系f的重要过程,也是数学思维的重要特征。
2 蕴含的思想方法运用函数观察、研究事物的运动与变化及其规律是一种重要的思想,因此,函数思想自然是函数概念与表示教学中最重要的数学思想;在函数的表示中,函数不同表示法之间的转化渗透着数形结合的思想;同时,函数与方程、不等式之间的相互转化,蕴含着等价转化的思想。
3 知识知识的上下位关系:函数是数学的核心概念,是刻画客观世界中运动变化规律的重要数学模型。
在高中阶段,函数不仅贯穿数学学习的始终,而且是学习方程、不等式、数列、导数等内容的工具和基础,在物理、化学、生物等其它领域也有广泛的应用;在高等数学和实际应用中,函数是基本数学对象,是数学建模的重要模型。
4 育人价值:函数所蕴含的集合间的“对应”是一种重要的数学思想与方法,这种思想方法帮助人们在不同事物之间建立联系,并运用这种联系去研究、发现事物变化的规律,掌握事物本身的性质,这对于提高人们的思想认识,指导日常行为有着重要的意义与价值,函数的表示是数学表示的典范,除帮助人们提高抽象能力外,其本质也是建立具体函数到数学符号之间的对应,可以帮助学生进一步体会函数思想的本质,发展学生的数学抽象与直观想象素养.5 教学重点:实例归纳概括函数的基本特征,建立用集合与对应的语言刻画概念,选择适当的方法表示函数二、目标及其解析(一)单元目标1在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。
教案数学高中函数图像
教学重点和难点:函数的图像概念和性质;绘制一元二次函数、绝对值函数、指数函数、对数函数的图像。
教学准备:黑板、彩色粉笔、教材、教学PPT。
教学过程:
一、导入
教师通过引导学生回顾函数的概念和性质,引出本节课的主题——函数的图像。
二、讲解
1. 函数的图像概念和性质:函数的图像是由函数的自变量和因变量按照一定规律对应所得到的图形。
图像的性质包括对称性、增减性、奇偶性等。
2. 绘制一元二次函数的图像:通过讲解一元二次函数的一般式和顶点式,并结合实例进行绘图。
3. 绘制绝对值函数、指数函数、对数函数的图像:讲解这些特殊函数的性质和图像特点,引导学生绘制图像。
三、练习
老师布置练习题,让学生通过计算和绘图来加深对函数图像的理解和掌握。
四、拓展
引导学生思考如何利用函数图像解决实际问题,例如通过函数图像分析函数的性质、求解方程等。
五、总结
总结本节课的重点内容,强调函数图像的重要性和应用价值。
六、作业
布置作业:练习册上的相关题目,让学生巩固和深化所学内容。
教学反思
通过本节课的教学,学生能够掌握函数图像的基本原理和方法,并能够独立绘制一些常见函数的图像。
同时,通过练习和实例分析,学生能够运用函数图像解决实际问题,提高了他们的数学建模能力。
2.2.2 对数函数的图像及其性质(学案)一、学习目标1.理解对数函数的概念,会求对数函数的定义域.(重点、难点) 2.能画出具体对数函数的图象,并能根据对数函数的图象说明对数函数的性质.(重点)二、自主学习教材整理1 对数函数的概念阅读教材P 70前两个自然段,完成下列问题.对数函数:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞).阅读教材P 70第三自然段至P 71“例7”以上部分,完成下列问题.阅读教材P 73至“练习”以上的部分,完成下列问题.反函数:对数函数y =log a x 与指数函数y =a x (a >0,且a ≠1)互为反函数. 三、合作探究例1. (1)下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =l n x ;⑤y =log x (x +2);⑥y =2log 4x ;⑦y =log 2(x +1).A .1个B .2个C .3个D .4个(2)若对数函数f (x )的图象过点(4,-2),则f (8)=________.【自主解答】 (1)由于①中自变量出现在底数上,∴①不是对数函数;由于②中底数a ∈R 不能保证a >0,且a ≠1,∴②不是对数函数;由于⑤⑦的真数分别为(x +2),(x +1),∴⑤⑦也不是对数函数;由于⑥中log 4x 的系数为2,∴⑥也不是对数函数;只有③④符合对数函数的定义.(2)由题意设f (x )=log a x ,则f (4)=log a 4=-2,所以a -2=4,故a =12,即f (x )=log 12x ,所以f (8)=log 128=-3. 【答案】 (1)B (2)-3归纳总结:1.判断一个函数是对数函数必须是形如y =log a x (a >0且a ≠1)的形式,即必须满足以下条件:(1)底数a >0,且a ≠1; (2)自变量x 在真数的位置上,且x >0; (3)在解析式y =log a x 中,log a x 的系数必须是1,真数必须是x .2.对数函数的解析式中只有一个参数a ,故用待定系数法求对数函数的解析式时只需一个条件即可求出.例2. (1)函数f (x )=1log 12x +1的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2) D.⎝⎛⎭⎫0,12(2)函数f (x )=12-x+ln (x +1)的定义域为____________________________. (3)函数f (x )=log (2x -1)(-4x +8)的定义域为___________________________.【自主解答】 (1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2),故选B . (2)函数式若有意义,需满足⎩⎪⎨⎪⎧x +1>02-x ≥02-x ≠0即⎩⎪⎨⎪⎧x >-1x <2,解得-1<x <2,故函数的定义域为(-1,2).(3)由题意得⎩⎪⎨⎪⎧-4x +8>02x -1>02x -1≠1,解得⎩⎨⎧x <2x >12x ≠1.故函数y =log (2x -1)(-4x +8)的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1. 【答案】 (1)B (2)(-1,2) (3)⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1 归纳总结:求与对数函数有关的函数的定义域问题应遵循的原则为:1要保证根式有意义;要保证分母不为0;要保证对数式有意义,即若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.例3. (1)已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )(2)作出函数y =|log 2(x +1)|+2的图象.【自主解答】 (1)∵函数y =a x 与y =log a x 互为反函数,∴它们的图象关于直线y =x 对称.再由函数y =a x 的图象过(0,1),y =log a x 的图象过(1,0),排除选项A ,B ,从C ,D 选项看,y =log a x 递减,即0<a <1,故C 正确.【答案】 C(2)第一步:作y =log 2x 的图象,如图(1)所示.(1) (2)第二步:将y =log 2x 的图象沿x 轴向左平移1个单位长度,得y =log 2(x +1)的图象,如图(2)所示.第三步:将y =log 2(x +1)的图象在x 轴下方的部分作关于x 轴的对称变换,得y =|log 2(x+1)|的图象,如图(3)所示.第四步:将y =|log 2(x +1)|的图象沿y 轴向上平移2个单位长度,即得到所求的函数图象,如图(4)所示.(3) (4)归纳总结:函数图象的变换规律 (1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.四、学以致用1.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________.【解析】 由题意可知⎩⎪⎨⎪⎧a 2-2a -8=0a +1>0a +1≠1,解得a =4. 【答案】 42.函数f (x )=3-x +lg (x +1)的定义域为( )A .[-1,3)B .(-1,3)C .(-1,3]D .[-1,3]【解析】 根据题意,得⎩⎪⎨⎪⎧3-x ≥0x +1>0,解得-1<x ≤3,∴f (x )的定义域为(-1,3].故选C. 【答案】 C 3.函数y =log 32x -的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1 【解析】 要使函数y =log 32x -有意义,有⎩⎪⎨⎪⎧2x -1>0log 32x -,解得x ≥1,所以函数f (x )的定义域是[1,+∞).故选A. 【答案】 A 4.函数y =a -x 与y =log a (-x )的图象可能是( )【解析】∵在y =log a (-x )中,-x >0,∴x <0,∴图象只能在y 轴的左侧,故排除A ,D ;当a >1时,y =log a (-x )是减函数,y =a -x =⎝⎛⎭⎫1a x 是减函数,故排除B ;当0<a <1时,y =log a (-x )是增函数,y =a -x =⎝⎛⎭⎫1a x 是增函数,∴C 满足条件,故选C. 【答案】 C五、自主小测1.已知函数f (x )=11-x的定义域为M ,g(x )=ln (1+x )的定义域为N ,则M∩N =( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅ 2.若f (x )是对数函数,且f (2)=2,则f (x )=________.3.函数f (x )=log a (2x +1)+2(a >0且a ≠1)必过定点________.4.已知函数y =f (x )与g(x )=log 3x (x >0)互为反函数,则f (-2)=________.5.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,利用图象判断是否有满足f (a )>f (2)的a 值.参考答案1.【解析】 由题意得M ={x |x <1},N ={x |x >-1},则M ∩N ={x |-1<x <1}.【答案】 C2.【解析】 设f (x )=log a x (a >0,且a ≠1),则f (2)=log a 2=2,即a =2,所以f (x )=log 2x .【答案】 log 2x3.【解析】 令2x +1=1,得x =0,此时f (x )=2,故函数f (x )=log a (2x +1)+2(a >0且a ≠1)必过定点(0,2).【答案】 (0,2)4.【解析】 ∵函数y =f (x )与g (x )=log 3x (x >0)互为反函数,∴f (x )=3x ,则f (-2)=3-2=19. 【答案】 195.【解】 (1)作出函数y =log 3x 的图象如图所示:(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由如图所示的图象知:当0<a <2时,恒有f (a )<f (2).故当0<a <2时,不存在满足f (a )>f (2)的a 值.。
第2课时函数的最大(小)值课程标准(1)理解函数的最大值和最小值的概念及其几何意义.(2)能借助函数的图象和单调性,求一些简单函数的最值.(3)能利用函数的最值解决有关的实际应用问题.新知初探·课前预习——突出基础性教材要点要点函数的最大值与最小值助学批注批注❶函数的最值与值域的关系:(1)函数的值域一定存在,函数的最值不一定存在.(2)若函数的最值存在,则最值一定是值域中的元素.(3)若函数的值域是开区间,则函数无最值;若函数的值域是闭区间,则闭区间的端点值就是函数的最值.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何函数都有最大(小)值.( )(2)如果一个函数有最大值,那么最大值是唯一的.( )(3)函数f(x)取最大值时,对应的x可能有无限多个.( )(4)如果f(x)的最大值、最小值分别为M,m,则f(x)的值域为[m,M].( )2.函数f(x)=1x在[1,+∞)上( )A.有最大值无最小值B.有最小值无最大值C.有最大值也有最小值D.无最大值也无最小值3.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5B.-3,5C.1,5D.-5,34.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是________.题型探究·课堂解透——强化创新性题型 1 利用函数的图象求函数的最值例1 已知函数f(x)={x2−x,0≤x≤22x−1,x>2,求函数f(x)的最大值、最小值.方法归纳图象法求最值的一般步骤巩固训练1 若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为( )A.2B.1C.-1D.无最大值题型 2 利用函数的单调性求最值.例2 已知函数f(x)=2x+1x+1(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.方法归纳函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.在区间[2,6]上的最大值和最小值.巩固训练2 求函数y=2x−1题型 3 求二次函数的最值例3 (1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值.(2)求函数f(x)=x2-2x+2在区间[t,t+1]上的最小值g(t).(3)已知函数f(x)=x2-ax+1,求f(x)在[0,1]上的最大值.方法归纳求二次函数最值问题的解题策略一般都是讨论函数的定义域与对称轴的位置关系,往往分三种情况:(1)定义域在对称轴左侧;(2)对称轴在定义域内;(3)定义域在对称轴右侧.在讨论时可结合函数图象,便于分析、理解.巩固训练3 已知二次函数f(x)=-x2+2ax-a在区间[0,1]上有最大值2,求实数a的值.第2课时 函数的最大(小)值新知初探·课前预习[教材要点]要点≤ ≥ f (x 0)=M 纵坐标 纵坐标[基础自测]1.答案:(1)× (2)√ (3)√ (4)×2.解析:函数f (x )=1x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )单调递减,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.答案:A3.解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.答案:B4.解析:由图象知点(1,2)是最高点,点(-2,-1)是最低点, ∴y max =2,y min =-1. 答案:-1,2题型探究·课堂解透例1 解析:作出f (x )的图象如图:由图象可知,当x =2时,f (x )取最大值2;当x =12时,f (x )取最小值-14.所以f (x )的最大值为2,最小值为-14.巩固训练1 解析:在同一坐标系中,作出函数的图象(如图中的实线部分), 则f (x )max =f (1)=1. 答案:B例2 解析:(1)f (x )在(-1,+∞)上单调递增,证明如下:任取-1<x 1<x 2, 则f (x 1)-f (x 2)=2x 1+1x 1+1−2x 2+1x 2+1=x 1−x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2), 所以f (x )在(-1,+∞)上单调递增. (2)由(1)知f (x )在[2,4]上单调递增, 所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.巩固训练2 解析:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x1−1−2x 2−1=2(x 2−x 1)(x1−1)(x 2−1)由于2<x 1<x 2<6, 得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,f (x 1)>f (x 2) 所以,函数y =2x−1在区间[2,6]上单调递减.x =2时取最大值,最大值是2,在x =6时取最小值,最小值为25.例3 解析:(1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2).图1∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)当t +1<1,即t <0时,函数图象如图1所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1; 当t >1时,函数图象如图2所示,图2图3函数f (x )在区间[t ,t +1]上为增函数,所以最小值为g (t )=f (t )=t 2-2t +2.当t ≤1≤t +1,即0≤t ≤1时, 函数图象如图3所示,最小值为g (t )=f (1)=1,综上所述,g (t )={t 2+1,t <01,0≤t ≤1t 2−2t +2,t >1.(3)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2>12,即a >1时,f (x )的最大值为f (0)=1. 综上f (x )max ={2−a ,a ≤11,a >1.巩固训练3 解析:f(x)=-(x-a)2+a2-a,对称轴为x=a.(1)当a<0时,f(x)在[0,1]上单调递减,∴f(0)=2,即a=-2.(2)当a>1时,f(x)在[0,1]上单调递增,∴f(1)=2,即a=3.(3)当0≤a≤1时,f(x)在[0,a]上单调递增,在[a,1]上单调递减, ∴f(a)=2,即a2-a=2,解得a=2或a=-1,与0≤a≤1矛盾.综上a=-2或a=3.。