【教案】 一般角的三角函数值(3)
- 格式:docx
- 大小:14.11 KB
- 文档页数:5
三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。
教 案课题:《任意角的正弦函数、余弦函数、和正切函数》教学目标:1.掌握任意角的三角函数的定义;2.任意角的三角函数和锐角的三角函数的联系和区别;3.理解角的三角函数值与角终边上点的位置无关;4.正弦函数、余弦函数、正切函数的定义域;5.已知角α终边上一点,会求角α的各三角函数值。
教学重点:1. 任意角的三角函数的定义;2. 运用任意角的三角函数的定义求函数值。
教学难点:理解角的三角函数值与角终边上点的位置无关;教学方法:1. 情境教学法;2. 问题驱动教学法。
教学过程:一、 复习引入(情境1)前面我们学习了角的概念的推广,通过推广,使角动了起来,同时把角的范围也突破了0度和360度的界限,角可为任意大小。
这节课我们要研究的问题是任意角的三角函数。
初中阶段我们学习了锐角的三角函数。
【问题1】在直角三角形中,锐角的三角函数是怎样定义的?(学生回答)【问题2】如图,在R t △ABC 中,求sin α,cos α,tan α。
(学生口答)sin α= cos α=tan α=二、 新授知识【目标一】任意角的三角函数的定义是什么?【情境二】事实上,锐角的三角函数定义,可以看作是在角的锐角的一边上任取一点,构造一个直角三角形,用直角三角形的边之比来定义。
我们可以看出,取的点不同,所构造的三角形的大小也不一样。
α的各三角函数值与所构造的三角形的A CB α sin BC AB α=cos AC AB α=tan BC AC α=3 4 535443大小有关吗?(无关,由三角形相似的性质可以得到。
)【情境三】角的概念推广之后,角可以是任意大小,把角放在直角三角形中定义它的三角函数显然已经达不到要求,必须寻求一种新的方法!前面我跟同学们暗示过:今后在研究任意角的相关时,我们常常把角放在坐标系里进行研究!【问题四】任意角在坐标系中是如何放置的?(学生回答)将角的顶点放在原点,始边与x轴正半轴重合。
角的终边可能会落在某一象限内,也可能在坐标轴上。
九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版的全部内容。
20.230°,45°,60°角的三角函数值一、教学目标1.通过探索,理解同角三角函数的关系。
(难点)2。
能够掌握互余两角三角函数的关系及特殊角的三角函数值。
(重点)3.运用所学的知识解决实际的问题。
二、课时安排1课时三、教学重点能够掌握互余两角三角函数的关系及特殊角的三角函数值。
四、教学难点通过探索,理解同角三角函数的关系.五、教学过程(一)导入新课当你走进公园游乐场,看到小孩荡秋千的情景,秋千时高时低,你是不是很想知道秋千摆至最高位置和其摆至最低位置的高度差是多少?如图所示,一个小孩荡秋千,秋千链子的长度为2。
5m,当秋千向两边摆动时,摆角恰好为60°,且两边摆动的角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0。
01m)(二)讲授新课活动1:小组合作1.锐角三角函数的定义直角三角形中边与角的关系:锐角三角函数。
2.在直角三角形中,若一个锐角确定,那么这个角的对边,斜边和邻边之间的比值也随之确定。
sinA=a/c,cosA=b/c,sinB=b/c, cosB=a/c3。
三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。
下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。
众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。
三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。
2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
30度45度60度角的三角函数值教案教案:30度,45度,60度角的三角函数值教学目标:1.理解三角函数的定义和意义;2.掌握30度、45度、60度角的正弦、余弦和正切值;3.了解三角函数在解决实际问题中的应用。
教学准备:1.三角函数表;2.视频或幻灯片展示素材。
教学步骤:第一步:引入(10分钟)1.绘制一个单位圆,并解释三角函数的概念,正弦、余弦和正切的定义。
2.引导学生思考为何要用度数计量角度。
第二步:正弦、余弦和正切的定义(20分钟)1.指导学生参考三角函数表,让他们发现30度、45度、60度角的特殊性。
2.解释正弦、余弦和正切的定义,并引导学生计算出这些角度的三角函数值。
第三步:讨论特殊角的三角函数值(30分钟)1.引导学生思考三角函数在特殊角度上的取值,并整理出有关30度、45度、60度角的三角函数值。
2.通过视频或幻灯片展示特殊角的三角函数值,帮助学生更好地理解和记忆。
第四步:解决实际问题(30分钟)1.提供一些实际问题,让学生应用特殊角的三角函数值解决问题,例如船上的倾斜角度、射击运动中的角度问题等。
2.引导学生思考如何将实际问题转化为三角函数的问题,并找到相应的三角函数值进行计算。
第五步:巩固练习与总结(10分钟)1.提供一些练习题,让学生巩固30度、45度、60度角的三角函数值的计算。
2.总结本节课的内容,让学生分享自己的收获和困惑。
教学扩展:1.引导学生进一步思考三角函数值的变化规律,例如正弦和余弦的周期性。
2.引导学生通过计算机软件或在线资源,探索其他特殊角的三角函数值。
教学评价与反思:1.练习题的完成情况;2.学生对特殊角三角函数值的掌握程度;3.学生对实际问题解决的能力。
总结:通过本节课的学习,学生了解了30度、45度、60度角的三角函数值,并学会了如何利用特殊角的三角函数值解决实际问题。
同时,也引导学生思考三角函数值的定义和变化规律,培养了学生的数学思维和解决问题的能力。
:麦群超度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】1.培养学生把实际问题转化为数学问题的能力.2.培养学生观察、比较、分析、概括的能力.【情感、态度与价值观】经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性,感受数学说理的必要性、说理过程的严谨性,养成科学、严谨的学习态度. 重点难点 【重点】30°、45°、60°角的三角函数值. 【难点】 与特殊角的三角函数值有关的计算. 教学进程 一、复习巩固教师多媒体课件出示:如图所示:在Rt △ABC 中,∠C=90°.(1)a 、b 、c 三者之间的关系是 ; (2)sinA= ,cosA= , tanA= ;sinB= ,cosB= , tanB= .(3)若∠A=30°,则= . 学生回答.二、共同探究,获取新知学生讨论,交流想法.生:我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置B处,这位同学拿起三角尺,使她的视线恰好和斜边重合且过树梢C点,30°角的邻边和水平方向平行,用卷尺测出AB的长度、BE的长度,因为DE=AB,所以只需在Rt△CDA中求出CD的长度即可.师:在Rt△ACD中,∠CAD=30°,AD=BE,BE是已知的,设BE=a米,则AD=a米,如何求CD呢?生:含30°角的直角三角形有一个非常重要的性质:30°的角所对的直角边等于斜边的一半,即AC=2CD,根据勾股定理,得(2CD)2=CD2+a2.解得,CD=a.则树的高度即可求出.师:我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°角的正切值,在上图中,tan30°==,则CD=atan30°,岂不简单!你能求出30°角的三个三角函数值吗?2.讲授新课.(1)探索30°、45°、60°角的三角函数值.师:观察一副三角尺,其中有几个锐角?它们分别等于多少度?生:一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°.师:sin30°等于多少呢?你是怎样得到的?与同伴交流.生:sin30°=.sin30°表示在直角三角形中,30°角的对边与斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边长为a(如图所示),根据“直网友可以在线阅读和下载这些文档让每个人平等地提升自我By :麦群超生:cos30°=2323=a a .tan30°=33313==a a . 师:我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?生:求60°角的三角函数值可以利用求30°角的三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边.利用上图,很容易求得sin60°=2323=a a ,cos60°=212=a a ,tan60°=33=a a .师生共同分析:我们一起来求45°角的三角函数值.含45°角的直角三角形是等腰直角三角形.如图,设其中一条直角边为a,则另一条直角边也为a,斜边为a.由此可求得sin45°=22212==a a, cos45°=22212==aa, tan45°=aa=1. 教师多媒体课件出示:三角函数 角度α sin αcos αtan α30° 21 23 33 45°22221By :麦群超要能够根据30°、45°、60°角的三角函数值说出相应的锐角的大小.为了帮助大家记忆,我们观察表格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?生:30°、45°、60°角的正弦值分母都为2,分子从小到大分别为、、,随着角度的增大,正弦值在逐渐增大.师:再来看第二列的函数值,有何特点呢?生:第二列是30°、45°、60角的余弦值,它们的分母也都是2,而分子从小到大分别为、、,余弦值随角度的增大而减小.师:第三列呢?生:第三列是30°、45°、60°角的正切值,首先45°角是等腰直角三角形中的一个锐角,所以tan45°=1比较特殊.师:很好!掌握了上述规律,记忆就方便多了.下面同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况.相信同学们一定会做得很棒!(2)进一步探究锐角的三角函数值. 如图,在Rt △ABC 中,∠C=90°.∵sinA=c a ,cosA=c b,sinB=c b ,cosB=ca ,∴sinA=cosB,cosA=sinB. ∵∠A+∠B=90°, ∴∠B=90-∠A,即 sinA=cosB=cos(90°-∠A), cosA=sinB=sin(90°-∠A).任意一个锐角的正(余)弦值,等于它的余角的余(正)弦值. 三、例题讲解,巩固新知【例1】 计算:网友可以在线阅读和下载这些文档让每个人平等By (sin60°)2,cos 260°表示(cos60°)2;教师找两生板演,其余同学在下面做,然后集体订正得到:解:(1)sin30°+cos45°=21+22=221 ;(2)sin 260°+cos 260°-tan45° =(23)2+(21)2-1 =43+41-1 =0.【例2】 一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m) 分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知, ∠BOD=60°,OB=OA=OD=2.5 m,∠AOD=21×60°=30°,∴OC=OD ·cos30° =2.5×23≈2.165(m). ∴AC=2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度差约为0.34 m. 四、随堂练习【答案】B2.下列各式中,正确的是( )A.sin20°+sin55°=sin75°B.tan80°-tan50°=tan30°C.2cos60°=1D.cos60°-cos30°=cos30°【答案】C 3.计算:(1)sin60°-tan45°; (2)cos60°+tan60°;(3)sin45°+sin60°-2cos45°.【答案】(1)原式=23-1=223-; (2)原式=21+3=223+;(3)原式=22+23-2×22=223-. 7.某商场有一自动扶梯,其倾斜角为30°,高为7 m.扶梯的长度是多少?【答案】扶梯的长度为=︒30sin 7=14(m),所以扶梯的长度为14 m.五、课堂小结本节课总结如下:1.探索30°、45°、60°角的三角函数值. sin30°=21,sin45°=22,sin60°=23;cos30°=23,cos45°=22,cos60°=21;教学反思本节课的教学中,课堂环节设置齐全,能很好地贯彻执行理解教育,对理解教育的教育模式把控较好;课堂中学生分组很好,能给学生构建一个宽松、和谐的学习环境和氛围;课件制作很好,能很好的配合指导自学书的使用,提高了课堂的效率;学生积极参与,学习积极性较高;课堂习题的设置有梯度,题目能面向全体学生.。
30度45度60度角的三角函数值教案教案:30度,45度,60度角的三角函数值一、教学目标:1.了解和掌握30度,45度,60度角的三角函数值;2.能够灵活运用三角函数值求解实际问题。
二、教学重点和难点:1.掌握30度,45度,60度角的正弦、余弦和正切函数值;2.能够运用三角函数值求解实际问题,拓展思维。
三、教学过程:1.导入(5分钟):通过问题导入,激发学生对三角函数值求解的兴趣。
例如:一棵高大的树离我们有多远?我们应该如何用三角函数值来求解?2.概念解释(10分钟):介绍正弦、余弦、正切的基本概念和定义。
并通过图示解释三角函数值的意义。
3.认识30度、45度、60度角(15分钟):通过正三角形的边长关系引导学生认识30度、45度、60度角的特殊性质,并指导学生观察和推理三角函数值的规律。
4.求解30度、45度、60度角的三角函数值(20分钟):讲解和推导30度、45度、60度角的正弦、余弦、正切函数值,并给予大量的例题训练以巩固。
5.实际应用(20分钟):通过生活中实际问题的引入,让学生运用三角函数值去解决实际问题。
例如:人站在一座山的底部,仰望山顶的高度为100米,那么他离山脚有多远?6.综合运用(20分钟):设计综合运用的练习题,通过多种角度的综合运用,激发学生的思维能力和创造力。
7.拓展思维(10分钟):给予拓展思维问题,引导学生运用已学的知识去解决较为复杂的问题。
8.总结(10分钟):对本堂课所学内容进行总结,并强调重点、难点。
四、教学反思:1.教学过程中,通过问题导入和实际应用,有效激发了学生的学习兴趣,提高了学习的积极性;2.在教学中采用了多种教学方式,例如图示、例题训练以及实际应用和拓展思维问题,使学生能够更加深入理解并运用所学知识;3.在课堂中留出了充足的时间给学生思考和解决问题,有利于培养学生的创造思维和实际运用能力;4.教师在讲解过程中要注重引导学生发现规律和解决问题的思路,培养学生的自主学习能力。
第二十一章解直角三角形 21.2 30°、45°、60°角的三角函数值 第1课时 教学目标1、能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数。
2、能熟练计算含有30°、45°、60°角的三角函数的运算式 重点:熟记30°、45°、60°角的三角函数值,熟练计算含有30°、45°、60°角的三角函数的运算式 难点:30°、45°、60°角的三角函数值的推导过程 教学过程 一、复习引入还记得我们推导正弦关系的时候所到结论吗?即01sin 302=,0sin 452=你还能推导出0sin 60的值及30°、45°、60°角的其它三角函数值吗?二、实践探索让学生画30°45°60°的直角三角形,分别求sin30°、 cos45°、 tan60° 归纳结果三、例题讲解:例1、求下列各式的值:(1)sin30cos60cos30sin 60⨯+⨯;(2)tan 60tan 301sin 45cos 45⨯-+.例2、求适合下列条件的锐角α:10α-=; (2)2cos 112α+=; (3) 3tan α=注意:互余两角的三角函数关系(A 为锐角):SinA=cos(90°-A),即一个锐角的正弦值等于它的余角的余弦值;cosA=sin(90°-A),即一个锐角的余弦值等于它的余角的正弦值.四、随堂练习:1、计算下列各式的值:(1)2tan30sin 45cos60+-; (2)22sin 30cos 30+;(3)1tan 601tan 30-+; (4)tan 45sin 30cos30tan 30++.2、求适合下列条件的锐角α:10α-=; (2) 3tan 0α=; (3) 3α=.五、拓展提高:1、求下列各式的值:(1)02245sin 30sin 245cos 60cos ++ (2)00000000cos60sin 45cos60cos 45cos60sin 45sin 30cos 45+-+-+解 (1)原式=22212222122⨯⨯+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛45212141=++=(2)原式=22321212221222122212221--=-+=+-+-+说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值。
30°,45°,60°的三角函数值教学目标1. 运用三角函数的概念,求出30°、45°、60°角的三角函数值2. 熟记三个特殊锐角的三角函数值,并准确加以运用3. 理解并掌握任意两个锐角互余时,正、余弦之间的关系,并利用这个性质进行简单的三角变换或相应的计算4. 经历用三角函数的定义求出0°、90°角的三角函数值的过程教学重点与难点重点:30°、45°、60°角的三角函数值难点:了解0°、90°角的三角函数值教与学互动设计(一)合作交流,复习回顾在Rt △ABC 中tan A BC a A A AC b ∠===∠的对边的邻边;sin A BC a A AB c∠===的对边斜边; cos A AC b A AB c ∠===的邻边斜边. 练习:在Rt △ABC 中,两直角边AC =6,BC =8,求锐角A 的各个三角函数值.解: 在Rt △ABC 中,两直角边AC =6,BC =8,∴10AB ==84sin BC A === ;63cos AC A ===84tan BC A === ;(二)应用迁移,巩固提高例1.计算:(1)2sin 603tan30tan 45++(2)2cos 45tan 60cos30+(3)22cos 30sin 30+(4)2sin302cos604tan 45++例2.用不等号连接下列式子:(1)tan19 t a n 21 (2)cos18 s i n 18(3)sin 34 c o s 43 (4)tan80 c o t 80(三)发散思维,探索实践在Rt △ABC 中tan cot a A B b ==;cot tan b A B a== sin cos a A B c ==;cos sin b A B c == ∵∠A +∠B =90°∴()sin cos 90A A =-∠ ;()cos sin 90A A =-∠ .如图,AB 为一条固定线段,与其垂直的直线上自下而上分别有C 、D 、E 、……分别与B 连接.EDCB A问题:请根据三角函数的定义归纳三角函数值随角度不断增大的变化情况? 学生观察归纳得出结论:正弦值随着锐角的增大而增大;余弦值随着锐角的增大而减小;正切值随着锐角的增大而增大;问题:如果BC与AC重合,则可以看作∠ABC=0°,你能根据三角函数的定义得出0°角的三角函数值吗?回答:∵AB BC c==,0AC=∴sin00ACBC c===,cos01AB cBC c===,tan00ACAB c===. 按照这种方法,你能否求出90°的三角函数值呢?(四)小结与反思。
任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。
三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满意不等式:即:一角的正弦大于另一个角的余弦。
2、若,则,3、的图象的对称中心为( ),对称轴方程为。
4、的图象的对称中心为( ),对称轴方程为。
5、及的图象的对称中心为( )。
6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中)。
7、帮助角公式: ,其中。
帮助角的位置由坐标打算,即角的终边过点。
8、时, 。
9、。
其中为内切圆半径, 为外接圆半径。
特殊地:直角中,设c为斜边,则内切圆半径,外接圆半径。
10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。
11、解题时,条件中若有消失,则可设,则。
12、等腰三角形中,若且,则。
13、若等边三角形的边长为,则其中线长为,面积为。
14、;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不肯定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x 轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特别角的弧度制。
在弧度制下,扇形弧长公式l=|α|r,扇形面积公式,其中α为弧所对圆心角的弧度数。
30°、 45°、 60°角的三角函数值教课设计课题30°、 45°、 60°角的三角函数值课型新讲课主备课教师使用者知识与技术:1.经历研究 30°、 45°、 60°角的三角函数值的过程,可以进行相关的推理 . 进一步领会三角函数的意义 .2. 可以进行30°、 45°、 60°角的三角函数值的计算 .3. 可以依据30°、 45°、 60°的三角函数值说明相应的锐角的大小.教课目标教课要点教课难点易错点教课方法教课步骤复习过程与方法目标:1.经历研究 30°、 45°、 60°角的三角函数值的过程,发展学生察看、剖析、发现的能力 .2.培育学生把实质问题转变为数学识题的能力.感情态度目标:1. 踊跃参加数学活动,对数学产生好奇心. 培育学生独立思虑问题的习惯 .2. 在数学活动中获取成功的体验,锻炼战胜困难的意志,成立自信心.1.研究 30°、 45°、 60°角的三角函数值 .2. 可以进行含30°、 45°、 60°角的三角函数值的计算.进一步领会三角函数的意义.计算出差错合作研究教课准备一副三角尺多媒体演示主备人教课过程设计设计企图复备栏学生回想并回答,为本课的学1.直角三角形两锐角之间的关系2.直角三角形边角之间的关系习供给迁徙或类比方法 .【讲堂引入】已知:身高 1.75m 的小丽用一个两锐角分别为30°和 60°活动的三角尺丈量一棵树的高度(∠ A= 30°)已知她与树之间经过发现解决此一:的距离为 5m ,那么这棵树大概有多高?(结果精准到 0.1m )问题,引出本节课创建内容,激发学生的情境学习兴趣 .导入新课活动二:实践研究沟通新知活动三:开放训练表现应用察看一副三角板:1.它们此中有几个锐角 ?分别是多少度 ?2.教师指引达成 30°角的三角函数值3.学生独立达成 45°, 60°角的三角函数值4.例题解说:例 1 计算 :(1)sin30° +cos45°(2)sin 260°+ cos 260°-tan 45°.例 2 如图 : 一个儿童荡秋千 , 秋千链子的长度为 2.5m, 当秋千向两边摇动时 , 摆角恰巧为 600, 且两边摇动的角度同样 , 求它摆至最高地点时与其摆至最低地点时的高度之差( 结果精准到 0.01m).问题解决:已知:身高 1.75m 的小丽用一个两锐角分别为30°和 60°的三角尺丈量一棵树的高度(∠ A= 30°)已知她与树之间的距离为 5m ,那么那么这棵树大概有多高?(结果精准到)培育学生运用类比思想,经过自主研究得出结论的能力。
30°45°60°角的三角函数值教案教案名称:三角函数值的探索,30°、45°、60°角教学目标:1.了解三角函数的定义和性质;2.理解30°、45°、60°角的特殊性质;3.掌握30°、45°、60°角的正弦、余弦和正切值。
教学重点:1.30°、45°、60°角的特殊性质;2.正弦、余弦和正切值的计算。
教学准备:1.教材:三角函数的相关知识;2.教具:投影仪和电脑、计算器。
教学步骤:一、导入与引入:(15分钟)1.利用投影仪和电脑,播放三角函数的定义和性质的动画视频,引起学生对三角函数的兴趣和好奇心。
2.引导学生思考:三角函数的定义和性质在现实生活中有什么应用?举例讲解。
二、引入知识点:(15分钟)1.引导学生思考:三角函数是有关于角的函数,那么一个角的大小会对三角函数的值产生什么影响?请同学们讨论并做出推测。
2.讲解:角的大小对于三角函数的值有着重要的影响,特别是30°、45°、60°角的正弦、余弦和正切值。
这三个角的特殊性质对于我们的生活和实际应用有着重要的意义,接下来我们将重点讲解这三个角的三角函数值。
三、探索30°、45°、60°角的三角函数值:(30分钟)1.讲解:30°角是一个比较小的角,它的正弦、余弦和正切值可以通过简单的计算得到。
- 正弦值:sin(30°) = 1/2;- 余弦值:cos(30°) = √3/2;- 正切值:tan(30°) = 1/√32.讲解:45°角是一个特殊的角,它的正弦、余弦和正切值与其角度的比例关系比较简单。
- 正弦值:sin(45°) = √2/2;- 余弦值:cos(45°) = √2/2;- 正切值:tan(45°) = 13.讲解:60°角是一个较大的角,它的正弦、余弦和正切值也可以通过计算得到。
4.3 任意角的三角函数教学目标(1)掌握任意角的正弦、余弦、正切的定义,了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(2)了解余切、正割、余割的定义;掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号;(3)掌握公式一,会运用它们把求任意角的正弦、余弦、正切函数值分别转化为求0°到360°的这三种三角函数值;(4)通过树立映射的观点,建立正确理解三角函数是以实数为自变量的函数的能力;(5)体会同一角的三角函数值,不因在其终边上取点的变化而变化,从而启示在研究问题时,要能在千变万化中,抓住事物的本质属性,不被表面现象所迷惑.教学建议一、知识结构先通过平面直角坐标系定义了任意角的正弦、余弦、正切函数,并利用与单位圆有关的线段,将这些函数值分别用它们的几何形式表示出来;然后定义了任意角的正切、正割、余割函数.接着着重研究正弦、余弦、正切函数的定义域和这三种函数的值在各个象限的符号;并根据三角函数的定义,得出“终边相同的角的同一三角函数的值相等”的结论及把此结论表示成第一组诱导公式(公式一).二、重点、难点分析重点是任意角的正弦、余弦、正切的定义及在各象限内的符号和定义域,诱导公式一;难点是用单位圆中的有向线段表示角的正弦、余弦、正切值.(1)定义中的六个比值等,与点在终边上的位置无关,只与角的大小有关;它们都可以看作以角为自变量,以比值为函数值的函数,分别称为正弦函数,余弦函数等.(2)三角函数在各象限内的符号,是根据三角函数的定义,终边上的点坐标符号来确定的,十分重要,在今后的学习中经常用到.(3)定义域也是根据三角函数的定义,要求其有意义,即分母不为0而得到角的取值范围.(4)诱导公式(一)也是利用任意三角函数的定义,结合终边相同的角定义得出,即终边相同的角的同名三角函数值相等:.(5)三角函数线是表示一个角三角函数值的几何方法,它们的大小即长度等于的三角函数值的符号.特别注意的是它们均有方向,即起点和终点,记法:当两个端点都在轴上时,以原点为起点(余弦线),当两个端点有一个在轴上时,以轴上的点为起点(正弦线、余弦线),特别是正弦线和正切线在后面三角函数的图象中,用来作出正弦曲线和正切曲线,所必须清楚其意义.三、关于任意角的三角函数的教法建议(1)由三角函数的定义可知,若已知角终边上一点,便可求出其各三角函数值,或通过三角函数定义,可知其二求其一.三角函数的符号与角所在象限有关,采用上图来记忆.(2)必须讲清并强调这六个比值的大小都与点在角的终边上的位置无关,只与角的大小有关,即它们都是以角为自变量,以比值为函数值的函数.(3)教学中应注意,语言要准确严密.首先“六种函数统称为三角函数”这句话,说明不是这六种函数的函数,都不能说是三角函数.(4)教学中,应当引导学生深刻认识三角函数符号的含义.如,这个符号,它表示,即角的正弦,不能把看成与的乘积,犹如不能看成与的乘积一样,离开了自变量,符号就没有意义了.同时也应注意,每个函数记号的第一个字母“”或“”或“”都不能大写,不能让学生养成写“”、“”等习惯.教学设计示例(一)任意角的三角函数教学目标:1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.2.掌握已知角终边上一点坐标,求四个三角函数值.(即给角求值问题)教学重点:任意角的三角函数的定义.教学难点:任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.教学用具:直尺、圆规、投影仪.教学步骤:1.设置情境角的范围已经推广,那么对任一角是否也能像锐角一样定义其四种三角函数呢?本节课就来讨论这一问题.2.探索研究(1)复习回忆锐角三角函数我们已经学习过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值,定义了角的正弦、余弦、正切、余切的三角函数,本节课我们研究当角是一个任意角时,其三角函数的定义及其几何表示.(2)任意角的三角函数定义如图1,设是任意角,的终边上任意一点的坐标是,当角在第一、二、三、四象限时的情形,它与原点的距离为,则.定义:①比值叫做的正弦,记作,即.②比值叫做的余弦,记作,即.图1③比值叫做的正切,记作,即.同时提供显示任意角的三角函数所在象限的课件提问:对于确定的角,这三个比值的大小和点在角的终边上的位置是否有关呢?利用三角形相似的知识,可以得出对于角,这三个比值的大小与点在角的终边上的位置无关,只与角的大小有关.请同学们观察当时,的终边在轴上,此时终边上任一点的横坐标都等于0,所以无意义,除此之外,对于确定的角,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.④比值叫做的余切,记作,则.⑤比值叫做的正割,记作,则.⑥比值叫做的余割,记作,则.可以看出:当时,的终边在轴上,这时的纵坐标都等于0,所以与的值不存在,当时,的值不存在,除此之外,对于确定的角,比值,,分别是一个确定的实数,所以我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为函数值的函数,以上六种函数统称三角函数.(3)三角函数是以实数为自变量的函数对于确定的角,如图2所示,,,分别对应的比值各是一个确定的实数,因此,正弦,余弦,正切分别可看成从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,当采用弧度制来度量角时,每一个确定的角有惟一确定的弧度数,这是一个实数,所以这几种三角函数也都可以看成是以实数为自变量,以比值为函数值的函数.即:实数→角(其弧度数等于这个实数)→三角函数值(实数)(4)三角函数的一种几何表示利用单位圆有关的有向线段,作出正弦线,余弦线,正切线,如下图3.图3设任意角的顶点在原点,始边与轴的非负半轴重合,终边与单位圆相交于点,过作轴的垂线,垂足为;过点作单位圆的切线,这条切线必然平行于轴,设它与角的终边(当为第一、四象限时)或其反向延长线(当为第二、三象限时)相交于,当角的终边不在坐标轴上时,我们把,都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:这几条与单位圆有关的有向线段叫做角的正弦线、余弦线、正切线.当角的终边在轴上时,正弦线、正切线分别变成一个点;当角的终边在轴上时,余弦线变成一个点,正切线不存在.(5)例题讲评【例1】已知角的终边经过,求的六个三角函数值(如图4).解:∵∴提问:若将改为,如何求的六个三角函数值呢?(分,两种情形讨论)【例2】求下列各角的六个三角函数值(1);(2);(3).解:(1)∵当时,,∴,,不存在,,不存在(2)∵当时,,∴,不存在不存在(3)当时,,∴不存在不存在【例3】作出下列各角的正弦线,余弦线,正切线.(1);(2).解:,的正弦线,余弦线,正切线分别为.【例4】求证:当为锐角时,.证明:如右图,作单位圆,当时作出正弦线和正切线,连∵∴∴利用三角函数线还可以得出如下结论的充要条件是为第一象限角.的充要条件是为第三象限角.练习(学生板演,利用投影仪)(1)角的终边在直线上,求的六个三角函数值.(2)角的终边经过点,求,,,的值.(3)说明的理由..解答:(1)先确定终边位置①如在第一象限,在其上任取一点,,则,②如在第三象限,在终边上任取一点,则,(2)若,不妨令,则在第二角限∴(3)在终边上任取一点,因为与终边相同,故也为角终边上一点,所以成立.说明:以后会知道,求三角函数值的方法有多种途径.用定义求角的三角函数值,是基本方法之一.当角终边不确定时,要首先确定终边位置,然后再在终边上取一个点来计算函数值.3.反馈训练(1)若角终边上有一点,则下列函数值不存在的是().A.B.C.D.(2)函数的定义域是().A.B.C.D.(3)若,都有意义,则.(4)若角的终边过点,且,则.参考答案:(1)D;(2)B;(3)或8,说明点在半径为的圆上;(4)-6.4.本课小结利用定义求三角函数值,首先要建立直角坐标系,角顶点和始边要按既定的位置设置.角的三角函数定义式,其实是比例的化身,它的背后是相似形在支称着,不过这个定义具有一般性,如轴上角的三角函数,如果没有定义作为论据,欲求其函数性就不是很容易.分类讨论(角位置)是三角函数求值过程中,使用频率非常高的一个数学思想,而分类标准往往是四个象限及四个坐标半轴.课时作业:1.已知角的终边经过下列各点,求角的六个三角函数值.(1)(2)2.计算(1)(2)(3)(4)3.化简(1)(2)(3)(4)参考答案:1.(1),,,,,(2),,,,,2.(1)-2;(2)8;(3)-1;(4)3.(1)0;(2);(3);(4)教学设计示例(二)任意角的三角函数第二课时教学目标:1.根据任意角三角函数定义,归纳出三角函数在各象限的符号,并能根据角的某种函数值符号,反馈出可能存在的象限.2.掌握诱导公式一,并能运用诱导公式把角的三角函数值转化为中角的三角函数值.教学重点:终边相同的角的同一三角函数值相等.教学难点:运用诱导公式把角的三角函数值转化为中角的三角函数值.教学用具:直尺、圆规、投影仪.教学过程1.设置情境设角均是第二象限角,依三角函数定义,为了求的四个三角函数值,只要分别在终边上取点、,由比值,,,,及,,,可知,这两组比值虽然不一定相等,但由于均在第二象限,故同号,同号,因而可见,的正弦、余弦、正切、余切值,符号是对应相同时。
28.1.4 一般角的三角函数值
一、教学目标
(一)知识与技能
使学生会查“正弦和余弦表”、“正切和余切表”,即由已知锐角求正弦、余弦、正切、余切值.使学生会根据一个锐角的正弦、余弦、正切、余切值,查出这个锐角的大小.
(二)过程与方法
逐步培养学生观察、比较、分析、概括等逻辑思维能力.
(三)情感态度与价值观
培养学生良好的学习习惯.
二、重、难点
重点:“正弦和余弦表” 、“正切和余切表”的查法.
难点:当角度在0°~90°间变化时,正弦值、余弦值、正切值、余切值随角度变化而变化的规律.
三、教学步骤
(一)明确目标
1.复习提问
1)30°、45°、60°的正弦值和余弦值、正切值和余切值各是多少?请学生口答.
2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?一个锐角的正切(余切)与其余角的余切(正切)之间具有什么关系.
(二)整体感知
我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值、正切值和
余切值,但在生产和科研中还常用到其他锐角的正弦值和余弦值、正切值和余切值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值、正切值和余切值(一般是含有四位有效数字的近似值),列成表格——
正弦和余弦表、正切和余切表.本节课我们来研究如何使用正弦和余弦表、正切和余切表.
(三)重点、难点的学习与目标完成过程
1.“正弦和余弦表”简介
学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.
(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.
2)表中角精确到1′,正弦、余弦值有四位有效数字.
2.请学生观察“正切和余切表”的结构,并用语言加以概括.
答:正切表在76°~90°无修正值,余切表在0°~14°无修正值.其余与正弦和余弦表类似,对于正切值,随角度的增大而增大,随角度的减小而减小,而余切值随角度的增大而减小,随角度的减小而增大.
3.凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.
例1 查表求37°26′的正弦值.
学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.607
4减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).
解:37°24′=0.6074.
角度增2′值增0.0005
37°26′=0.6079.
在查表中,还应引导学生查得:
0°=0,90°=1.
根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.
可引导学生查得:
0°=1,90°=0.
根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.
例2 已知=0.2974,求锐角A.
学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=17°18′,以培养学生语言表达能力.
解:查表得17°18′=0.2974,所以
锐角A=17°18′.
例3 已知=0.7857,求锐角A.
分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师最好让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.
若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7 857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=38°12′.但=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.
解:查表得38°12′=0.7859,所以:
0.7859=38°12′.
值减0.0002角度增1′
0.7857=38°13′,
即锐角A=38°13′.
例2 查表求下列正切值或余切值.
(1)53°49′;(2)14°32′.
学生有查“正弦和余弦表”的经验,又了解了“正切和余切表”的结构,完全可自行查表.在学生得出答案后,请一名学生讲解“我是怎样查表的”,教师板书:
解:(1)53°48′=1.3663
角度增1′值减0.0008.
53°49′=1.3671;
(2)14°30′=3.867
角度增2′值增0.009.
14°30′=3.858.
在讲解示范例题后,应请学生作一小结:查锐角的正切值类似于查正弦值,应“顺”着查,若使用修正值,则角度增加时,相应的正切值要增加,反之,角度减小时,相应的正切值也减小;查余切表与查余弦表类似,“倒”着查,在使用修正值时,角度增加,就相应地减去修正值,反之,角度减小,就相应地加上修正值.
(四)总结与扩展
1.请学生总结
本节课主要讨论了“正弦和余弦表”、“正切和余切表”的查法.了解正弦值,余弦值,正切值,余切值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值、正切值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值、余弦值随着角度的增大而减小,随着角度的减小而增大.
2.“正弦和余弦表” 、“正切和余切表”的用处除了已知锐角查其正、余弦(切)值外,还可以已知正、余弦(切)值,求锐角,同学们可以试试看.
四、布置作业。