锐角的三角函数值(1)
- 格式:doc
- 大小:380.00 KB
- 文档页数:3
锐角三角函数一:【知识梳理】1.直角三角形的边角关系(如图)(1)边的关系(勾股定理):AC 2+BC 2=AB 2;(2)角的关系:∠A+∠B=∠C=900; (3)边角关系:①:00901230C BC AB A ⎫∠=⎪⇒=⎬∠=⎪⎭②:锐角三角函数:∠A 的正弦=A a sin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.2.特殊角的三角函数值.3.三角函数的关系(1) 互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin Atan (90○-A )= cotA cot (90○-A )=tanA (2) 同角的三角函数关系.①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ·cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==4.三角函数的大小比较(1) 同名三角函数的大小比较①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小. ②余弦、余切是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(2) 异名三角函数的大小比较①tanA >SinA ,由定义,知tanA=a b ,sinA=a c ;因为b <c ,所以tanA >sinA②cotA >cosA .由定义,知cosA=b c,cotA=b a;因为 a <c ,所以cotA >cosA .③若0○<A <45○,则cosA >sinA ,cotA >tanA ;若45○<A <90○,则cosA <sinA ,cotA <tanA5.解直角三角形分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形. 6.在实际问题中常用的几种角 ①俯角和仰角在测量时,视线与水平线所成的角中,视线在水平线上方的角叫做仰角;视线在水平线下方的角叫做俯角.②坡度与坡角hα通常坡面的竖直高度h 和水平宽度l 的比叫做坡度,用字母i 表示,即lhi ==αtan ,其中α是坡面与水平面的夹角即坡角。
(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0. 二分之根号3cos45=0. 二分之根号2cos60=0.5cos90=0tan0=0tan30=0. 三分之根号3tan45=1tan60=1. 根号3tan90=无cot0=无cot30=1. 根号3cot45=1cot60=0. 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。
(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0sin1=0. sin2=0. sin3=0.sin4=0.41253 sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0.65448 sin12=0.sin13=0. sin14=0. sin15=0.sin16=0. sin17=0.27367 sin18=0.49474sin19=0.71567 sin20=0.56687 sin21=0.sin22=0.5912 sin23=0.92737 sin24=0.sin25=0. sin26=0.90774 sin27=0.sin28=0.58908 sin29=0. sin30=0.sin31=0.00542 sin32=0.32049 sin33=0.5027 sin34=0.07468 sin35=0.1046 sin36=0.24731 sin37=0.20483 sin38=0.56583 sin39=0.98375 sin40=0.65392 sin41=0.05073 sin42=0.88582 sin43=0.24985 sin44=0.89972 sin45=0.65475 sin46=0.86511 sin47=0.91705 sin48=0.73941 sin49=0.27719 sin50=0.8978 sin51=0.69708 sin52=0.67219 sin53=0.72928 sin54=0.49474 sin55=0.89918 sin56=0.50417 sin57=0.54239 sin58=0.6426 sin59=0.21122 sin60=0.44386 sin61=0.93957 sin62=0.89269 sin63=0.83678 sin64=0.9167 sin65=0.66499 sin66=0.26009 sin67=0.24404 sin68=0.67873 sin69=0.72017 sin70=0.59083 sin71=0.93167 sin72=0.51535 sin73=0.30354 sin74=0.83189 sin75=0.90683 sin76=0.59965 sin77=0.52352 sin78=0.38057 sin79=0.7664 sin80=0.2208 sin81=0.51378 sin82=0.15704 sin83=0.1322 sin84=0.82733 sin85=0.17455 sin86=0.98242 sin87=0.45738 sin88=0.90958 sin89=0.63913sin90=1cos1=0.63913 cos2=0.90958 cos3=0.45738 cos4=0.98242 cos5=0.17455 cos6=0.82733 cos7=0.1322 cos8=0.15704 cos9=0.51378cos10=0.2208 cos11=0.7664 cos12=0.38057 cos13=0.52352 cos14=0.59965 cos15=0.90683 cos16=0.83189 cos17=0.30355 cos18=0.51535 cos19=0.93168 cos20=0.59084 cos21=0.72017 cos22=0.67874 cos23=0.24404 cos24=0.26009 cos25=0.66499 cos26=0.9167 cos27=0.83679 cos28=0.8927 cos29=0.93957 cos30=0.44387 cos31=0.21123 cos32=0.6426 cos33=0.5424 cos34=0.50417 cos35=0.89918 cos36=0.49474 cos37=0.72928 cos38=0.67219 cos39=0.69709 cos40=0.8978 cos41=0.2772 cos42=0.73942 cos43=0.91705 cos44=0.86512 cos45=0.65476 cos46=0.89974 cos47=0.24985 cos48=0.88582 cos49=0.05074 cos50=0.65394 cos51=0.98375 cos52=0.56583 cos53=0.20484 cos54=0.24731 cos55=0.10462 cos56=0.07468 cos57=0.50272 cos58=0.32049 cos59=0.00544 cos60=0.00001 cos61=0.63371 cos62=0. cos63=0.95468cos64=0. cos65=0. cos66=0.58004cos67=0.92737 cos68=0.59122 cos69=0.cos70=0.56688 cos71=0. cos72=0.cos73=0. cos74=0. cos75=0.cos76=0. cos77=0. cos78=0.cos79=0. cos80=0. cos81=0.cos82=0. cos83=0. cos84=0.cos85=0. cos86=0. cos87=0.cos88=0. cos89=0.72836cos90=0tan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0.29046 tan8=0. tan9=0.tan10=0. tan11=0. tan12=0.00221tan13=0.55631 tan14=0. tan15=0.11227tan16=0.88079 tan17=0. tan18=0.29063tan19=0. tan20=0. tan21=0.54158tan22=0.51568 tan23=0.96047 tan24=0.85361 tan25=0.49986 tan26=0.58614 tan27=0.44288 tan28=0.14788 tan29=0.2769 tan30=0.96257 tan31=0.75604 tan32=0.93275 tan33=0.75104 tan34=0.24265 tan35=0.97097 tan36=0.53609 tan37=0.27942 tan38=0.67174 tan39=0.50072 tan40=0.72799 tan41=0.62267 tan42=0.78399 tan43=0.76618 tan44=0.70739 tan45=0.99999 tan46=1.05693 tan47=1.46826 tan48=1.91927 tan49=1.10092 tan50=1.421 tan51=1.5051 tan52=1.30785 tan53=1.04098 tan54=1.11733 tan55=1.21144 tan56=1.27403 tan57=1.45827 tan58=1.10506 tan59=1.05173 tan60=1.88767 tan61=1.14235 tan62=1.63318 tan63=1.51503 tan64=2.9296 tan65=2.95586 tan66=2.4215 tan67=2.3753 tan68=2.62946 tan69=2.38023 tan70=2.46216 tan71=2.5822 tan72=3.52526 tan73=3.41404 tan74=3.09087 tan75=3.88776 tan76=4.58455 tan77=4.4153 tan78=4.8456 tan79=5.0307 tan80=5.7707 tan81=6.5041 tan82=7.4207 tan83=8.4593 tan84=9.2587 tan85=11.132 tan86=14.1942 tan87=19.816 tan88=28.5515 tan89=57.9144tan90=无取值。
初中三角函数公式表,30°,45°,60°角的三角函数值初中三角函数入门知识三角函数在初中数学中占有非常重要的地位。
你必须精通并准备掌握初中常用的三角函数的公式,才能更好的解决数学问题。
接下来给大家分享一下初中常用的三角函数公式,希望同学们能牢记在心。
三角函数基本公式三角函数半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√做粗数((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))三角函数倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)三角函数三倍角公式sin3A=4sinA*sin(π/3+A)sin(π/3-A) cos3A=4cosA*cos(π/3+A)cos(π/3-A) tan3A=tanA*tan(π/3+A)*tan(π/3-A)三角函数两角和与差公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cossinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)三角函数积化和差sinAsinB=-[cos(A+B)-cos(A-B)]/2 cosAcosB=[cos(A+B)+cos(A-B)]/2 sinAcosB=[sin(A+B)+sin(A-B)]/2 cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数和差化凳拆积sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2] sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2] cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2] cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数关系公式三角函数的倒数关系公式tanαcotα=1sinαcscα=1cosαsecα=1三角函数的商数关系公式tanα=sinα/cosαcotα=cosα/sinα三角函数的平方关系纯首公式(sina)^2+(cosa)^2=11+(tana)^2=(seca)^21+(cota)^2=(csca)^2初中的三角函数的口诀三角函数是初中数学的重要组成部分。
一、锐角三角函数的增减性当角度在0°~90°之间变化时:1.正弦值随着角度的增大而增大;2.余弦值随着角度的增大而减小;3.正切值随着角度的增大而增大。
4.锐角三角函数值都是正值.5.正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);6.正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大);7.正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
8.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°<A0, cotA>0。
二、锐角三角函数:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。
所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。
初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。
正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即,锐角A的正弦、余弦、正切都叫做A的锐角三角函数。
三、锐角三角函数的关系式:同角三角函数基本关系式tanα·cotα=1sin2α·cos2α=1cos2α·sin2α=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα(sinα)2+(cosα)2=11+tanα=secα1+cotα=cscα诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)二倍角、三倍角的正弦、余弦和正切公式Sin(2α)=2sinαcosαCos(2α)=(cosα)2-(sinα)2=2(cosα)2-1=1-2(sinα)2Tan(2α)=2tanα/(1tanα)sin(3α)=3sinα4sin3α=4sinα·sin(60°+α)sin(60°α)cos(3α)=4cos3α3cosα=4cosα·cos(60°+α)cos(60°α)tan(3α)=(3tanαtan3α)/(13tan2α)=tanαtan(π/3+α)tan(π/3α)和差化积、积化和差公式sinα+sinβ=2sin[(α+β)/2]·cos[(αβ)/2]sinαsinβ=2cos[(α+β)/2]·sin[(αβ)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(αβ)/2] cosαcosβ=2sin[(α+β)/2]·sin[(αβ)/2] sinαcosβ=[sin(α+β)+sin(α-β)] sinαsinβ=[1][cos(α+β)cos(αβ)]/2 cosαcosβ=[cos(α+β)+cos(αβ)]/2 sinαcosβ=[sin(α+β)+sin(αβ)]/2 cosαsinβ=[sin(α+β)sin(αβ)]/2。
文案大全初中三角函数值表特殊角三角函数值sin0=0 sin30=0.5 sin45=0.7071=22sin60=23=0.866 sin90=1 cos0=1 cos30=23=0.866 cos45=22=0.70 cos60=0.5 cos90=0 tan0=0 tan30=33=0.577 tan45=1 tan60=3=1.732 tan90=无 cot0=无cot30=3=1.732 cot45=1 cot60=33=0.577cot90=0 (2)0°~90°的任意角的三角函数值,查三角函数表。
(见下)(3)锐角三角函数值的变化情况(i )锐角三角函数值都是正值(ii )当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,文案大全sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0文案大全sin1=0.01745 sin2=0.034899 sin3=0.052335 sin4=0.069756sin5=0.087155文案大全sin6=0.104528 sin7=0.121869sin8=0.139173sin9=0.156434sin10=0.17364sin11=0.19080sin12=0.20791 sin13=0.22495sin14=0.24192sin15=0.25881 sin16=0.27563sin17=0.29237sin18=0.30901sin19=0.32556sin20=0.34202sin21=0.35836 sin22=0.37460 文案大全sin23=0.39073sin24=0.40673 sin25=0.42261sin26=0.43837 sin27=0.45399sin28=0.46947 sin29=0.48480sin30=0.49999sin31=0.51503sin32=0.52991sin33=0.54463 sin34=0.55919sin35=0.57357sin36=0.58778 sin37=0.60181sin38=0.61566sin39=0.62932sin40=0.64278sin41=0.65605文案大全sin42=0.66913 sin43=0.68199sin44=0.69465sin45=0.70710 sin46=0.71933 sin47=0.73135 sin48=0.74314 sin49=0.75470sin50=0.76604sin51=0.77714 sin52=0.78801sin53=0.79863sin54=0.80901sin55=0.81915sin56=0.82903sin57=0.83867sin58=0.84804sin59=0.85716sin60=0.86602文案大全sin61=0.87461sin62=0.88294sin63=0.89100 sin64=0.89879sin65=0.90630sin66=0.91354 sin67=0.92050sin68=0.92718sin69=0.93358sin70=0.93969sin71=0.94551sin72=0.95105 sin73=0.95630sin74=0.96126sin75=0.96592 sin76=0.97029sin77=0.97437sin78=0.97814 sin79=0.98162 文案大全sin80=0.98480sin81=0.98768 sin82=0.99026sin83=0.99254sin84=0.99452 sin85=0.99619sin86=0.99756sin87=0.99862 sin88=0.99939sin89=0.99984sin90=1cos1=0.99984cos2=0.99939cos3=0.99862 cos4=0.99756cos5=0.99619cos6=0.99452cos7=0.99254文案大全cos8=0.99026cos9=0.98768 cos10=0.9848cos11=0.9816cos12=0.97814 cos13=0.9743cos14=0.9702cos15=0.9659 cos16=0.9612cos17=0.9563cos18=0.9510 cos19=0.9455cos20=0.9396cos21=0.9335 cos22=0.9271cos23=0.9205cos24=0.9135cos25=0.9063文案大全cos26=0.8987cos27=0.8910 cos28=0.8829cos29=0.8746cos30=0.8660cos31=0.8571cos32=0.8480cos33=0.8386 cos34=0.8290cos35=0.8191cos36=0.8090 cos37=0.7986cos38=0.7880cos39=0.7771 cos40=0.7660cos41=0.7547cos42=0.7431cos43=0.7313文案大全cos44=0.7193cos45=0.7071cos46=0.6946cos47=0.6819cos48=0.6691cos49=0.6560cos50=0.6427cos51=0.6293 cos52=0.6156 cos53=0.6018 cos54=0.5877 cos55=0.5735cos56=0.5592 cos57=0.5446 cos58=0.5299cos59=0.5150cos60=0.5000 cos61=0.4848cos62=0.4694cos63=0.4539文案大全cos64=0.4383cos65=0.4226cos66=0.4067cos67=0.3907cos68=0.3746cos69=0.3583cos70=0.3420cos71=0.3255cos72=0.3090 cos73=0.2923cos74=0.2756cos75=0.2588cos76=0.2419cos77=0.2249cos78=0.2079文案大全cos79=0.1908cos80=0.1736cos81=0.1564 cos82=0.1391cos83=0.1218 cos84=0.1045cos85=0.0871cos86=0.06973cos87=0.052 cos88=0.0348cos89=0.0174cos90=0 tan1=0.017455tan2=0.034920tan3=0.052407 tan4=0.069926tan5=0.087488tan6=0.105104 tan7=0.122784tan8=0.140540文案大全tan9=0.158384 tan10=0.17632tan11=0.19438tan12=0.21255 tan13=0.23086 tan14=0.24932 tan15=0.26794 tan16=0.28674tan17=0.30573 tan18=0.32491 tan19=0.34432 tan20=0.36397tan21=0.38386 tan22=0.40402tan23=0.42447tan24=0.44522 tan25=0.46630tan26=0.48773an27=0.50952 tan28=0.53170tan29=0.55430tan30=0.57735文案大全tan31=0.60086tan32=0.62486 tan33=0.64940 tan34=0.67450 tan35=0.70020tan36=0.72654tan37=0.75355tan38=0.78128tan39=0.80978 tan40=0.83909tan41=0.86928tan42=0.90040 tan43=0.93251tan44=0.96568tan45=0.99999tan46=1.03553tan47=1.07236tan48=1.11061 tan49=1.15036文案大全tan50=1.19175tan51=1.23489 tan52=1.27994tan53=1.32704tan54=1.3763tan55=1.42814 tan56=1.48256tan57=1.53986 tan58=1.60033tan59=1.66427 tan60=1.73205tan61=1.80404tan62=1.88072tan63=1.96261tan64=2.05030tan65=2.14450tan66=2.24603 tan67=2.35585tan68=2.47508文案大全tan69=2.60508 tan70=2.74747tan71=2.90421tan72=3.07768tan73=3.27085tan74=3.48741tan75=3.73205 tan76=4.01078tan77=4.33147tan78=4.70463 tan79=5.14455tan80=5.67128tan81=6.31375tan82=7.11536tan83=8.14434tan84=9.51436tan85=11.4300文案大全tan86=14.3006tan87=19.0811 tan88=28.6362tan89=57.2899tan90=无取值文案大全。
锐角的三角函数值汇报人:目录•锐角三角函数的基本概念•锐角三角函数的性质•锐角三角函数的实际应用•锐角三角函数的特殊情况•锐角三角函数的图表表示•习题与答案解析01锐角三角函数的基本概念在直角三角形中,正弦函数是锐角的对边与斜边的比值。
定义正弦函数的取值范围是[-1, 1],因为当锐角增加时,正弦函数的值也增加,但最大不超过1。
取值范围正弦函数是周期性的,它的周期是2π,即每隔2π弧度,函数的值重复。
周期性取值范围余弦函数的取值范围是[-1, 1],因为当锐角增加时,余弦函数的值减小,但最小不低于-1。
定义在直角三角形中,余弦函数是锐角的邻边与斜边的比值。
周期性余弦函数也是周期性的,它的周期也是2π,即每隔2π弧度,函数的值重复。
在直角三角形中,正切函数是锐角的对边与邻边的比值。
定义取值范围周期性正切函数的取值范围是负无穷到正无穷,因为正切函数在每一个象限内都是单调递增的。
正切函数不是周期性的,它的图像是一条不断上升的直线。
03020102锐角三角函数的性质周期性正弦函数(sin)和余弦函数(cos)的周期性对于任何实数x,sin(x + 2kπ) = sin x 和 cos(x + 2kπ) = cos x,其中k是整数。
这意味着正弦和余弦函数在每隔2π的间隔上重复它们的值。
正切函数(tan)的周期性tan(x + kπ) = tan x,其中k是整数。
正切函数的周期是π,也就是说,每隔π的角度,正切函数的值会重复。
1度等于π/180弧度,1弧度等于180/π度。
角度与弧度的定义角度转弧度:θ = θ × π/180;弧度转角度:θ = θ × 180/π。
转换公式角度与弧度的转换1 2 3sin x 在区间 [2kπ - π/2, 2kπ + π/2] (k是整数)内递增,在区间 [2kπ + π/2, 2kπ + 3π/2] 内递减。
正弦函数(sin)的单调性cos x 在区间 [2kπ - π, 2kπ] (k是整数)内递增,在区间 [2kπ, 2kπ + π] 内递减。
锐角的三角函数值 第一课时
教学目标:
1、运用三角函数的概念,自主探究求出角的三角函数值
2、熟记三个特殊角的三角函数值,并能准确的加以运用,即给出特殊角能说出它的三角函数值,反过来,给出特殊角的数值,能说出相应的锐角的度数。
教学重难点:
1、重点:三个特殊角的三角函数值极其运用
2、难点:特殊角三角函数值的应用 教学过程: 1、复习回顾:
直角三角形中边与角的关系:锐角三角函数.
在直角三角形中,若一个锐角确定,那么这个角的对边,邻边和斜边之间的比
值也随之确定
2、探究新知: 观察一副三角板:
它们其中有几个锐角?分别是多少度? (1)sin30°,sin45°,sin60° 等于多少?
(2)cos30°,cos45°,cos60° 等于多少?
(3)tan30°,tan45°,tan60° 等于多少?
你能对一直伴随我们学习的这副三角尺所具有的功能来个重新认识和评价?
根据上面的计算,完成下表:<特殊角的三角函数值表>
特殊角的三角函数值表
C
a B
,
sin c a A =
,
cos c
a
B =
,
cos c b A =
b
a A =
tan a
b B =
tan ,
sin c
b B =
3、例题: 例1 计算:
(1)sin30°+cos45°;(2) sin 260°+cos 260°-tan45°. 解: (1)sin30°+cos45° (2) sin 260°+cos 260°-tan45°
♦ 老师提示:sin 260°表示(sin60°)2,cos 260°表示(cos60°)2,其余类推.
4、练习 1.计算:
(1)sin60°-cos45°; (2)cos60°+tan60°;
2.某商场有一自动扶梯,其倾斜角为300,高为7m,扶梯的长度是多少?
5、小结:(以提问抢答的方式回忆)
♦ 特殊角30°,45°,60°角的三角函数值.
6、作业: 课本106页 1,4
1)如图,身高1.5m 的小丽用一个两锐角分别是300和600 的三角尺测量一棵树的
2
22
1+
=
.
2
2
1+=
121232
2
-⎪⎭⎫
⎝⎛+⎪
⎪⎭
⎫
⎝⎛=0
14
143=-+=().
45cos 260sin 45sin 2
230
-+()
.
45cos 260cos 30sin 2
240
20202-+
高度.已知她与树之间的距离为5m,那么这棵树大约有多高?
2)如图,河岸AD,BC 互相平行,桥AB 垂直于两岸.桥长12m,在C 处看桥两端A,B,夹角∠BCA=600
.
求B,C 间的距离(结果精确到1m).
思考问题:如果∠A,∠B 互余,那么sinA 和cosB 有什么关系?
7、个性化设计与反馈:
B C
A
┐。