PN结
- 格式:ppt
- 大小:940.50 KB
- 文档页数:26
PN结及其特性详细介绍1. PN结的形成在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。
此时将在N型半导体和P型半导体的结合面上形成如下物理过程:扩散到对方的载流子在P区和N区的交界处附近被相互中和掉,使P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。
这样在两种半导体交界处逐渐形成由正、负离子组成的空间电荷区〔耗尽层〕。
由于P区一侧带负电,N区一侧带正电,所以出现了方向由N区指向P 区的内电场PN结的形成当扩散和漂移运动到达平衡后,空间电荷区的宽度和内电场电位就相对稳定下来。
此时,有多少个多子扩散到对方,就有多少个少子从对方飘移过来,二者产生的电流大小相等,方向相反。
因此,在相对平衡时,流过PN结的电流为0。
对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。
在空间电荷区,由于缺少多子,所以也称耗尽层。
由于耗尽层的存在,PN结的电阻很大。
PN结的形成过程中的两种运动:多数载流子扩散少数载流子飘移PN结的形成过程〔动画〕2. PN结的单向导电性PN结具有单向导电性,假设外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。
如果外加电压使PN结中:P区的电位高于N区的电位,称为加正向电压,简称正偏;P区的电位低于N区的电位,称为加反向电压,简称反偏。
(1) PN结加正向电压时的导电情况PN结加正向电压时的导电情况如下图。
外加的正向电压有一局部降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。
于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。
扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。
PN结加正向电压时的导电情况(2) PN结加反向电压时的导电情况外加的反向电压有一局部降落在PN结区,方向与PN结内电场方向一样,加强了内电场。
内电场对多子扩散运动的阻碍增强,扩散电流大大减小。
pn结的通俗理解
PN结是半导体器件中最常见的一种,它由P型半导体和N型半导体组成。
这两种半导体材料的电子、空穴浓度和载流子迁移率在化学成分和制备过程中的控制有所不同。
P型半导体中空穴浓度较高,而N 型半导体中电子浓度较高。
PN结的结构使得P区中的空穴通过结往N区扩散,N区中的电子同样也会朝着P区扩散,这样就产生了电子和空穴的重新组合,形成少数载流子。
这种少量的再结合将会引起两种不同载流子荷电状态的空间电荷区的形成——空间电荷区的电荷密度与电子密度、空穴浓度相关,使PN结中形成了正负两极,形成了电场,形成了"势垒"。
这个"势垒"将阻碍载流子在PN结中的流动,直到足够的外加电压克服"势垒"的高度为止,载流子才能在PN结中流动。
因此,PN结具有单向导电性,一端的电压为正,另一端为负,而与此同时,常常会在PN结正向的一端形成高于其他部位的电压阈值,就像一道大门,只有打开了大门,电流才能流过。
从这个角度上说,PN结就像是一种电子集散地,只有消耗能量,才能释放出能量,产生效益。
PN结在半导体器件中起着重要的作用,比如说LED(发光二极管)、太阳能电池等等都采用了PN结的原理。
PN结也是各种半导体器件如二极管、三极管等的基础。
PN 结PN结的形成在一块N型(或P型)半导体上,掺入三价(或五价)的杂质元素,使其产生一个P型(或N型)半导体区间。
这时,在N区和P区之间的交界面附近将形成一个极其薄的空间电荷层,称为PN结。
PN结形成原理示意图交界面两侧产生多子浓度的极大差异,此差异会引起交界面两侧多子相互扩散到达对方,并与对方的多子复合。
经多子扩散后所形成的图片如下:P区靠近交界面会形成一个负离子薄层,N区靠近交界面处会形成一个正离子薄层。
交界面两侧这些薄层称为空间电荷区。
由于多子扩散,这一区域缺少载流子,故也称耗尽层。
但并不是没有载流子,只不过是它相对于中性区而言,载流子浓度很小,小的可以忽略。
在两种半导体之间存在电位壁垒,对多子向另一侧扩散起阻碍作用,称为势垒或位垒。
扩散电流和漂移电流的形成接近PN结的少子受内电场的作用而被加速,向另一侧漂移,形成漂移电流漂移电流和扩散电流大小相等,方向相反,达到动态平衡少数能量大的多子克服内电场产生的电场力扩散到另一侧,形成扩散电流不对称的PN结当N区和P区的掺杂浓度相等时,两侧空间电荷区的宽度相等。
当P区和N 区的掺杂浓度不相等时,掺杂浓度高的一侧离子电荷密度大,空间电荷区的宽度较窄;掺杂浓度高的一侧,离子电荷密度低,空间电荷区的宽度较宽。
PN结的正偏和反偏P型半导体接负极,N型半导体接正极,PN结反偏。
反偏时,外电场和内电场方向相同,外电场加强了内电场的势垒作用,势垒增加,有利于少子漂移,不利于多子扩散。
所以PN结反偏时,PN结变宽,呈现为高电阻,处于反向截止状态。
P型接正极,N型接负极时,PN结正偏。
此时,外电场和内电场的方向相反,外电场削弱了内电场,势垒下降,势垒下降有利于多子扩散,使大量多子扩散通过PN结,形成大的正向电流,PN结呈现为低电阻,处于导通状态。
一部分多子在扩散过程中,与空间电荷区的离子中和,使PN结变窄。
NPN晶体管中应用到的PN结原理在发射区内,掺杂浓度较高,含有更多的多子。
1. PN 结:由P 型半导体和N 型半导体实现冶金学接触(原子级接触)所形成的结构。
任何两种物质(绝缘体除外)的冶金学接触都称为结(junction ),W 时也叫做接触(contact )«2・PN 结是几乎所有半导体器件的基本单元。
除金属一半导体接触器件外,所有结型器件都 由PN 结构成匚3. 按照杂质浓度分布,PN 结分为突变结和线性缓变结.内建电场PFN%空间电荷区4. 空间电荷区:PN 结中,电子由N 区转移至P 区,空穴由P 区转移至N 区。
电子和空穴 的转移分别在N 区和P 区留下了未被补偿的施主藹子和受主离子。
它们是荷电的、固沱不 动的,称为空间电荷。
空间电荷存在的区域称为空间电荷区。
线性缓变结杂质分布XP 区留下N 区留下N ;,形成空间电荷区。
空间电荷 区产生的电场称为内建电场,方向为由N 区指向P 区。
电场的 存在会引起漂移电流,方向为由N 区指向P 区。
扩散电流,P 区—N 区 漂移电流:P 区—N 区达到平衡时,净电流=0。
于是就形成一个稳定的有一定 宽度的空间电荷区。
5. 内建电场:P 区和N 区的空间电荷之间建立了一个电场——空间电荷区电场,也叫内建 电场。
PN 结自建电场:在空间电荷区产生缓变基区自建电场:基区掺杂是不均匀的,产生出一个加速少数载流子运动的电场,电场沿 杂质浓度增加的方向,有助于电子在大部分基区范用内输运。
大注入内建电场:在空穴扩散区(这有利于提髙BJT 的电流增益和频率.速度性能)。
6. 内建电势差:由于内建电场,空间电荷区两侧存在电势差,这个电势差叫做内建电势差7. 费米能级:平衡PN结有统一的费米能级。
空穴扩散:P 区 一 N 区 电子扩散:P 区—N 区扩散电流方向为:P 区一N 区■% 0 ------ 1 ----------•—Z 一 W — ++ ++++ +++$空间电蓟区 中性区!1 1' ;'内雄电场\ ・ 空穴扩飆 甌『扩R 漁II空穴漂移流 电子漂核ft“(gpa)g 自建电场方向i 结空司电荷区处別空穴扩融区內大主入自注电场的形呢(用1%表示九逮掺杂p 型轻掺杂p 裂 本征准费米能级:当pn 结加上外加电压V后,在扩散区和势垒区范I 羽内,电子和空穴没有统 一的费米能级,分别用准费米能级.8. PN 结能带图 热平衡能带图平衡能带图非平衡能带图正偏压:P 正N 负 反偏压:P 负N 正J -P~L轻掺杂N 型重摻杂N 型P n(a)在接触前分开的P 型和N 型硅的能带图耗尽层(E)正偏反偏9.空间电荷区、耗尽区.势垒区・中性区势垒区:N区电子进入P区需要克服势垒g% ,P区空穴进入N区也需要克服势垒g必。
PN 结
1.2.1 异形半导体接触现象
在形成的PN 结中,由于两侧的电子和空穴的浓度相差很大,因此它们会产生扩散运动:电子从N 区向P 区扩散;空穴从P 去向N 区扩散。
因为它们
都是带电粒子,它们向另一侧扩散的同时在N 区留下了带正电的空穴,在P 区留下了带负电的杂质离子,这样就形成了空间电荷区,也就是形成了电场(自建场).
它们的形成过程如图(1),(2)所示
在电场的作用下,载流子将作漂移运动,它的运动方向与扩散运动的方向相反,阻止扩散运动。
电场的强弱与扩散的程度有关,扩散的越多,电场越强,同时对扩散运动的阻力也越大,当扩散运动与漂移运动相等时,通过界面的载流子为0。
此时,PN 结的交界区就形成一个缺少载流子的高阻区,我们又把它称为阻挡层或耗尽层。
PN结介绍一.什么是PN结采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。
PN结具有单向导电性。
一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN结有同质结和异质结两种。
用同一种半导体材料制成的PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。
制造异质结通常采用外延生长法。
P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴;N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。
二、PN结的单向导电性PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。
如果外加电压使:PN结P区的电位高于N区的电位称为加正向电压,简称正偏;PN结P区的电位低于N区的电位称为加反向电压,简称反偏。
符号:电路中的画法:三、PN结的击穿特性当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示,PN结的反向击穿有雪崩击穿和齐纳击穿两种。
1、雪崩击穿阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。
雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。
PN结PN结(PN junction)。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。
PN结具有单向导电性。
P是positive的缩写,N是negative 的缩写,表明正荷子与负荷子起作用的特点。
一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN结有同质结和异质结两种。
用同一种半导体材料制成的 PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
PN结(PN junction)制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。
制造异质结通常采用外延生长法。
P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴;N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。
在P型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。
在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。
N 型半导体中有许多可动的负电子和固定的正离子。
当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。
空穴和电子相遇而复合,载流子消失。
因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区。
P 型半导体一边的空间电荷是负离子,N 型半导体一边的空间电荷是正离子。
正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。
在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。
如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。
半导体基础--PN结介绍PN结之前先了解N型半导体和P型半导体:N型半导体:在本征半导体(⾮常纯净的半导体单晶)中掺⼊五价的元素(如磷),⽤⼀个五价元素的原⼦代替⼀个四价元素的原⼦在晶体中的位置。
由于掺⼊的五价元素的原⼦很容易贡献出⼀个⾃由电⼦,所以把它称为“施主原⼦”。
五价元素的原⼦提供⼀个⾃由电⼦后,本⾝变成正离⼦,但在它周围的共价键中没有空位,所以并不产⽣新的空⽳,这与本征激发产⽣的⾃由电⼦不同。
在掺⼊五价元素的半导体中,除了五价元素的原⼦提供的⼤量⾃由电⼦外,还同时存在由本征激发产⽣的电⼦-空⽳对,此时,⾃由电⼦的浓度远远⼤于空⽳的浓度,这种杂质半导体的导电主要以⾃由电⼦导电为主,因⽽称为电⼦型半导体,或N型半导体。
在N型半导体中,⾃由电⼦是多数载流⼦,简称多⼦;空⽳是少数载流⼦,简称少⼦。
简记:N是Negative,掺5价元素,多⼦是电⼦,少⼦是空⽳。
(Negative表⽰负,⽽电⼦带负电,所以电⼦是多⼦,空⽳是少⼦)P型半导体:在本征半导体中掺⼊三价元素(如硼),⽤⼀个三价元素的原⼦代替⼀个四价元素的原⼦在晶体中的位置。
三价原⼦的三个价电⼦和四价原⼦中的三个价电⼦分别形成共价键结构,因缺少⼀个电⼦,在晶体中会出现⼀个空位。
这个空位会吸引附近原⼦的价电⼦;得到电⼦的硼原⼦,变成不能移动的负离⼦,⽽原来的硅原⼦因少了⼀个价电⼦,形成了空⽳。
此时,空⽳的形成,并没有等量的⾃由电⼦产⽣,这和本征激发产⽣的空⽳不同。
在掺⼊三价元素的杂质半导体中,还同时存在由本征激发产⽣的电⼦-空⽳对。
此时,在半导体中,空⽳的浓度远远⼤于⾃由电⼦的浓度,⽽半导体的导电主要以空⽳导电为主,因⽽称为空⽳型半导体,或P型半导体。
在P型半导体中,空⽳是多数载流⼦,⾃由电⼦是少数载流⼦。
简记:P是Positive,掺3价元素,多⼦是空⽳,少⼦是电⼦。
(Positive表⽰正,⽽空⽳带正电,所以空⽳是多⼦,电⼦是少⼦)1.PN结的形成:在同⼀块半导体的两个不同区域分别掺⼊三价和五价的杂质元素,⼀端成为P型半导体,另⼀端成为N型半导体;这两种半导体紧密地接触在⼀起,便形成了PN结。
PN结PN结(PN junction)采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。
PN结具有单向导电性。
P是positive的缩写,N是negative禁带宽度(Band gap)是指一个能带宽度(单位是电子伏特(ev)).固体中电子的能量是不可以连续取值的,而是一些不连续的能带。
要导电就要有自由电子存在。
自由电子存在的能带称为导带(能导电)。
被束缚的电子要成为自由电子,就必须获得足够能量从而跃迁到导带,这个能量的最小值就是禁带宽度。
锗的禁带宽度为0.66ev;硅的禁带宽度为1.12ev;砷化镓的禁带宽度为1.46ev。
禁带非常窄就成为金属了,反之则成为绝缘体。
半导体的反向耐压,正向压降都和禁带宽度有关。
的缩写,表明正荷子与负荷子起作用的特点。
一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN结有同质结和异质结两种。
用同一种半导体材料制成的PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。
制造异质结通常采用外延生长法。
P型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴;N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。
在 P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。
在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。
N 型半导体中有许多可动的负电子和固定的正离子。
当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。
pn结的名词解释
PN结是指由P型半导体和N型半导体连接而成的结构。
P型半导体具有多个空穴,N型半导体具有多个自由电子。
当P型半导体和N 型半导体相接触时,由于两者之间的浓度差异,会形成空穴和自由电子的扩散运动,从而在接触区域形成一个电势垒。
这个电势垒会阻碍电子和空穴的进一步扩散,形成一个不导电的区域,称为PN结。
PN结具有多种特性和应用。
其中最重要的特性是整流作用,即在外加电压的作用下,PN结会表现出只允许电流在一个方向通过的特性。
这使得PN结可以用于制作二极管,用来将交流电转换为直流电。
此外,PN结还具有发光、光敏和放大等特性,因此在电子器件和光电器件中被广泛应用。