二次函数中的系数符号问题(专题 )
- 格式:doc
- 大小:349.50 KB
- 文档页数:7
二次函数系数a、b、c与图像的关系知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.42.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.45.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<37.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011?重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>011、(2011?雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤12、(2011?孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c <0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专数形结合.题:分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象开口向下,∴a<0;故本选项正确;②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c <0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考点:二次函数图象与系数的关系.分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x轴交点的个数确定.9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。
二次函数系数a 、b 、c 与图像的关系填空题专题练习1、二次函数y=-x2+bx+c 的图象如图所示,试确定b 、c 的符号;b ____________ 0, c ________ 0.(填不等号)5、已知函数y 二ax"+bx+c 的图象如图所示,则下列结论中:®abc>0;②b 二2。
;③a+b+c<0;④a-b+c>0.正 确的是 _________ •0; (4) b 2-4ac_ 0.如图,已知抛物线y 二ax'+bx+c(aH0)经过原点和点(-2, 0),则2a -3b0.(填 >、V 或二) 象限.0; (3)c则直线y=abx+c 不过第6、已知如图,抛物线y=ax2+bx+c与x轴交于点A(—1, 0)和点B,化简:如夕★如护的结杲为:①c;②b;③b—a;④a —b + 2c.其中正确的有________________ .7、二次函数y=-x2+bx + c的图象如图,则一次函数y=bx+c的图象不经过第_______________ 象限.8、若二次函数x2+bx+c的图象如图,则ac 0 (“V” “>”或“二”)9、已知二次函数y二ax'+bx+c(aH0)的图象如图所示,则在下列代数式:①ac;②a+b+c;③4a-2b+c;④2a+b;⑤圧-4ac中,值大于0的序号为__________________10、如图是二次函数y=ax2 + bx + c(a^0)的图象的一部分,给出下列命题:①a+b + c二0;②b>2a;③ax2+bx+c=0 的两根分别为一3 和1:④a—2b+c>0.其中正确的命题是 ______________ ・(只要求填写正确命题的序号)有以下结论:①abc>0;②a - b+c<0;③2d二b;④4a+2b+c>0;⑤若点(・2, y()和(・3, y2)在该图象上,则yi>y2.其中正确的结论是 ______________ (填入正确结论的序号).12、如图是二次函数ypx'+bx+c 的部分图像,在下列四个结论中正确的是 _________________① 不等式 ax 2+bx+c>0 的解集是-l<x<5;②a-b+c>0;③b 2-4ac>0;④4a+b<0.下列结论:①4a+b 二0;②9a+c>3b ;③8a+7b+2c>0;④当x>・1时,y 的值随x 值的增大而增大.其中正确的结论有 ______________________ (填序号)14>二次函数y=ax^+bx+c (aHO )的图象如图所示,下列结论:①2a+b 二0;②a+c>b ;③抛物线与 x 轴的另一个交点为(3, 0);④abc>0.其中正确的结论是 _____________________ (填写序号).15、如图是二次函数y=ax 2+bx+c 图彖的一部分,图彖过点A ( - 3, 0),对称轴为直线X 二・1,给 出四个结论:①b 2>4ac ;②2a+b 二0;③a+b+c>0;④若点B ( - 2. 5, yj , C ( - 0. 5, y 2)为函数图象上的两 点,则yi<y2.其中正确结论是 __________________ ・图象过点(-1, 0),对称轴为直线x=2,16、如图,是二次函数y=ax2+bx+c (aHO)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c二0④ax'+bx+c二0的两根分别为・3和1;⑤8a+c>0. 其中正确的命题是____________________________ ・17>二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2 - 4ac>0;④a+b+c<0;⑤la・2b+c<0,其中正确的个数是______________________ .y八18、如图,抛物线y=ax2+bx+c的对称轴是x=-l.且过点(0.5, 0),有下列结论:①abc>0;②a-2b+4c=0;③25a・ 10b+4c=0;④3b+2c>0;⑤a - b^m (am - b);其中所有正确的结论是___________________ .(填写正确结论的序号)19、己知二次函数y=ax2+bx+c (aHO)的图象如图所示,纟合出以下结论: ®b2>4ac;②abc>0③2a-b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是___________ .(填正确结论的序号)x=l20、在二次函数y=ax2+bx+c的图彖如图所示,下列说法中:①b‘・4ac<0;②2占>0;③abc>0;®a-b-c>0,说法正确的是(填序号).21>已知二次函数y=ax2+bx+c (aHO)的图象如图所示,有下列5个结论:①c二0;②该抛物线的对称轴是直线x二・1;③当x=l时,y=2a;④am2+bm+a>0 (mH - 1);⑤设A (100, yi) , B (・100, y2)在该抛物线上,则yi>y2.其中正确的结论有・(写出所有正确结论的序号)22、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,则下列结论:①a+b+c<0;②a - b+c<0;③b+2a<0;④abc>0,其屮正确的是_________________ (填编号)23、如图是二次函数y=ax2+bx+c (aHO)图彖的一部分,现有下列结论:①abc<0;②b?・4ac+5> 0;③2a+b<0;④a-b+c<0;⑤抛物线y=ax2+bx+c (a^O)与x轴的另一个点坐标为(・1, 0), 其屮正确的是(把所有正确结论的序号都填在横线上)y八24、己知实数m, n满足m - n2=l,则代数式n/+2n2+4ni - 1的最小值等于_____________ •25、如图所示,己知二次函数y二ax'+bx+c的图象经过(-1, 0)和(0, -1)两点,则化简代数式_ 乎 + 4 + + 乎 _ 4 二 _______________ .\26如图,抛物线y二ax'+bx+c与x轴交于点A (・1, 0),顶点坐标为(1, n),与y轴的交点在(0, 2)、(0, 3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③_2④3WnW4中,正确的是_______________27、已知二次函数y二ax'+bx+c的图象如图所示,有以下结论:①a+b+cVO;②a - b+c> 1;③abc>0;④4a - 2b+c<0;其中正确的结论是 ______________28、已知二次函数ypx'+bx+c的图象如图所示,它与x轴的两个交点分别为(-1, 0) , (3, 0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有___________________________ .29、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①bV0;②4a+2b+c<0; (3)a・b+c>0;④(a+c) 2<b2.其中正确的是___________________ (把所有正确结论的序号都填在横线上).30^己知二次函数y二ax'+bx + c的图象如图所示,则下列结论:①c二2;②b2—4ac<0;③当x=l时,y的最小值为a+b+c中,正确的有___________________31、已知二次函数y=ax'+bx+c(a^O)的图像如图所示,(1)给出三个结论:①『-4眈>0;②c>0;③b>0,其中正确结论的序号是: ___________ ・(2)给出三个结论:①9a+3b+c〈0:②2c>3b;③8a+c>0,其中正确结论的序号是:________________32、已知抛物线y=ax2+bx+c(a^0)经过点(一1, 0),且顶点在第一象限.有下•列三个结论:①a<0;②a+b+c>0;③一2a >0.其中止确的结论有______________ .丄33>如图,抛物线yi=a (x+2) 2 - 3与2 (x・3) ?+1交于点A(l, 3),过点A作x轴的平行线, 分别交两条抛物线于点B, C.则以下结论:①无论x取何值,y2的值总是正数;②沪1;③当x=0 时,y2 - yi=4④2AB=3AC.34、如图,抛物线"曲"窈-3与卩飞“耳+1交于点八(],3),过点A作x轴的平行_2线,分别交两条抛物线于点B,C.则以下结论:①无论x収何值,乃的值总是正数;②■亍;③当x二0时,y2-yi二6;④AB+AC二10;⑤刃时乃°,其中正确结论的个数是: ________________ .35>函数y二x'+bx+c与y二x的图象如图所示,有以下结论:①b'-4c>0;②3b+c+6=0;③当lVx< 3时,x2+ (b - 1) x+c<0;④JQ+C? = 3迥.其屮正确的有 _______________ .36、如图抛物线y=ax2+bx+c与只轴的一个交点A在点(-2, 0)和(-1, 0)之间(包括这两个点), 定点C是矩形DEFG上(包括边界和内部)的一个动点,贝9:(1)_____________ abc 0(填或“〉”;(2)___________________________ 8的取值范围是.1、答案为:V >;2、答案为:(1)> (2)< (3)> (4)>;3、答案为:>;4、答案为:四;5、答案为:①③④.6、答案为:①③④;7、答案为:四;8、答案为:<;9、答案为:10、答案为11、答案为12、答案为13、答案为14、答案为15、答案为16、答案为17、答案为18、答案为19、答案为20、答案为21、答案为22、答案为23、答案为24、答案为25、答案为26、答案为27、答案为28、答案为29、答案为30、答案为31、答案为32、答案为33、答案为34、答案为35、答案为①②⑤;①③;②④.①③;①③;①④.①④.①③④⑤.3.①③⑤.①②⑤;②③④.①②④⑤.②③.②、④.2a;①③.①③.©:①③④.①③;①;①③①②③;①④.①②④⑤,②③④;参考答案36、答案为:<。
二次函数图象特点与系数关系专题一.常识要点:二次函数y=ax2+bx+c(a ≠0)系数符号的肯定1.a 由抛物线启齿偏向肯定⎩⎨⎧⇔⇔00 a a 开口向下开口向上 2.b 由对称轴x= -a 2b 和a 的符号肯定⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧-⎩⎨⎧000002000002b - b a b a a b b a b a a ,则,则,则,则 3.c 由抛物线与y 轴的交点肯定:交点在y 轴的⎩⎨⎧00c c 负半轴,则正半轴,则4.b2-4ac 的符号由抛物线与x 轴(或坐标轴)的交点个数肯定: ①与x 轴的交点个数⎪⎩⎪⎨⎧=-==-=-时,方程无实数根;没有交点,数根时,方程有两个相等实;个交点,实数根时,方程有两个不相等;个交点,004b 0y 0410042222y ac ac b y ac b ②与坐标轴交点个数⎪⎩⎪⎨⎧-=--;个交点,;个交点,;个交点,0410******** ac b ac b ac b5.依据函数图象的具体情形取特别值,肯定代数式符号:罕有①x=1时,a +b +c 的符号;②x=-1时,a -b+ c 的符号;③x=2时,4a+2b+c 的符号;④x=-2时,4a-2b+c 的符号;…….6.由对称轴公式x= -a 2b ,可肯定2a+b 的符号或对称轴有具体数值是肯定相干代数式的符号;如:x= -a 2b =-32时,可肯定4a-3b 的符号;有时与相干成立的等式或不等式联合,肯定运算子女数式的符号.二.专题演习1. 如图1,是二次函数y=ax2+bx+c(a≠0)的图象,依据图中信息,下列结论准确是()①abc>0;②b<a+c;③2a+b=0;④a+b<m(am+b)(m≠1).(1)(2)(3)(4)2.如图2,二次函数y=ax2+bx+c(a≠0)的图象,依据图中信息,下列结论准确是()①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<03.如图3,二次函数y=ax2+bx+c的图象中,依据图中信息,下列结论准确是()(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.4如图4, 二次函数y=ax2+bx+c(a,b,c为常数,a≠0)依据图中信息,下列结论准确是()①abc>0,②b2-4ac<0, ③a-b+c>0,④4a-2b+c<0,5.已知正比例函数y=m x (m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是( )A B C D6.函数与在统一平面直角坐标系中的图象可能是( )A B C D7.二次函数的图象如图所示,则一次函数y=ax+b与反比例函数在统一平面直角坐标系中的大致图象为( )A B C D8.已知正比例函数y=ax与反比例函数在统一平面直角坐标系中的图象如图所示,则二次函数的大致图象是( )A B C 9.二次函数的图象如图所示,则一次函数与反比例函数在统一平面直角坐标系内的图象大致为( )A B C10.设a,b是常数,且b>0,抛物线为下图中四个图象之一,则a的值为( )A. 6或-1B. -6或1C. 6D. -111.已知a≠0,在统一向角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.12.函数y=ax2+1与y=(a≠0)在统一平面直角坐标系中的图象可能是()A.B.C.D.13.已知抛物线y=ax2+bx和直线y=ax+b在统一坐标系内的图象如图,个中准确的是()A.B.C.D.14.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A B C D15.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经由点P(3,0),则a﹣b+c的值为()A. 0B. -1C. 1D. 216.下列图中暗影部分的面积相等的是()A.①②B.②③C.③④D.①④17.已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值规模是()A.-2<x<2B.-4<x<2C.x<-2或x﹥2D.x<-4或x﹥218.如图,直角坐标系中,两条抛物线有雷同的对称轴,下列关系不准确的是()A.h=mB.k=nC.k﹥nD.k﹥0,h﹥019.已知抛物线,直线y2=3x+3,当x任取一值时,x对应的函数值分离为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列断定个中准确的是()①当x>0时,y1>y2;②使得M大于3的x值不消失;③当x<0时,x值越大,M值越小; ④使得M=1的x值是或.A.①③B.②④C.①④D.②③20.在﹣3≤x≤0规模内,二次函数(a≠0)的图象如图所示.在这个规模内,有结论:①y1有最大值1.没有最小值;②y1有最大值1.最小值﹣3;③函数值y1随x的增大而增大;④方程ax2+bx+c=2无解;⑤若y2=2x+4,则y1≤y2.个中准确的是()21.如图,平行于y轴的直线l被抛物线y=0.5x2+1,y=0.5x2﹣1所截,当直线l向右平移3个单位时,直线l被两条抛物线所截得的线段扫过的图形面积为()平地契位.A.3B.4C.6D.无法断定22.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的极点,则方程x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或2。
专题02 二次函数与系数a 、b 、c 的关系【知识梳理】知识梳理一、二次函数2y ax bx c =++中a 、b 、c 的基本认知b 2-4ac =0知识梳理二、关于a 、b 、c 代数式的取值问题.a 、b 、m知识梳理三、图像共存问题.(一般分为以下三类)(1)通过给出的系数系数信息,判断图像共存(2)通过给出的图像判断系数,再判断图像共存(3)不给出任何系数信息,通过题意判断【例题精讲】例1.函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.例2.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.例3.函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象与一次函数y=mx+n的图象可能是()A.B.C.D.例4.反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.例5.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.例6.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(,0)和(m,y),对称轴为直线x=﹣1,下列5个结论:其中正确的结论为.(注:只填写正确结论的序号)①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m(am﹣b),例7.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中所有正确结论的序号是.例8.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(不包括这两个点),下列结论:①当﹣1<x<3时,y>0;②﹣1<a<﹣.③当m≠1时,a+b>m(am+b);④b2﹣4ac=15a2.其中正确的结论的序号.例9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣4,0),对称轴为直线x=﹣1,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=1;④当y>0时,﹣4<x<2,其中正确的结论有.例10.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点(x1,0),(x2,0).则下列说法正确的有:.(填序号)①该二次函数的图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:<m<2;③当m>2,且1≤x≤2时,y的最大值为4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1、x2满足﹣3<x1<2,﹣1<x2<0时,m的取值范围为:<m<11.【专项训练】1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.2.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.3.一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.4.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A.B.C.D.5.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.6.如图,一次函数y1=﹣x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b+1)x+c的图象可能为()A.B.C.D.7.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.8.在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()A.B.C.D.9.如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A.B.C.D.10.在同一平面直角坐标系中,函数y=6ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.11.已知函数y=ax2+bx+c,当y>0时,.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a 的值等于()A.﹣1B.1C.D.13.已知函数y1=mx2+n,y2=nx+m(mn≠0),则两个函数在同一坐标系中的图象可能为()A.B.C.D.14.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.15.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A.B.C.D.16.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.17.反比例函数的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致是()A.B.C.D.18.若ab>0,则一次函数y=ax﹣b与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.19.二次函数y=ax2+bx+c的图象如图所示,则﹣次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.20.下列图中,反比例函数y=(a≠0)与二次函数y=ax2+ax(a≠0)的大致图象在同一坐标系中是()A.B.C.D.21.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的序号是.第21题图第22题图22.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.23.抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=﹣5.其中结论正确是.24.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①ab c>0;②2a+b<0;③a﹣b+c<0;④a+c>0;其中正确的说法有(写出正确说法的序号).26.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有.(写出所有正确结论的番号)27.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+c=0;③ac+b+1=0;④2+c 是关于x的一元二次方程ax2+bx+c=0的一个根,其中正确的有个.28.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有以下结论:①abc>0;②a+b+c<0;③4a+b=0;④若点(1,y1)和(3,y2)在该图象上,则y1=y2,其中正确的结论是(填序号).30.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为.(注:只填写正确结论的序号)。
专题训练(二)二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象的关系知识储备二次函数y=ax2+bx+c的图象与字母系数a,b,c 之间的关系:项目字母字母的符号图象的特征a a>0 开口向上a<0 开口向下bb=0 对称轴为y轴ab>0(b与a同号) 对称轴在y轴左侧ab<0(b与a异号) 对称轴在y轴右侧c c=0 经过原点c>0 与y轴正半轴相交c<0 与y轴负半轴相交b2-4ac b2-4ac=0与x轴有一个交点(顶点)b2-4ac>0 与x轴有两个交点b2-4ac<0 与x轴没有交点特殊关系当x=1时,y=a+b+c;当x=-1时,y=a-b+c当x=2时,y=4a+2b+c;当x=-2时,y=4a-2b+c若a+b+c>0,则当x=1时,y>0若a-b+c>0,则当x=-1时,y>0当对称轴为直线x=1时,2a+b=0;当对称轴为直线x=-1时,2a-b=0;判断2a+b的值大于还是小于0,看对称轴与直线x=1的位置关系;判断2a-b的值大于还是小于0,看对称轴与直线x=-1的位置关系▶类型一利用二次函数图象考查以上表格中的问题1.[2020·宁波江北区期末]二次函数y=ax2+bx+c(a≠0)的图象如图1所示,则下列关系式错误的是()A.a<0B.b>0C.b2-4ac>0D.a+b+c<0图 1 图22.[2020·宁波]如图2,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是A.abc<0 B.4ac-b2>0C.c-a>0D.当x=-n2-2(n为实数)时,y≥c3.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()图 3▶类型二利用二次函数图象考查ma+nc或mb+nc(m,n为非零整数)与0的关系4.如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1.给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0.其中,正确的结论有()图4A.1个B.2个C.3个D.4个5.[2020·遵义改编]抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-2,抛物线与x轴的一个交点在点(-4, 0)和点(-3,0)之间,其部分图象如图5所示,下列结论中正确的有()①4a-b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等的实数根;④b2+2b>4ac.图5A.1个B.2个C.3个D.4个▶类型三利用二次函数图象考查am2+bm+c(a≠0,a,b,c为常数)与a+b+c的关系6.已知二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=1,其图象如图6所示,现有下列结论:①abc>0,②b-2a<0,③a-b+c>0,④a+b>n(an+b)(n ≠1),⑤2c<3b.其中正确的是()A.①③B.②⑤C.③④D.④⑤图6 图77.抛物线y=ax2+bx+c(a≠0)的一部分如图7所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是直线x=1,有下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为(-2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有() A.5个B.4个C.3个D.2个▶类型四利用二次函数图象解一元二次方程或不等式8.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=-5D.x1=-1,x2=59.二次函数y=ax2+bx+c(a≠0)的图象如图8所示,则关于x的不等式ax2+bx+c>0的解是()图8A.x<-1B.x>3C.-1<x<3D.x<-1或x>3▶类型五利用一次函数、二次函数的图象解一元二次方程或不等式10.如图9所示,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解为()图9A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥911.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23x的图象如图10所示,则方程ax2+(32b x+c=0的两根之和()图10A.大于0B.等于0C.小于0D.不能确定专题二教师详解详析1.D[解析] 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.故选D.2.D[解析] ∵二次函数图象的对称轴为直线x=-1,∴-b2a=-1,∴b=2a.又∵a>0,∴b>0.∵抛物线与y轴正半轴交于点C,∴c>0,∴abc>0,故A错误;∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,∴4ac-b2<0,故B错误;∵b=2a,∴当x=-1时,y=a-b+c=c-a<0,故C 错误;当x=-n2-2(n为实数)时,y=a(-n2-2)2+b(-n2-2)+c=a(-n2-2)2+2a(-n2-2)+c=a( n2+1)2-a+c.∵n为实数,∴n2≥0,(n2+1)2≥1.又∵a>0,∴a(n2+1)2-a≥0,∴y≥c,故D正确,因此本题选D.3.C4.C[解析] ∵抛物线开口向下,∴a<0.∵抛物线交y轴于正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确;∵抛物线的对称轴为直线x=1,∴-b2a=1,∴-b=2a,∴2a+b=0,故③错误;∵抛物线与x轴的两个交点关于对称轴对称,∴点(3,0)关于直线x=1的对称点为(-1,0),即抛物线经过点(-1,0),∴a-b+c=0,故④正确.综上可知,正确的结论有①②④,共3个.5.C[解析] 由-b2a=-2,得4a-b=0,故①正确;由抛物线与x轴的一个交点在点(-4,0)和点(-3,0)之间,当x≤-2时,y随x的增大而增大,可知当x=-3时,y>0,由抛物线的对称性可知,当x=-1时,y>0,即a-b+c>0.又4a=b,∴a-4a+c>0,即c>3a.故②错误; 由图象得,关于x的方程ax2+bx+c=2有两个不相等的实数根正确; 由4ac-b24a=3,得4ac-b2=12a,∴4ac=12a+b2=3b+b2.易知a<0,b<0,c<0,∴4ac<2b+b2 ,故④正确.故选C.6.D[解析] ①由图象可知:a<0,b>0,c>0,∴abc<0,故此选项错误;②当x=-2时,y=4a-2b+c<0,即b-2a>c2>0,故此选项错误;③当x=-1时,y=a-b+c<0,故此选项错误;④当x=1时,y的值最大,此时,y=a+b+c,而当x=n 时,y=an2+bn+c,所以a+b+c>an2+bn+c(n≠1),故a+b>an2+bn,即a+b>n(an+b)(n≠1),故此选项正确.⑤由抛物线的对称性可知当x=3时函数值小于0,即y=9a+3b+c<0.∵抛物线的对称轴为直线x=-b2a=1,∴a=-b2,代入9a+3b+c<0,得9-b2 +3b+c<0,得2c<3b,故此选项正确;故④⑤正确.因此本题选D.7.B8.D9.D[解析] 根据图象可知,当y=0时,对应的x的值分别为x1=-1,x2=3.当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,当函数值y>0时,x的取值范围是x<-1或x>3.故选D.10.A[解析] 由图象可以看出:二次函数y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的图象的交点的横坐标分别为-1,9.而当y1≥y2时,对应的图象正好在两交点之间,所以-1≤x≤9.故选A.11.A。
二次函数图象与系数的关系数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
一、二次函数图象与系数的关系对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置.【典例1】如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B (4,0),则下列结论中:①abc>0②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m―3)(m+3)<b(3―m);⑤AB≥3,则4b+3c>0,正确的个数是()A.5B.4C.3D.2本题考查了二次函数的图象和性质.根据图象可知,a<0,c<0,b>0,即可判断①结论;根据图象可得对称轴在直线x=2右侧,即―b2a>2,即可判断②结论;根据二次函数的增减性,即可判断③结论;根据对称轴,得出b=―6a,再利用作差法,即可判断④结论;根据抛物线与x轴的交点B(4,0),整理得出a =―4b+c 16,再根据AB ≥3,得到y =a +b +c ≥0,进而得出4b +5c ≥0,再结合c <0,即可判断⑤结论.根据图象得出二次函数表达式各系数符号是解题关键.解:∵抛物线开口线下,与y 轴交于负半轴,∴a <0,c <0,∵对称轴在x 轴正半轴,∴a 、b 异号,∴b >0,∴abc >0,①结论正确;∵抛物线与x 轴正半轴交于A 、B 两点,且点B (4,0),∴对称轴在直线x =2右侧,即―b 2a >2,∴2―<0,∴4a+b2a <0,∵a <0,∴4a +b >0,②结论正确;M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,且0<x 1<x 2,∵0<x <―b 2a 时,y 随x 的增大而增大;x >―b2a 时,y 随x 的增大而减小;∴无法判断y 1和y 2的大小,③结论错误;∵抛物线的对称轴是直线x =3,∴―b 2a =3,即b =―6a ,∴ a (m ―3)(m +3)―b (3―m )=a (m ―3)(m +3)+6a (3―m )=a (m ―3)(m +3―6)=a (m ―3)2,∵a <0,(m ―3)≥0,∴a (m ―3)2≤0,∴ a (m ―3)(m +3)≤b (3―m ),④结论正确;∵抛物线与x 轴正半轴交于A 、B 两点,且点B (4,0),∴当x =4时,y =16a +4b +c =0,∴a =―4b+c 16,∵AB ≥3,∴点A 的横坐标0<x A ≤1,∴当x =1时,y =a +b +c ≥0;∴―4b+c 16+b +c ≥0,整理得:4b +5c ≥0,∴4b +3c ≥―2c ,∵c <0,∴2c >0,∴4b +3c >0,⑤结论正确;∴正确的结论有①②④⑤,共4个,故选:B .1.(2024·湖北宜昌·模拟预测)如图,已知二次函数y =ax 2+bx +c 的图象关于直线x =―1对称,与x 轴的一个交点在原点和(1,0)之间,下列结论错误的是( )A .abc <0B .b =2aC .4a ―2b +c >0D .a ―b ≤m (am +b )(m 为任意实数)【思路点拨】本题考查二次函数的图象与性质,数形结合是解题的关键.根据抛物线开口向上,对称轴,与y 轴交点位置,即可判断选项A ;根据抛物线对称轴即可判断选项B ;根据“对称轴为直线x =―1,0<x 1<1”可判断选项C ; 当x =―1时,y =ax 2+bx +c =a ―b +c 为最小值,据此可判断选项D.【解题过程】解:A.∵抛物线开口向上,∴a>0,∵对称轴为直线x=―1,=―1,∴―b2a∴b=2a>0,∵抛物线与y轴交于负半轴,∴c<0,∴abc<0,原题结论正确,故此选项不符合题意;B.∵对称轴为直线x=―1,=―1,∴―b2a∴b=2a,故选项正确,不符合题意;C.∵对称轴为直线x=―1,0<x2<1,∴―3<x1<―2,∴当x=―2时,y=4a―2b+c<0原题结论错误,故此选项符合题意;D.当x=―1时,y=ax2+bx+c=a―b+c为最小值,∴a―b+c≤am2+bm+c,∴a―b≤am2+bm,∴a―b≤m(am+b),原题结论正确,故此选项不符合题意.故选:C.2.(2024·黑龙江绥化·中考真题)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=―1,则下列结论中:>0②am2+bm≤a―b(m为任意实数)③3a+c<1①bc④若M(x1,y)、N(x2,y)是抛物线上不同的两个点,则x1+x2≤―3.其中正确的结论有()A.1个B.2个C.3个D.4个【思路点拨】本题考查了二次函数的图象与性质,根据抛物线的开口方向,对称轴可得a<0,b=2a<0即可判断①,x=―1时,函数值最大,即可判断②,根据x=1时,y<0,即可判断③,根据对称性可得x1+x2=―2即可判段④,即可求解.【解题过程】解:∵二次函数图象开口向下∴a<0∵对称轴为直线x=―1,=―1∴x=―b2a∴b=2a<0∵抛物线与y轴交于正半轴,则c>0<0,故①错误,∴bc∵抛物线开口向下,对称轴为直线x=―1,∴当x=―1时,y取得最大值,最大值为a―b+c∴am2+bm+c≤a―b+c(m为任意实数)即am2+bm≤a―b,故②正确;∵x=1时,y<0即a+b+c<0∵b=2a∴a+2a+c<0即3a+c<0∴3a+c<1,故③正确;∵M(x1,y)、N(x2,y)是抛物线上不同的两个点,∴M,N关于x=―1对称,∴x1+x22=―1即x1+x2=―2故④不正确正确的有②③故选:B3.(2024·四川眉山·中考真题)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(3,0),与y轴交于点B,对称轴为直线x=1,下列四个结论:①bc<0;②3a+2c<0;③ax2+bx≥a+b;④若―2<c<―1,则―83<a+b+c<―43,其中正确结论的个数为()A.1个B.2个C.3个D.4【思路点拨】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c=―3a,进一步得到1 3<a<23,又根据b=―2a得到a+b+c=a―2a―3a=―4a,即可判断④.【解题过程】解:①∵函数图象开口方向向上,∴a>0;∵对称轴在y轴右侧,∴a、b异号,∴b<0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A(3,0),与y轴交于点B,对称轴为直线x=1,∴―b2a=1,∵b=―2a,∴x=―1时,y=0,∴a―b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵―2<c<―1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=(―1)×3=―3=ca,∴c=―3a,∴―2<―3a<―1,∴13<a<23,∵b=―2a,∴a+b+c=a―2a―3a=―4a,∴―83<a+b+c<―43,故④正确;综上所述,正确的有②③④,故选:C4.(23-24九年级上·黑龙江哈尔滨·阶段练习)如图,抛物线y=ax2+bx+c经过点1,1,m,0,3,0,若c<0,则下列结论中错误的是()A.ab<0B.4ac―b2<4aC.3a+b<0D.点2+m,1必在该抛物线上【思路点拨】根据抛物线开口向下,与y轴交于负半轴,对称轴在y轴右边,可得a<0,c<0,b>0,即可判断A;将抛物线化为顶点式,由顶点在第一象限得到4ac―b24a>1,结合a<0即可判断B;由点3,0在抛物线上得到3a+b=―c3,再由c<0即可判断C;由抛物线的对称性即可判断D.【解题过程】解:∵抛物线开口向下,与y轴交于负半轴,对称轴在y轴右边,∴a<0,c<0,―b2a>0,∴b>0,∴ab<0,故A正确,不符合题意;∵y=ax2+bx+c=a x++4ac―b24a ,抛物线的顶点在第一象限,经过点1,1,对称轴为直线x=m+32>1,∴4ac―b24a>1,∵a<0,∴4ac―b2<4a,故B正确,不符合题意;∵抛物线y=ax2+bx+c经过点3,0,∴9a+3b+c=0,∴3a+b=―c3,∵c<0,∴―c3>0,∴3a+b=―c3>0,故C错误,符合题意;∵抛物线y=ax2+bx+c经过点1,1,m,0,3,0,∴对称轴为直线x=m+32,∵1+2+m2=m+32,∴1,1和2+m,1关于对称轴对称,∴点2+m,1必在该抛物线上,故D正确,不符合题意;故选:C.5.(23-24九年级上·河南周口·期末)抛物线y=ax²+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③4a―2b+c=0;④方程ax²+bx+c=2有两个不相等的实数根;⑤若点A(m,n)在该抛物线上,则am²+bm+c≤a+b+c.其中正确的个数有()A.2个B.3个C.4个D.5个【思路点拨】由开口方向及与y轴的交点可判断,a<0,c>0,再根据“左同右异”的方法可判断b的符号,从而可判断可判断②;由图象得x2=4和对称轴可求x1=―2,可得抛物线与x的另一个交点为①;由对称轴x=―b2a(―2,0),代入即可判断③;设y1=2,则图象为过(0,2)且垂直于y轴的一条直线,并且与抛物线有两个交点,=a+b+c,即可判断⑤.可判断④;当x=1时,y最大【解题过程】解:由图得:a<0,c>0,∵对称轴在y轴右侧,∴b>0,∴abc<0,故①错误;∵抛物线的对称轴是直线x=1,∴―b=1,2a∴2a+b=0,故②正确;由图象得x 2=4,∴1―x 1=4―1解得:x 1=―2,∴抛物线与x 的另一个交点为(―2,0),∴a ×(―2)2+(―2)b +c =0,即:4a ―2b +c =0,故③正确;设y 1=2,则图象为过(0,2)且垂直于y 轴的一条直线,与抛物线有两个交点,∴方程ax²+bx +c =2有两个不相等的实数根;故④正确;∵抛物线的对称轴是直线x =1,且a <0,∴当x =1时,y 最大=a +b +c ,∴ am²+bm +c ≤a +b +c ,故⑤正确;综上所述:正确的有②③④⑤,共4个;故选:C .6.(23-24九年级上·山东菏泽·期末)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②―2b +c =0;③4a +2b +c <0;④若―52,y 1y 2是抛物线上的两点,则y 1<y 2;⑤14b >m (am +b )(其中m ≠12),其中说法正确的是( )A .①②③B .①②④C .①②④⑤D .②③④⑤【思路点拨】本题考查了二次函数的图象与性质,图象与系数的关系,掌握二次函数的图象与性质是解题的关键.利用抛物线的开口方向、对称轴和与y轴的交点位置来判定①,利用抛物线与x轴的两个交点的坐标、结合一元二次方程根与系数的关系来判定②,把点(2,0)代入二次函数的解析式来判定③,观察图象可得:距离对称轴越近的点的纵坐标越大,据此判定④,根据二次函数的最大值判定⑤.【解题过程】解:∵抛物线开口向下,∴a<0,抛物线对称轴为x=―b2a =12,∴b=―a>0,抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;对称轴为x=12,且经过点(2,0),抛物线与x轴的另一个交点为(―1,0),∴一元二次方程ax2+bx+c=0的两个根为2和―1,∴2×(―1)=ca,整理,得c=―2a,∴―2b+c=2a+(―2a)=0,所以②正确;抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;∵a<0,∴距离对称轴越近的点的纵坐标越大,∵1 2―(―52)>52―12,∴y1<y2所以④正确;∵对称轴为x =12,∴当x =12时,y 有最大值,y 的最大值=14a +12b +c ,∴当x =m ≠12时,14a +12b +c >am 2+bm +c ,整理,得14a +12b >am 2+bm =m(am +b),∵b =―a ,即a =―b ,∴14a +12b =―14b +12b =14b ,即14b >m (am +b ),所以⑤正确.其中说法正确的是①②④⑤.故选:C .7.(23-24九年级上·黑龙江齐齐哈尔·期末)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ―c >0;④点(―2,y 1),(4,y 2)都在抛物线上,则有y 1>y 2;⑤不等式ax 2+bx +c <―c x 1x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .1B .2C .3D .4【思路点拨】本题考查了抛物线图像综合,根据抛物线开口向上,a >0;对称轴在原点的右边,―b 2a >0,得到b <0,c >0,判断abc <0;结合图像,a +b +c <0;根据对称轴,增减性,数形结合思想计算判断即可.【解题过程】解:∵抛物线开口向上,∴a >0;∵对称轴在原点的右边,―b 2a >0,∴b <0,∵抛物线与y 轴交点位于坐标轴上,∴c >0,∴abc <0;故①正确;结合图像,a +b +c <0;故②错误;∵抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.∴1<x 1+22<32,4a +2b +c =0,∴1<―b 2a <32,2b =―c ―4a ,∴―3a <b <―2a ,2b =―c ―4a ,∴2b >―6a ,b +2a <0,∴―4a ―c >―6a ,∴2a ―c >0,故③正确;∵点(―2,y 1),(4,y 2)∴y 1=4a ―2b +c,y 2=16a +4b +c ,∴y 1―y 2=4a ―2b +c ―(16a +4b +c )=―6(2a +b ),∵b +2a <0,∴―6(2a +b )>0∴y 1>y 2;故④正确;设直线y =―cx 1x +c ,根据题意,直线经过点(x 1,0)和(0,c ),故直线y =―c x 1x +c 与y =ax 2+bx +c 的交点为点(x 1,0)和(0,c ),画草图如下,x+c的解集为0<x<x1.故不等式ax2+bx+c<―c x1故⑤正确;故选D.8.(23-24九年级上·江苏扬州·期末)已知二次函数y=ax2+bx+c(a≠0)图像的一部分如图所示,该函数图像经过点(5,0),对称轴为直线x=2.对于下列结论:①b>0;②a+c<b;③多项式ax2+bx+c 可因式分解为(x+1)(x―5);④无论m为何值时,代数式am2+bm―4a―2b的值一定不大于0.其中正确个数有()A.1个B.2个C.3个D.4个【思路点拨】=2可得抛物线与x轴的另一个交先根据图像的开口方向和对称轴可判断①;由抛物线的对称轴为x=x1+x22点为(―1,0),由此可判断②;根据抛物线与x轴的两个交点坐标可判断③;根据函数的对称轴为x=2可知x=2时y有最大值,由此可判断④.本题主要考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数图像和系数的关系.【解题过程】解:∵抛物线开口向下,∴a<0,>0,∵对称轴为直线x=―b2a∴b>0,∴结论①正确;∵抛物线与x轴的一个交点为(5,0),且对称轴为直线x=2,由5+x 22=2,得x 2=―1,∴抛物线与x 轴的另一个交点为(―1,0),即当x =―1时,y =0,∴a ―b +c =0,∴a +c =b ,∴结论②错误;∵抛物线y =ax 2+bx +c 与x 轴的两个交点为(―1,0),(5,0),∴多项式ax 2+bx +c 可因式分解为a(x +1)(x ―5),∴结论③错误;∵对称轴为直线x =2,且函数开口向下,∴当x =2时,y 有最大值,由y =ax 2+bx +c 得,x =2时,y =4a +2b +c ,x =m 时,y =am 2+bm +c ,∴无论m 为何值时,am 2+bm +c ≤4a +2b +c ,∴am 2+bm ―4a ―2b ≤0∴结论④正确;综上:正确的有①④.故选:B9.(23-24九年级上·四川德阳·阶段练习)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (―1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点).正确结论的个数是( )①当x >3时,y <0;②3a +b >0;③―1≤a ≤―23;④83≤n ≤4.A.1个B.2个C.3个D.4个【思路点拨】本题考查了二次函数的图象和性质,二次函数的图象与系数的关系;二次函数与一元二次方程的关系;熟练掌握二次函数的图象与系数之间的关系是解题的关键.①根据题意可得抛物线的对称轴为直线x=1,得到另一个交点坐标,结合函数图象即可对于①作出判断;②根据抛物线开口方向得出a<0,由对称轴x=―b求得b与a的关系,代入3a+b,即可判定3a+b的符2a,号;③根据二次函数与x轴的交点坐标即为对应一元二次方程的解,结合一元二次方程两根之积x1⋅x2=ca 得到c与a的关系,然后根据c的取值范围,利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解c,根据c的取值范围,利用不等式的性质来求得n的取值范围.析式得到n=a+b+c=43【解题过程】解:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),∴对称轴直线是x=1,∵抛物线y=ax2+bx+c与x轴交于点A(―1,0),∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图象可得,当x>3时,y<0;故①正确;②a<0;=1,∵对称轴x=―b2a∴b=―2a;∴3a+b=3a―2a=a<0,即3a+b<0;故②错误;③∵抛物线与x轴的两个交点坐标分别是(―1,0),(3,0),即方程ax2+bx+c=0的解是x1=―1和x2=3,∴x1⋅x2=―1×3=―3,=―3,即ca;则a=―c3∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴―1≤―c3≤―23;即―1≤a≤―23;故③正确;④∵a=―c3;b=―2a∴b=―2a=23c,∵抛物线y=ax2+bx+c的顶点坐标为(1,n),即n=a+b+c=43c∵2≤c≤3,∴8 3≤43c≤4,即83≤n≤4;故④正确;综上所述,正确的说法有①③④.故选:C.10.(23-24九年级下·广东广州·阶段练习)如图,二次函数y=ax²+bx+c(a≠0)的图象与x轴负半轴交于―12,0,对称轴为直线x=1.有以下结论∶①abc<0;②3a+c>0;③若点(―3,y1),(3,y2),(0,y3)均在函数图象上,则y1>y3>y2;④若方程a(2x+1)(2x―5)=1的两根为x1、x2,且x1<x2则x1<―1 2<52<x2;⑤点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得,则a的范围为a≥23.其中结论正确的个数为()A.1个B.2个C.3个D.4个【思路点拨】本题考查二次函数的图象及性质,由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线对称性进行推理,进而对所得结论进行判断,熟练掌握二次函数的图象及性质,能从图象中获取信息是解题的关键.【解题过程】解:∵对称轴为直线x =1,函数图象与x 轴负半轴交于 ―12,0,∴x =―b 2a =1,∴b =―2a ,由图象可知 a >0,c <0,∴b =―2a <0,∴abc >0,故①错误;由图可知,当x =―1时,y =a ―b +c >0 ,∴a +2a +c >0,即3a +c >0,故②正确;∵点(―3,y 1),(3,y 2),(0,y 3)均在函数图象上,对称轴为直线x =1,开口向上,∴|―3―1|>|3―1|>|0―1|,则 y 1>y 2>y 3,故③错误;由抛物线对称性可知,抛物线与x ,0,∴抛物线解析式为:y =a x令a x ―=14,则a (2x +1)(2x ―5)=1,如图,作y =14,由图形可知x 1<―12<52<x 2 ,故④正确;由题意可知:M ,N 到对称轴的距离为32,当抛物线的顶点到x 轴的距离不小于 32时,在x 轴下方的抛物线上存在点P ,使得PM ⊥PN ,即4ac―b 24a ≤―32,∵y =a x =ax 2―2ax ―54a ,∴c =―54a ,b =―2a ,≤―32,解得:a ≥23,故⑤正确,综上可知②④⑤正确,共3个,故选:C .11.(23-24九年级下·山东烟台·期中)已知二次函数y =ax 2+bx +c(a ≠0),图象的一部分如图所示,该函数图象经过点(―2,0),顶点坐标为―12,m .对于下列结论:①abc <0;②a +b +c =0;③若关于x 的一元二次方程ax 2+bx +c ―3=0无实数根,则m <3;④am 2+bm <14(a ―2b ))(其中m ≠―12)﹔⑤若A (x 1,y 1)和B (x 2,y 2)均在该函数图象上,且x 1>x 2>1,则y 1>y 2.其中正确结论有( )A .②③④B .②③⑤C .②③D .④⑤【思路点拨】本题考查了二次函数的图象与性质、二次函数图象与直线交点问题,掌握二次函数图象与系数关系,二次根据抛物线与x 轴的一个交点(―2,0)以及其对称轴,求出抛物线与x 轴的另一个交点(1,0),利用待定系数法求函数解析式,再根据抛物线开口朝下,可得a <0,进而可得b <0,c >0,再结合二次函数的图象和性质逐条判断即可.【解题过程】解:∵抛物线开口方向向下,∴a <0,∵抛物线的对称轴为直线x =―12,∴―b 2a =―12∴b =a <0∵抛物线与抛物线与轴交点在正半轴上,∴c >0,∴abc >0,故①错误;∵抛物线的对称轴为直线x =―12,且抛物线与x 轴的一个交点坐标为(―2,0),∴抛物线与x 轴的另一个交点坐标为(1,0),把(1,0)代入y =ax 2+bx +c(a ≠0),可得:a +b +c =0,故②正确;∵关于x 的一元二次方程ax 2+bx +c ―3=0无实数根,∴二次函数y =ax 2+bx +c(a ≠0)的图象与直线y =3无交点,∵抛物线的顶点坐标为―12,m ,抛物线开口方向向下,∴m <3,故③正确;∵am 2+bm =am 2+am =a m +―14a ,14(a ―2b)=14(a ―2a)=―14a ,∴am 2+bm ―14(a ―2b)=a(m +12)2,又∵a <0,m ≠―12,∴a m <0,即am 2+bm <14(a ―2b)(其中m ≠―12),故④正确;∵抛物线的对称轴为直线x =―12,且抛物线开口朝下,∴可知二次函数,在x >―12时,y 随x 的增大而减小,∵x 1>x 2>1>―12,∴y 1<y 2,故⑤错误,正确的有②③④,故选:A .12.(2024·四川达州·三模)如图,函数y =ax 2+bx +c 的图象过点(―1,0)和(m,0),请思考下列判断:①abc <0;②4a +c <2b ;③b c +1m =1;④am 2+(2a +b )m +b +c <0;⑤|am +a |=确的结论有( )个.A .2B .3C .4D .5【思路点拨】本题考查了二次函数图象与系数的关系①利用图象信息即可判断;②根据x =―2时,y <0即可判断;③根据m 是方程ax 2+bx +c =0的根,结合两根之积―m = c a ,即可判断;④根据两根之和―1+m =― b a ,可得ma =a ―b ,可得am 2+(2a +b)m +b +c =2a ―b <0;⑤根据抛物线与x 轴的两个交点之间的距离,列出关系式即可判断.【解题过程】解:∵抛物线开口向下,∴a <0,∵抛物线交y 轴于正半轴,∴c >0,∵― b 2a >0,∴b >0,∴abc <0,故①正确,∵x =―2时,y <0,∴4a ―2b +c <0,即4a +c <2b ,故②正确,∵ y =ax 2+bx +c 的图象过点(―1,0)和(m,0),∴―1×m = c a ,am 2+bm +c =0,则am c =―1,∴ b c =0,∴ b c +1m =1,故③正确,∵―1+m =― ba ,∴―a +am =―b ,∵am2+(2a+b)m+b+c=am2+bm+c+2am+b=2a―2b+b=2a―b∵a<0,b>0∴2a―b<0,故④正确,对于ax2+bx+c=0,可得:x=由函数图象交点可知x=m或x=―1,∴m+1=,∴m+1=,∴|am+a|=⑤正确,故选:D.13.(23-24八年级下·云南·期末)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(―1,0)下列结论:①b2>4ac;②4a+b=0;③4a+c>2b;④―3b+c=0;⑤若顶点坐标为(2,4),则方程ax2 +bx+c=5没有实数根.其中正确的结论有()A.2个B.3个C.4个D.5个【思路点拨】本题主要考查二次函数与系数a,b,c相关代数式的判断问题,会利用对称轴求b与a的关系,以及二次函数与方程之间的转换,掌握根的判别式的熟练运用,是解题的关键.由抛物线的开口方向判断a<0,将点(―1,0)代入y=ax2+bx+c(a≠0),得a―b+c=0,由图象可得对称轴为x=2,可得b=―4a,代入上式可得c=―5a,再将五个结论分别分析即可由得到答案.【解题过程】解:将点(―1,0)代入y=ax2+bx+c(a≠0),∵图象可得二次函数y=ax2+bx+c(a≠0)的对称轴为x=2,开口向下,=2,a<0,∴―b2a即b=―4a>0,将b=―4a代入a―b+c=0,可得c=―5a>0.①∵b=―4a、c=―5a,∴b2=(―4a)2=16a2,4ac=4a×(―5a)=―20a2,∴16a2>―20a2,∴b2>4ac,故①正确.②∵b=―4a,∴4a+b=4a―4a=0,故②正确.③∵b=―4a、c=―5a,∴4a+c=4a―5a=―a,2b=―8a,∵a<0,∴―a<―8a,∴4a+c<2b,故③错误.④∵b=―4a、c=―5a,故―3b+c=―3×(―4a)―5a=12a―5a=7a,∵a<0,∴7a≠0,∴―3b+c≠0,故④错误.⑤将(2,4)代入y=ax2+bx+c(a≠0),即4a+2b+c=4,再将b=―4a、c=―5a代入上式,化简可得a=―2,∴b=―4a=8,c=―5a=10,将a=―2,b=8,c=10,代入则方程ax2+bx+c=5中,即―2x2+8x+5=0,根据根的判别式Δ=82―4×(―2)×5=104>0,可得方程ax2+bx+c=5没有两个不相同的实数根,故⑤错误.综上作述,正确的结论有两个,故选A.14.(23-24九年级上·湖北省直辖县级单位·阶段练习)抛物线y=ax2+bx+c经过点(―1,0),与y轴的交点在(0,―2)与(0,―3)之间(不包括这两点),对称轴为直线x=2.下列结论:①a+b+c<0;②若点M(0.5,y1)、N(2.5,y2)在图象上,则y1<y2;③若m为任意实数,则a(m2―4)+b(m―2)≥0;④―24≤5 (a+b+c)<―16.其中正确结论的序号为.【思路点拨】本题考查二次函数的图象与系数的关系,根据二次函数的性质;二次函数图象上点的坐标特征;一次函数图象上点的坐标特征逐一判断即可,解题的关键是熟练运用二次函数的图象与性质.【解题过程】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于点A(―1,0),对称轴为直线x=2,∴二次函数y=ax2+bx+c(a≠0)x轴相交于点A(―1,0),(5,0),∵二次函数与y轴的交点B(0,―2)与(0,―3)之间(不包括这两点),大致图象如图:当x=1时,y=a+b+c<0,故结论①正确;∵二次函数的对称轴为直线x=2,且a>0,2―0.5=1.5,2.5―2=0.5,∴y1>y2,故结论②不正确;∵x=2时,函数有最小值,∴am2+bm+c≥4a+2b+c(m为任意实数),∴a(m2―4)+b(m―2)≥0,故结论③正确;∵―b2a=2,∴b=―4a,∵一元二次方程ax2+bx+c=0的两根为―1和5,∴―1×5=ca,∴c=―5a,∵―3<c<―2,∴2 5<a<35,∴当x=1时,y=a+b+c=―8a,―245<―8a<―165,∴―24<5(a+b+c)<―16,故结论④正确;故答案为:①③④.15.(23-24九年级上·湖北武汉·阶段练习)已知二次函数y=ax2+bx+c(a≠0)的图象过点A(―2023,n),B(2024,n),M(―1,0),且交y轴的正半轴于点N,下列结论:①abc<0;②4a+2b+c=0;③若直线y=ax+d与抛物线只有一个公共点T(x T,y T),则x T=1;④抛物线上的两点P(x1,y1),Q(x2,y2),P在Q的左边,若x1+x2>2,则y1<y2;⑤b2―4ac<―4a,请将所有正确的序号填在横线上.【思路点拨】本题考查了二次函数图象与系数的关系及二次函数的性质,抛物线与x轴的交点,抛物线的对称性等知识点,根据二次函数的图象进行逐项分析即可,灵活运用有关知识来分析是解题的关键.【解题过程】解:∵图象过点A(―2023,n),B(2024,n),M(―1,0),∴抛物线对称轴为直线x=12,a―b+c=0,∴与x轴交于点(2,0),即有4a+2b+c=0,故②正确;∵交y轴的正半轴于点N,∴抛物线开口向下,∴a<0,c>0,b>0,则abc<0,故①正确;由抛物线对称轴为直线x=12,∴―b2a =12,则b=―a,∴代入a―b+c=0得:c=―2a,∴抛物线y=ax2―ax―2a,直线y=ax+d与抛物线只有一个公共点T(x T,y T),∴ax2―ax―2a=ax+d,整理得:ax2―2ax―2a―d=0∴(―2a)2―4a(―2a―d)=0,解得:d=―3a,∴直线y=ax―3a,代入得:x=1,∴x T=1,故③正确;∵抛物线上的两点P(x1,y1),Q(x2,y2),∴y1=ax12―ax1―2a,y2=ax22―ax2―2a,∴y1―y2=a(x1+x2)(x1―x2)―a(x1―x2)=a(x1―x2)(x1+x2―1),∵x1<x2,a<0,x1+x2>2,即y1―y2>0,∴y1>y2,故④错误;∵b2―4ac=(―a)2―4a×(―2a)=a2+8a2=9a2>0,∴b2―4ac<―4a错误,∴①②③正确;故答案为:①②③.16.(23-24九年级上·湖北武汉·阶段练习)已知二次函数y=ax2+bx+c(a<0)的图像与x轴交于不同两点,与y轴的交点在y轴正半轴,它的对称轴为直线x=1.有以下结论:①abc<0,②a+c>0,③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,④设x1,x2是方程ax2+bx+c=0的两根,若am2+bm+c=p,则p(m―x1)(m―x2)≤0.其中正确的结论是(填入正确结论的序号).【思路点拨】由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判断b与0的关系,可判断①;通过取特殊值可判断②;根据抛物线的增减性可判断③;根据抛物线与x轴交点情况分三种情况进行讨论,可判断④.【解题过程】解:∵二次函数y=ax2+bx+c(a<0)的图像与y轴的交点在y轴正半轴,∴c>0,∵对称轴为直线x=1,=1,即b=―2a,∴―b2a∵a<0,∴b>0,∴abc<0,故结论①正确;当x=1+y=a(12―2a(1++c=a+c,即当x=1(a+c)与0的大小关系,故结论②错误;∵a<0,∴二次函数y=ax2+bx+c的图像开口向下,∴抛物线上的点离对称轴越远其函数值就越小,∵点P(x1,y1)和Q(x2,y2)在抛物线上,且x1<1<x2,x1+x2>2,∴x2―1>1―x1,即x2到1的距离大于x1到1的距离,∴y1>y2,故结论③正确;∵二次函数y=ax2+bx+c(a<0)的图像与x轴交于不同两点,设左边交点的横坐标为x1,右边交点的横坐标为x2,即x1<x2,如图所示,若m<x1,则p<0,m―x1<0,m―x2<0,∴p(m―x1)(m―x2)<0,若x1≤m<x2,则p≥0,m―x1≥0,m―x2<0,∴p(m―x1)(m―x2)≤0,若m≥x2,则p≤0,m―x1>0,m―x2≥0,∴p(m―x1)(m―x2)≤0,综上所述,p(m―x1)(m―x2)≤0,故结论④正确,∴正确的结论是①③④.故答案为:①③④.17.(23-24九年级上·山东威海·期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②9a+6b+c=0,③(4a+c)2<4b2;④方程cx2+bx+a=0的解为x1=1,x2=―1;3⑤a+b>m(am+b)(m≠1).其中正确的结论有(填序号).【思路点拨】本题考查的是二次函数的图象与性质,各项系数的符号与解析式的关系,根据图象先判断a<0,c>0,b>0,再结合函数的对称轴,最值,与坐标轴的交点,逐一分析判断即可.【解题过程】解:由图象可知:a<0,c>0,>0,∵―b2a∴b>0,∴abc<0,故①错误;=1,∵对称轴为x=―b2a∴b=―2a,∵a<0,c>0,∴9a+6b+c=9a―12a+c=c―3a>0,故②错误,∵抛物线与x轴的交点在―1与0之间,对称轴为x=1,另一个交点在2与3之间,∴当x=―2时,y=4a―2b+c<0,当x=2时,y=4a+2b+c>0,∴(4a―2b+c)(4a+2b+c)<0,∴(4a+c)2―4b2<0,∴(4a +c )2<4b 2,故③符合题意;∵二次函数y =ax 2+bx +c (a ≠0)当x =1时,有最大值,∴a +b +c >0,若方程cx 2+bx +a =0的解为x 1=1,则a +b +c =0,∴④错误;当x =1时,y 的值最大.此时,y =a +b +c ,而当x =m (m ≠1)时,y =am 2+bm +c ,∴a +b +c >am 2+bm +c ,∴a +b >am 2+bm ,即a +b >m (am +b ),故⑤正确;综上:正确的有③⑤,故答案为:③⑤.18.(23-24九年级上·山东烟台·期中)已知二次函数y =ax 2+bx +c(a ≠0),图象的一部分如图所示,该函数图象经过点(―2,0),对称轴为直线x =―12.对于下列结论:①abc <0;②b 2―4ac >0;③a +b +c =0;④am 2+bm <14(a ―2b)(其中m ≠―12);⑤若A (x 1,y 1)和B (x 2,y 2)均在该函数图象上,且x 1>x 2>1,则y 1>y 2.其中正确结论有 .(填写序号)【思路点拨】本题考查了二次函数的图象与性质.根据抛物线与x 轴的一个交点(―2,0)以及其对称轴,求出抛物线与x 轴的另一个交点(1,0),利用待定系数法得到b =a,c =―2a ,再根据抛物线开口朝下,可得a <0,进而可得b <0,c >0,即可得到③正确,①错误,根据抛物线与与x 轴两个交点可以判断出②正确,根据am 2+bm =a (m +12)2―14a ,14(a ―2b)=―14a ,a <0,m ≠―12,可以得到a(m +12)2<0,从而得到④正确;根据抛物线的对称性和增减性可以判断出⑤错误,问题得解.【解题过程】解:∵抛物线的对称轴为直线x =―12,且抛物线与x 轴的一个交点坐标为(―2,0),∴抛物线与x 轴的另一个交点坐标为(1,0),把(―2,0),(1,0)代入y =ax 2+bx +c(a ≠0),可得:4a ―2b +c =0a +b +c =0 ,解得b =a c =―2a ,∴a +b +c =a +a ―2a =0,故③正确;∵抛物线开口方向向下,∴a <0,∴b =a <0,c =―2a >0,∴abc >0,故①错误;∵抛物线与x 轴两个交点,∴当y =0时,方程ax 2+bx +c =0有两个不相等的实数根,∴b 2―4ac >0,故②正确;∵am 2+bm =am 2+am =a(m +12)2―14a ,14(a ―2b)=14(a ―2a)=―14a ,∴am 2+bm ―14(a ―2b)=a(m +12)2,又∵a <0,m ≠―12,∴a(m +12)2<0,即am 2+bm <14(a ―2b)(其中m ≠―12),故④正确;∵抛物线的对称轴为直线x =―12,且抛物线开口朝下,∴可知二次函数,在x >―12时,y 随x 的增大而减小,∵x 1>x 2>1>―12,∴y 1<y 2,故⑤错误,正确的有②③④,共3个,故答案为:②③④.19.(2024·四川德阳·中考真题)如图,抛物线y =ax 2+bx +c 的顶点A 的坐标为―13,n ,与x 轴的一个交点位于0和1之间,则以下结论:①abc>0;②5b+2c<0;③若抛物线经过点(―6,y1),(5,y2),则y1> y2;④若关于x的一元二次方程ax2+bx+c=4无实数根,则n<4.其中正确结论是(请填写序号).【思路点拨】本题考查了二次函数的图象与系数的关系,根的判别式,二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.①利用抛物线的顶点坐标和开口方向即可判断;②利用抛物线的对称轴求出a=32b,根据图象可得当x=1时,y=a+b+c<0,即可判断;③利用抛物线的对称轴,设(―6,y1),(5,y2)两点横坐标与对称轴的距离为d1,d2,求出距离,根据图象可得,距离对称轴越近的点的函数值越大,即可判断;④根据图象即可判断.【解题过程】解:①∵抛物线y=ax2+bx+c的顶点A的坐标为―13,n,∴―b2a =―13,∴b 2a =13>0,即ab>0,由图可知,抛物线开口方向向下,即a<0,∴b<0,当x=0时,y=c>0,∴abc>0,故①正确,符合题意;②∵直线x=―13是抛物线的对称轴,∴―b2a =―13,∴b 2a =13>0,∴a=32b由图象可得:当x=1时,y=a+b+c<0,b+c<0,即5b+2c<0,故②正确,符合题意;∴52是抛物线的对称轴,③∵直线x=―13设(―6,y1),(5,y2)两点横坐标与对称轴的距离为d1,d2,则d1=|―6―=173,d2=|5――=163,∴d2<d1,根据图象可得,距离对称轴越近的点的函数值越大,∴y1<y2,故③错误,不符合题意;④如图,∵关于x的一元二次方程ax2+bx+c=4无实数根,∴n<4,故④正确,符合题意.故答案为:①②④20.(23-24九年级上·湖北武汉·期中)抛物线y=ax2+bx+c(a,b,c为常数,c<0)经过(1,1),(m,0),>1;③当n=3时,若点(2,t)在该抛物线上,则(n,0)三点,且n≥3.下列四个结论:①b<0;②4ac―b24at>1;④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则0<m≤1,其中正确的是3(填序号即可).【思路点拨】①根据图象经过1,1,c<0,且抛物线与x轴的一个交点一定在3,0或3,0的右侧,判断出抛物线的开口向下,即a<0,再把1,1代入y=ax2+bx+c得a+b+c=1,即可判断①错误;>1,根②先得出抛物线的对称轴在直线x=1.5的右侧,得出抛物线的顶点在点1,1的右侧,得出4ac―b24a据4a<0,利用不等式的性质即可得出4ac―b2<4a,即可判断②正确;③先得出抛物线对称轴在直线x=1.5的右侧,得出1,1到对称轴的距离大于2,t到对称轴的距离,根据a<0,抛物线开口向下,距离抛物线的对称轴越近的函数值越大,即可得出③正确;④根据方程有两个相等的实数解,得出Δ=(b―1)2―4ac=0,把1,1代入y=ax2+bx+c得a+b+c=1,即1―b=a+c,求出a=c,根据根与系数的关系得出mn=ca =1,即n=1m,根据n≥3,得出1m≥3,求出m的取值范围,即可判断④正确.【解题过程】解:①图象经过1,1,c<0,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x 轴的交点都在1,0的左侧,∵(n,0)中n≥3,∴抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,∴抛物线的开口一定向下,即a<0,把1,1代入y=ax2+bx+c得:a+b+c=1,即b=1―a―c=1―(a+c),∵a<0,c<0,∴a+c<0,∴b>0,故①错误;②∵a<0,b>0,c<0,ca>0,∴方程ax2+bx+c=0的两个根的积大于0,即mn>0,∵n≥3,∴m>0,∴m+n2>1.5,即抛物线的对称轴在直线x=1.5的右侧,∴抛物线的顶点在点1,1的上方或者右上方,。
专题2:二次函数中的系数符号问题
(一)a 、b 、c 、△=ac b 42-的符号与谁有关:
1、抛物线y=ax 2+bx+c 的开口方向由决定, 当开口向上时,则;
当开口向下时,则 ;
若交点在y 轴的正半轴上则
2、抛物线y=ax 2+bx+c 与y 轴的交点坐标是(),若交点在y 轴的负半轴上则
若交点经过坐标原点则
若对称轴在y 轴左侧,则a 、b 符号 3、抛物线y=ax 2+bx+c 的对称轴是直线 , 若对称轴在y 轴右侧,则a 、b 符号
若对称轴是y 轴,则
与x 轴有两个交点,则 4、抛物线与x 轴的交点个数由 决定, 与x 轴有一个交点,则
与x 轴无交点,则
(二)抛物线y=ax 2+bx+c 的其他符号问题:
点在x 轴上方,则a+b+c 。
1.a+b+c 的符号:由x=1时抛物线上的点的位置确定 点在x 轴下方,则a+b+c 。
点在x 轴上,则a+b+c 。
点在x 轴上方,则a -b+c 。
2.a-b+c 的符号:由x= -1时抛物线上的点的位置确定 点在x 轴下方,则a -b+c 。
点在x 轴上,则a -b+c 。
3.2a ±b 的符号:由对称轴与x=1或x=-1的位置相比较的情况决定
(三)常用方法
1、图象上的其他点的纵坐标与顶点纵坐标比较
2、作差法比较
3、数形结合方法:二次函数c bx ax y ++=2,若 x=m 时,y<0,当x=n 时,y>0,则,则
c bx ax y ++=2和x 轴必有交点
(四)你还可以补充:
练习Ⅰ
1、已知二次函数2y ax bx c =++,如图所示,若0a <,0c >,那么它的图象大致是 ( ) y y y y
x
x x A B C D
2、已知二次函数
2
y ax bx c =++的图象如图所示,则点(,)ac bc 在() A .第一象限 B .第二象限 C .第三象限 D .第四象限
3、已知二次函数
2y ax bx c =++的图象如下, 则下列结论正确的是 ( ) A 0ab < B 0bc < C 0a b c ++> D 0a b c -+<
4、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论: ①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )
A .0个
B .1个
C .2个
D .3个
5、二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,c
a )在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
6、二次函数
2
y ax bx c =++的图象如图所示,则( ) A 、0a >,240b ac -<B 、0a >,2
40b ac -> C 、0a <,240b ac -<D 、0a <,240b ac ->
7、已知函数y=ax+b 的图象经过第一、二、三象限,那么y=ax 2+bx+1的图象大致为( )
8、已知函数c bx ax y ++=2
的图象如图所示,则下列结论
正确的是( )
A .a >0,c >0
B .a <0,c <0
C .a <0,c >0
D .a >0,c <0
9、二次函数2
(0)y ax bx c a =++≠的图象如图所示,
则下列说法不正确的是( )
A .240b ac ->
B .0a >
C .0c >
D .0
2b
a -
<
10、二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是
( )(1)abc <0;(2)a +b +c <0;(3)a +c >b ;(4)a <-2b
.
A .1 B2 C .3 D. 4
11、已知二次函数的图象如图所示,有下列5 个结论:
①
;②
;③
;④
;⑤
,(
的实数)其中正确的结论有( )
A. 2个
B. 3个
C. 4个
D. 5个
12、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ).
A ②④
B ①④
C ②③
D ①③
13、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①c<0,②b>•0, ③4a+2b+c>0,④(a+c )2<b 2.其中正确的有( ) A .1个 B .2个 C .3个 D .4个
14、如图,抛物线)0(2
>++=a c bx ax y 的对称轴是直线1=x ,且经过点 P (3,0)
,则c b a +-的值为 ( ) A. 0 B. -1 C. 1 D. 2
15、已知二次函数2
(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时,x 的值只能取0.其中正确的个数是( ) A.1个 B.2个 C. 3个 D. 4个
16、已知二次函数2y ax bx c =++(0a ≠)
①240b ac ->;②0abc >;③80a c +>;④930a b c ++<. 其中,正确结论的个数是( ) A . 1 B . 2 C . 3D . 4
17、已知二次函数y=ax 2+bx+c 的图象,如图所示,下列结论:①a+b+c>0;②a-b+c>0;③abc<0;④2a-b=0,其中正确结论的个数是( ) A. 1 B. 2 C. 3 D. 4
18、已知二次函数y=ax2+bx+c (a ≠0)的图象如图所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )
A .1个
B .2个
C .3个
D .4个
19、已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )
20、函数2
y kx k =-和(0)k
y k x
=
≠在同一直角坐标系中图象可能是图中的( )
21、函数y=ax+b 与y=ax 2+bx+c 的图象如图所示,
A.ab>0,c>0
B.ab<0,c>0
C.ab>0,c<0
D.ab<0,c<0
22、已知反比例函数x
k
y =的图象如右图所示,则二次函2
22k x kx y +-=的图象大致为( )
练习Ⅱ
1、)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2
的图象大致为 ( )
2、已知函数y=ax 2
+ax 与函数
,则它们在同一坐标系中的大致图象是( )
3、函数2
y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )
4、在同一直角坐标系中,函数y mx m =+和2
22y mx x =-++(m 是常数,且0m ≠)的图象可能..是(
A.
B.
C.
D.
5、次函数y=ax2+bx+c的图象如图所示,反比例函数y=a
x与正比例函数y=(b+c)x在同一坐标系中
的大致图象可能是()
A.B.C.D.
6、在同一坐标系中一次函数和二次函数的图象可能为()
7、如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,
根据图象回答:
(1)b_______0(填“>、”、“<”、“=”);
(2)当x满足______________时,ax2+bx+c>0:
(3)当x满足______________时,ax2+bx+c的值随x增大而减小.
8、如图为二次函数y=ax2+b x+c的图象,在下列说法中:
①ac<0;②方程ax2+b x+c=0的根是x1=-1,x2=3
③a+b+c>0 ④当x>1时,y随x的增大而增大。
正确的说法有_____________。
(把正确的答案的序号都填在横线上)
9、二次函数y =ax2+bx+c的图象如图8所示,且P=| a-b+c |+| 2a+b |,
Q=| a+b+c |+| 2a-b |,则P、Q的大小关系为.
10、对于抛物线y= ax2+bx+c(a≠0),下列说法:
①若c=0,则抛物线必过点(0,0);
②若a+c=0,则抛物线与x轴有两个交点;
③若(a+c)2≤b2,则抛物线与x轴有交点;
④若b2-5ac>0,则抛物线与x轴有两个交点.其中正确的结论有____________。