PN结
- 格式:ppt
- 大小:1.31 MB
- 文档页数:51
pn结的工作原理一、什么是pn结1.定义pn结是一种由P型半导体和N型半导体组成的二极管结构。
P型半导体具有正电荷的空穴载流子,N型半导体具有负电荷的电子载流子。
两者结合后,形成了本征层,而本征层呈电荷中性。
2.结构pn结由两片半导体材料组成,P型半导体和N型半导体通过特殊的工艺结合在一起。
在结合的区域,形成了本征层,同时还有一个称为空间电荷区的区域。
二、pn结的原理1.形成势垒当P型半导体和N型半导体结合时,由于P型半导体和N型半导体中载流子的扩散运动,使得少数载流子相对集中在交界处。
同时,在交界处由于少数载流子的扩散,会形成势垒,即电子从N型半导体向P型半导体扩散,空穴从P型半导体向N型半导体扩散。
这种电子和空穴的扩散使得按钮状端面带有外场,形成空间电荷区。
2.势垒的作用势垒在pn结中起到重要的作用。
2.1 阻止电流势垒可以阻止电子和空穴的进一步扩散,使得载流子的浓度达到一种动态平衡。
2.2 产生电场势垒中存在电场,该电场方向从N型半导体指向P型半导体。
这个电场会使得在内部电场力的作用下,N型半导体的电子向P型半导体靠拢,P型半导体的空穴向N型半导体靠拢。
这种聚集的现象形成了电势差,也就是势垒。
2.3 形成平衡当势垒形成时,形成的电场会产生一个与扩散电流方向相反的漂移电流。
当扩散电流和漂移电流平衡时,达到动态稳定状态,此时的电流为零。
3.正向偏置当外界电压为正向时,即P端为正,N端为负,这种情况下势垒会减小,电子和空穴有利于向势垒方向扩散,增大电流。
正向偏置下的pn结相当于一个导通的开关。
4.反向偏置当外界电压为反向时,即P端为负,N端为正,势垒会增大,阻止电子和空穴的扩散。
反向偏置下的pn结相当于一个导断的开关。
三、pn结的应用1.二极管pn结最基本的应用就是二极管。
二极管可以实现对电流的单向导通,广泛应用于整流电路和信号调理电路等。
2.太阳能电池太阳能电池是一种将光能转化为电能的器件。
它利用了pn结的特性,在光的作用下产生光生电压,从而产生电能。
pn结的通俗理解
PN结是半导体器件中最常见的一种,它由P型半导体和N型半导体组成。
这两种半导体材料的电子、空穴浓度和载流子迁移率在化学成分和制备过程中的控制有所不同。
P型半导体中空穴浓度较高,而N 型半导体中电子浓度较高。
PN结的结构使得P区中的空穴通过结往N区扩散,N区中的电子同样也会朝着P区扩散,这样就产生了电子和空穴的重新组合,形成少数载流子。
这种少量的再结合将会引起两种不同载流子荷电状态的空间电荷区的形成——空间电荷区的电荷密度与电子密度、空穴浓度相关,使PN结中形成了正负两极,形成了电场,形成了"势垒"。
这个"势垒"将阻碍载流子在PN结中的流动,直到足够的外加电压克服"势垒"的高度为止,载流子才能在PN结中流动。
因此,PN结具有单向导电性,一端的电压为正,另一端为负,而与此同时,常常会在PN结正向的一端形成高于其他部位的电压阈值,就像一道大门,只有打开了大门,电流才能流过。
从这个角度上说,PN结就像是一种电子集散地,只有消耗能量,才能释放出能量,产生效益。
PN结在半导体器件中起着重要的作用,比如说LED(发光二极管)、太阳能电池等等都采用了PN结的原理。
PN结也是各种半导体器件如二极管、三极管等的基础。
pn结的形成原理
1 什么是 pn 结
PN 结是一种构造于两种不同材料之间的半导体器件。
PN结由一种掺有三价杂质的半导体(如硼掺入硅)和一种掺有五价杂质的半导体(如磷掺入硅)组成。
当它们被熔合在一起时,掺杂的材料会互相扩散,形成一个电势降和电场。
2 PN 结的形成原理
半导体中的掺杂,可以有效地改变其导电性质。
在半导体中,掺
入三价杂质如硼可以形成电子空位,形成类似于p型材料的区域,称
为p区;掺入五价杂质如磷可以形成多余的电子,形成n型材料的区域,称为n区。
当一个p区和一个n区接触,原来分布于两个区域中的自由电子
和空穴会相互扩散,形成一个电势降和电场。
电子从n区移动到p区,空穴从p区移动到n区,大部分通过复合相互消失,少部分在pn结中
留下尘埃,产生电流。
PN结具有导电性和单向性。
当PN结处于正向电压时,如p区为正电,n区为负电,自由电子从n区向p区扩散,空穴从p区向n区扩散,使得PN结的电流变大,这称为正向电压。
如果PN结处于反向电压时,如p区为负电,n区为正电,此时自
由电子受到PN结场的吸引,移向n区,空穴移向p区。
由于电子与空
穴相互扩散后,在受到PN结场的阻抗下变得微不足道,所以反向电压
条件下,PN结不导电,这称为反向电压。
3 PN 结的应用
PN结是半导体器件中最基本的构件之一,它有许多应用,例如用
于制造二极管、晶体管和场效应晶体管等器件。
PN结还可以作为太阳
电池和CMOS象元等集成电路器件中的基本单元。
在现代光电子技术中,PN结也常被用作光检测器或光电转换器件,将光子能量转换成电子能量。
什么是PN结和二极管PN结是半导体物理学中的一个基本概念,它是由P型半导体和N型半导体接触在一起形成的结构。
在P型半导体中,空穴是多数载流子,而在N型半导体中,电子是多数载流子。
当P型和N型半导体接触时,N型半导体中的电子会向P型半导体中的空穴移动,形成大量的电子-空穴对,这些电子-空穴对称为载流子。
由于载流子的数量大大超过了原来的数量,所以形成了电荷不平衡,产生了电场,这个电场阻止了电子和空穴的进一步扩散,最终达到了一种电荷分布的平衡状态,形成了PN结。
二极管是一种基于PN结的半导体器件,它具有单向导电性。
当二极管的正极连接到高电位,负极连接到低电位时,PN结处于正向偏置状态,此时电子和空穴会大量移动,形成电流,二极管导通。
而当正极连接到低电位,负极连接到高电位时,PN结处于反向偏置状态,此时电场会阻止电子和空穴的移动,二极管截止,不形成电流。
二极管广泛应用于电子电路中,如整流、调制、稳压、信号检测等。
它们是现代电子技术中不可或缺的基本元件之一。
习题及方法:1.习题:PN结的形成过程中,为什么会产生电场?解题方法:回顾PN结的形成过程,分析P型和N型半导体接触时电荷不平衡的原因,以及电场的作用。
答案:PN结形成过程中,由于P型半导体中的空穴和N型半导体中的电子大量移动,形成了电子-空穴对。
这些电子-空穴对使得PN结区域内的电荷分布不平衡,产生了电场。
电场的作用是阻止电子和空穴的进一步扩散,最终达到电荷分布的平衡状态。
2.习题:二极管在正向偏置和反向偏置状态下,分别会发生什么现象?解题方法:分析二极管的正向偏置和反向偏置过程,以及对应的电荷分布和电流情况。
答案:在正向偏置状态下,二极管的正极连接到高电位,负极连接到低电位。
此时,PN结中的电场减弱,电子和空穴大量移动,形成电流,二极管导通。
在反向偏置状态下,二极管的正极连接到低电位,负极连接到高电位。
此时,PN结中的电场增强,阻止了电子和空穴的移动,二极管截止,不形成电流。
PN结1.PN结的形成(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。
但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。
P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。
这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。
图(1)浓度差使载流子发生扩散运动(2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。
(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。
图(2)内电场形成(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N 区的少子一旦靠近PN 结,便在内电场的作用下漂移到对方,使空间电荷区变窄。
(5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。
当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡 s。
2.PN结的单向导电性(1)外加正向电压(正偏)在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。
结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。
(2)外加反向电压(反偏)在外电场作用下,多子将背离PN结移动,结果使空间电荷区变宽,内电场被增强,有利于少子的漂移而不利于多子的扩散,漂移运动起主要作用。
PN 结PN结的形成在一块N型(或P型)半导体上,掺入三价(或五价)的杂质元素,使其产生一个P型(或N型)半导体区间。
这时,在N区和P区之间的交界面附近将形成一个极其薄的空间电荷层,称为PN结。
PN结形成原理示意图交界面两侧产生多子浓度的极大差异,此差异会引起交界面两侧多子相互扩散到达对方,并与对方的多子复合。
经多子扩散后所形成的图片如下:P区靠近交界面会形成一个负离子薄层,N区靠近交界面处会形成一个正离子薄层。
交界面两侧这些薄层称为空间电荷区。
由于多子扩散,这一区域缺少载流子,故也称耗尽层。
但并不是没有载流子,只不过是它相对于中性区而言,载流子浓度很小,小的可以忽略。
在两种半导体之间存在电位壁垒,对多子向另一侧扩散起阻碍作用,称为势垒或位垒。
扩散电流和漂移电流的形成接近PN结的少子受内电场的作用而被加速,向另一侧漂移,形成漂移电流漂移电流和扩散电流大小相等,方向相反,达到动态平衡少数能量大的多子克服内电场产生的电场力扩散到另一侧,形成扩散电流不对称的PN结当N区和P区的掺杂浓度相等时,两侧空间电荷区的宽度相等。
当P区和N 区的掺杂浓度不相等时,掺杂浓度高的一侧离子电荷密度大,空间电荷区的宽度较窄;掺杂浓度高的一侧,离子电荷密度低,空间电荷区的宽度较宽。
PN结的正偏和反偏P型半导体接负极,N型半导体接正极,PN结反偏。
反偏时,外电场和内电场方向相同,外电场加强了内电场的势垒作用,势垒增加,有利于少子漂移,不利于多子扩散。
所以PN结反偏时,PN结变宽,呈现为高电阻,处于反向截止状态。
P型接正极,N型接负极时,PN结正偏。
此时,外电场和内电场的方向相反,外电场削弱了内电场,势垒下降,势垒下降有利于多子扩散,使大量多子扩散通过PN结,形成大的正向电流,PN结呈现为低电阻,处于导通状态。
一部分多子在扩散过程中,与空间电荷区的离子中和,使PN结变窄。
NPN晶体管中应用到的PN结原理在发射区内,掺杂浓度较高,含有更多的多子。
PN结介绍一.什么是PN结采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。
PN结具有单向导电性。
一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN结有同质结和异质结两种。
用同一种半导体材料制成的PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。
制造异质结通常采用外延生长法。
P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴;N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。
二、PN结的单向导电性PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。
如果外加电压使:PN结P区的电位高于N区的电位称为加正向电压,简称正偏;PN结P区的电位低于N区的电位称为加反向电压,简称反偏。
符号:电路中的画法:三、PN结的击穿特性当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示,PN结的反向击穿有雪崩击穿和齐纳击穿两种。
1、雪崩击穿阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。
雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。
PN结PN结(PN junction)。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。
PN结具有单向导电性。
P是positive的缩写,N是negative 的缩写,表明正荷子与负荷子起作用的特点。
一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN结有同质结和异质结两种。
用同一种半导体材料制成的 PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
PN结(PN junction)制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。
制造异质结通常采用外延生长法。
P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴;N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。
在P型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。
在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。
N 型半导体中有许多可动的负电子和固定的正离子。
当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。
空穴和电子相遇而复合,载流子消失。
因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区。
P 型半导体一边的空间电荷是负离子,N 型半导体一边的空间电荷是正离子。
正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。
在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。
如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。
pn结单向导电性原理pn结是指在半导体材料中,通过掺杂使得p型半导体和n型半导体相接触形成的结。
在这种结构中,由于p型半导体和n型半导体的电子浓度和载流子迁移率不同,因此在结的两侧会形成电势差,从而产生一种单向导电性。
这种单向导电性在现代电子学中有着广泛的应用,例如二极管、光电二极管、太阳能电池等器件都是基于pn结的单向导电性原理工作的。
首先,我们来看一下pn结的形成原理。
在p型半导体中,掺杂的杂质原子会提供少量的自由电子,而在n型半导体中,掺杂的杂质原子会提供少量的空穴。
当p型半导体和n型半导体相接触形成结的时候,由于电子和空穴的扩散作用,p型半导体的自由电子会向n型半导体扩散,而n型半导体的空穴会向p型半导体扩散。
这样,在结的两侧就会形成一个电场,这个电场会阻碍进一步的扩散,最终形成一个动态的平衡状态。
在这个平衡状态下,结的两侧会形成一个内建电场,这个内建电场就是pn结的本质。
在这个内建电场的作用下,当外加电压为正向偏置时,外加电场会和内建电场相抵消,使得电子和空穴可以自由通过结,此时pn结表现出低电阻,具有导电性。
而当外加电压为反向偏置时,外加电场会和内建电场相叠加,使得电子和空穴受到电场的阻碍,无法通过结,此时pn结表现出高电阻,不具有导电性。
这种特性使得pn结在电子学中具有单向导电性,可以作为整流器、开关等器件的基础。
除了在电子学中的应用,pn结的单向导电性还被广泛应用在光电器件中。
例如光电二极管就是利用pn结的单向导电性原理工作的。
当光线照射在pn结上时,光子的能量会激发电子和空穴,使得它们克服内建电场的作用,通过pn结并产生电流。
这种原理使得光电二极管可以将光信号转换为电信号,具有光电转换的功能。
此外,太阳能电池也是基于pn结的单向导电性原理工作的。
当太阳能电池受到光照时,光子的能量会激发pn结中的电子和空穴,使得它们产生电流。
这种原理使得太阳能电池可以将太阳能转换为电能,具有光电转换的功能。
PN结PN结(PN junction)采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。
PN结具有单向导电性。
P是positive的缩写,N是negative禁带宽度(Band gap)是指一个能带宽度(单位是电子伏特(ev)).固体中电子的能量是不可以连续取值的,而是一些不连续的能带。
要导电就要有自由电子存在。
自由电子存在的能带称为导带(能导电)。
被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。
锗的禁带宽度为0.66ev;硅的禁带宽度为1.12ev;砷化镓的禁带宽度为1.46ev。
禁带非常窄就成为金属了,反之则成为绝缘体。
半导体的反向耐压,正向压降都和禁带宽度有关。
的缩写,表明正荷子与负荷子起作用的特点。
一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN结有同质结和异质结两种。
用同一种半导体材料制成的PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。
制造异质结通常采用外延生长法。
P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴;N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。
在 P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。
在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。
N 型半导体中有许多可动的负电子和固定的正离子。
当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。
pn结作用
PN结作用
PN结是半导体器件中最基本的结构之一,由P型半导体和N型半导体组成。
PN结可以用于多种电子器件,如二极管、晶体管、场效应晶体管、太阳能电池等。
PN结的主要作用是将P型半导体和N型半导体连接起来,形成一个电场,使电子从N型半导体向P型半导体移动,空穴则从P型半导体向N型半导体移动,从而形成电流。
当PN结加上正向电压时,电子流向P型半导体,空穴流向N型半导体,电流流过PN结,此时PN结为导通状态;而当PN结加上反向电压时,由于反向电压的作用,电子向N型半导体移动受到阻碍,空穴向P型半导体移动也受到阻碍,此时PN结为截止状态。
PN结的导通状态和截止状态是PN结的两种基本工作状态,它们决定了PN结的应用范围。
在二极管中,PN结只能工作在导通状态,因为二极管只允许电流单向通过;而在晶体管和场效应晶体管中,PN结可以工作在导通状态和截止状态,因为晶体管和场效应晶体管可以实现电流的放大和控制。
除了在电子器件中的应用,PN结还可以用于太阳能电池。
太阳能电池利用PN结的光敏特性,将光能转换成电能。
当光线照射在PN 结上时,PN结产生电势差,电子被激发并从N型半导体向P型半
导体移动,形成电流。
太阳能电池的效率取决于PN结的材料和结构,目前研究的重点是提高太阳能电池的效率和降低成本。
PN结是半导体器件中最基本的结构之一,它的导通状态和截止状态决定了PN结的应用范围。
在电子器件中,PN结被广泛应用于二极管、晶体管、场效应晶体管等器件中;在太阳能电池中,PN结可以将光能转换成电能。