考研数学高数公式:函数与极限解读
- 格式:doc
- 大小:15.50 KB
- 文档页数:5
考研高等数学常用公式及函数图象导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:cos cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβα-+=+-+=--+=+βαβαβαβαβαβαβαβαβαtg tg tg tg tg ⋅±=±=±±=±1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学:高数重要公式总结(三角函数)考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。
凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。
两个重要极限三角函数公式诱导公式凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!和差角公式和差化积公式凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。
考研生加油哦!凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!凯程考研:凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;凯程考研的价值观:凯旋归来,前程万里;信念:让每个学员都有好最好的归宿;使命:完善全新的教育模式,做中国最专业的考研辅导机构;激情:永不言弃,乐观向上;敬业:以专业的态度做非凡的事业;服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。
扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。
如何选择考研辅导班:在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
考研数学高数知识点归纳考研数学是众多考研科目中的重要一环,高等数学作为数学基础课程,其知识点广泛且深入。
以下是对考研数学高数知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和分类- 极限的定义、性质和求法- 无穷小的比较和等价无穷小替换- 函数的连续性、间断点及其分类- 连续函数的性质和应用二、导数与微分- 导数的定义、几何意义和物理意义- 基本初等函数的导数公式- 高阶导数和隐函数的求导法则- 微分的概念、几何意义和应用- 导数的四则运算和复合函数的求导法则三、微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式和麦克劳林公式- 导数在几何上的应用,如曲线的切线、法线和弧长- 导数在物理上的应用,如速度、加速度和变力做功四、不定积分与定积分- 不定积分的定义和基本计算方法- 定积分的定义、性质和计算- 牛顿-莱布尼茨公式- 定积分在几何和物理上的应用,如面积、体积和功五、多元函数微分学- 多元函数的概念和极限- 偏导数和全微分- 多元函数的极值问题- 多元函数的泰勒展开六、重积分与曲线积分、曲面积分- 二重积分和三重积分的定义和计算方法- 曲线积分和曲面积分的计算- 格林公式、高斯公式和斯托克斯定理七、无穷级数- 常数项级数的收敛性判别- 幂级数和函数的泰勒级数展开- 函数项级数的一致收敛性- 傅里叶级数和傅里叶变换八、常微分方程- 一阶微分方程的求解方法,如分离变量法、变量替换法等- 高阶微分方程的求解,如常系数线性微分方程- 微分方程的物理背景和应用结束语:考研数学高数部分要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。
通过对上述知识点的系统学习和深入理解,考生可以为考研数学的高数部分打下坚实的基础。
希望每位考生都能在考研数学的征途上取得优异的成绩。
第一讲:极限与函数数列极限:数列极限的严格定义不需要掌握,但需要理解如下定理:lim {}n n n x a x a →∞=⇔-是无穷小量数列极限的四则运算:设lim n n x x →∞=,lim n n y y →∞=,则:lim()n n n x y x y →∞±=±、lim()n n n x y xy →∞=、lim()(0)n n n x xy y y→∞=≠ 推论:若lim 0n n x →∞=,数列{}n y 有界,则lim 0n n n x y →∞=例:计算下列极限n n n n n 323)1(lim ++-∞→ )12(lim --+∞→n n n n数列极限的性质唯一性:如果数列{}n x 收敛,则其期限必唯一 有界性:如果数列{}n x 收敛,则该数列必定有界保序性:设数列{}n x 、{}n y 均收敛,且当n 足够大时,有n n x y >,则必有lim lim n n n n x y →∞→∞≥保序性的推论(保号性):设数列{}n x 收敛,且当n 足够大时,有0n x >,则必有lim 0n n x →∞≥注意:1、后面的不等式并不是严格的不等号;2、保序性的逆命题不一定成立思考:求如下几个数列的极限:1111{sin }{sin }{sin }n n n n n n、、数列极限的三个常用定理:数列与其子列的关系:如果数列{}n x 收敛,则其任意子列均收敛,且收敛于同一极限lim n n x →∞;如果数列{}n x 中存在两个子列收敛于不同的极限,或是一个收敛一个发散到无穷大,则{}n x必发散。
例:计算(1)1lim[]nn n n-→∞+夹逼准则:如果当n 足够大时,数列{}n x 、{}n y 、{}n z 满足不等式n n n x y z ≤≤,且{}n x 、{}n z 收敛于同一极限,则{}n y 必收敛于该极限例:计算下列极限1、设0>>>c b a ,nn n n n c b a x ++=,求222111lim (1)(2)nn n n →∞⎡⎤+++⎢⎥+⎣⎦2、2lim n n →∞⎛⎫+++ 3、222111lim (1)(2)n n n n →∞⎡⎤+++⎢⎥+⎣⎦4、(思考)⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n (需要用定积分来求)单调有界数列必收敛定理:如果数列{}n x 单调递增且有上界,或是单调递减且有下界,则{}n x 必收敛。
考研高数知识点总结高等数学是考研数学的一个重要组成部分,考研高数考察的内容涉及广泛,难度较大。
要想在考研高数中取得好成绩,必须深入了解各种知识点,并且掌握适当的解题方法。
下面就对考研高数的知识点进行总结,以供考生参考。
一、函数与极限1.1 函数的基本概念函数是一种特殊的关系,即每个自变量对应且只对应一个因变量。
1.2 极限的概念极限是函数在自变量趋于某个值时,相应因变量的趋势。
1.3 极限的性质极限具有唯一性、局部有界性等性质。
1.4 极限的计算利用夹逼定理、洛必达法则等方法来计算极限。
二、导数与微分2.1 导数的概念导数表示函数在某一点的瞬时变化率。
2.2 导数的计算利用极限定义、导数的四则运算等方法来计算导数。
2.3 导数的应用利用导数求函数的单调性、凹凸性、极值等。
2.4 微分的概念微分是导数的几何意义。
三、积分与定积分3.1 不定积分不定积分是积分的基本形式,可以求出函数的原函数。
3.2 定积分定积分可以表示函数在某一区间上的总变化量。
3.3 定积分的计算利用牛顿—莱布尼茨公式、换元积分法、分部积分法等方法来计算定积分。
四、级数4.1 级数的概念级数是无穷项数列部分和的极限。
4.2 级数收敛与发散讨论级数的收敛性是比较重要的知识点。
4.3 常见级数如调和级数、等比级数、幂级数等。
五、常微分方程5.1 常微分方程的基本概念包括常微分方程的解、初值问题等内容。
5.2 一阶常微分方程一阶微分方程的解法包括可分离变量法、齐次方程、一阶线性微分方程等。
5.3 高阶常微分方程高阶微分方程的解法包括常系数线性齐次微分方程、常系数线性非齐次微分方程等。
总结:考研高数是数学中一个重要的分支,需要考生深入理解各种知识点,并且熟练掌握解题方法。
希望以上内容能够帮助考生更好地备考考研高数。
考研高数知识点总结一、极限与连续1.1 函数的极限1.1.1 函数的极限定义1.1.2 函数极限的性质1.1.3 函数的无穷极限1.1.4 无穷小与无穷大1.2 极限运算法则1.2.1 两个重要极限1.2.2 无穷大与无穷小的比较1.3 一元函数的连续1.3.1 连续函数的定义1.3.2 连续函数的性质1.3.3 初等函数的连续性1.4 中值定理1.4.1 Rolle定理1.4.2 拉格朗日中值定理1.4.3 柯西中值定理1.5 L'Hospital法则二、导数与微分2.1 函数的导数2.1.1 导数的定义2.1.2 导数的几何意义2.1.3 导数的物理意义2.1.4 函数的可导性2.2 导数的运算法则2.2.1 基本初等函数的导数2.2.2 复合函数的求导法则2.2.3 反函数的导数2.2.4 隐函数的导数2.3 高阶导数2.4 微分2.4.1 微分的概念2.4.2 微分的运算法则2.4.3 隐函数的微分2.4.4 高阶微分三、不定积分3.1 不定积分的概念3.2 不定积分的运算法则3.2.1 基本初等函数的积分3.2.2 第一换元法3.2.3 第二换元法3.2.4 分部积分法3.3 不定积分的应用3.3.1 函数的原函数3.3.2 定积分与不定积分的关系3.3.3 牛顿-莱布尼茨公式四、定积分与定积分的应用4.1 定积分的概念4.2 定积分的运算法则4.2.1 定积分与不定积分的关系4.2.2 定积分的性质4.2.3 定积分中值定理4.3 定积分的应用4.3.1 几何应用4.3.2 物理应用4.3.3 概率应用4.3.4 广义积分五、微分方程5.1 微分方程的概念5.2 微分方程的解5.2.1 变量分离法5.2.2 齐次方程5.2.3 一阶线性微分方程5.2.4 一阶齐次线性微分方程5.2.5 可降阶的高阶微分方程5.3 微分方程的应用5.3.1 函数图形的性质5.3.2 物理模型5.3.3 生物模型5.3.4 经济模型六、无穷级数6.1 级数的概念6.2 收敛级数的判别法6.2.1 正项级数6.2.2 任意项级数6.2.3 幂级数6.3 级数的应用6.3.1 函数展开成级数6.3.2 物理应用6.3.3 工程应用七、多元函数微分学7.1 多元函数的概念7.2 偏导数7.2.1 偏导数的定义7.2.2 偏导数的几何意义7.2.3 高阶偏导数7.3 方向导数7.3.1 方向导数的概念7.3.2 方向导数的计算7.3.3 方向导数与梯度7.4 多元函数的极值7.4.1 极值的判别法则7.4.2 拉格朗日乘数法7.5 多元函数的微分学应用7.5.1 向量值函数的导数7.5.2 隐函数的偏导数这些是考研高数知识点的一些主要内容,希望对大家的学习有所帮助。
考研高数公式总结高等数学是考研数学中的一门重要课程,也是考研数学中需要记住大量公式和定理的科目之一、下面是我总结的一些高等数学中常用的公式和定理,希望对考研学子们的备考能有所帮助。
一、极限和连续1.重要的基本极限公式- $\lim\limits_{x\to0}\frac{\sin{x}}{x}=1$- $\lim\limits_{x\to0}\frac{e^x-1}{x}=1$- $\lim\limits_{x\to+\infty}(1+\frac{1}{x})^x=e$2.微分中的基本极限- $\lim\limits_{\Delta x\to0}\frac{\Delta y}{\Deltax}=\frac{dy}{dx}$- $\lim\limits_{\Delta x\to0}\frac{e^{\Delta x}-1}{\Delta x}=1$3.连续性定理-函数$f(x)$在$x_0$处连续的充分必要条件是:- $\lim\limits_{x\to x_0} f(x)=f(x_0)$- $\lim\limits_{x\to x_0^-} f(x)=\lim\limits_{x\to x_0^+} f(x)=f(x_0)$二、导数和微分1.基本导数公式-$(c)'=0$- $(x^n)'=nx^{n-1}$ (n为自然数)-$(e^x)'=e^x$- $(\ln{x})'=\frac{1}{x}$2.常见运算法则-$(u+v)'=u'+v'$- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$ (v≠0)3.高阶导数-若$f'(x)$存在,则$f''(x)=(f'(x))'$4.微分公式- $dy=f'(x)dx$三、积分与微积分基本定理1.基本积分公式- $\int 0dx=C$- $\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (n≠-1)2.基本积分的线性运算- $\int kf(x)dx=k\int f(x)dx$- $\int (f(x)+g(x))dx=\int f(x)dx+\int g(x)dx$3.二次换元法- $\int f(g(x))g'(x)dx=\int f(u)du$4.牛顿-莱布尼茨公式- $\int_a^bf(x)dx=F(b)-F(a)$四、级数1.等差数列-$a_n=a_1+(n-1)d$- $S_n=\frac{n}{2}[2a_1+(n-1)d]$- $a_n=\frac{a_{n-1}+a_{n+1}}{2}$2.等比数列-$a_n=a_1q^{n-1}$(q≠0)- $S_n=\frac{a_1(q^n-1)}{q-1}$ (q≠1)3.幂级数- $S_n=\sum\limits_{k=1}^{n} a_k=a_1+a_2+a_3+...+a_n$五、数列和函数的收敛性1.收敛与极限-数列$\{a_n\}$的收敛定义:当无论取多大的正数$ε$,都存在一个正整数$N$,当$n>N$时,总有$,a_n-A,<ε$成立,则称$\{a_n\}$收敛于$A$。
考研—高数重要公式总结高等数学是考研数学中的一门重要课程,掌握高等数学的重要公式对于考研复习非常重要。
下面是一些高等数学中的重要公式总结。
1.极限与连续①极限的定义:设函数f(x)在点x处的一个邻域内有定义,则如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得对于所有满足0 < ,x - x0,< δ的x都有,f(x) - A,< ε,则称函数f(x)在点x0处极限为A,记为lim┬(x→x0)〖f(x)=A〗。
②极限四则运算:设lim┬(x→x0)〖f(x)=A,lim┬(x→x0)g(x)=B〗,则有lim┬(x→x0)〖[f(x)±g(x)]=A±B〗,lim┬(x→x0)[f(x)g(x)]=AB,lim┬(x→x0)〖[f(x)÷g(x)]=A÷B〗。
③自然对数e的性质:lim┬((n→∞))(1+1/n)^n=e,lim┬(x→∞)(1+1/x)^x=e。
④l'Hopital法则:设函数f(x)、g(x)在点x0的一些邻域内有定义,并且满足lim┬(x→x0)〖f(x)〗=lim┬(x→x0)〖g(x)〗=0或∞。
如果lim┬(x→x0)〖f'(x)/g'(x)〗存在或为∞,则有lim┬(x→x0)〖f(x)/g(x)〗=lim┬(x→x0)〖f'(x)/g'(x)〗。
⑤定义证明巧妙极限:lim┬(x→0)〖(1+x)^(1/x)〗=e。
⑥杨辉三角中的数列极限调整:lim┬((n→∞))〖(1+1/n)^(n(n+1)/2)〗=e。
2.导数与微分①导数定义:设函数y=f(x)在点x0处有定义,如果当自变量x在x0处取得其中一个邻域内时,相应的函数值f(x)的增量与自变量的增量之比的极限存在,那么就称函数y=f(x)在点x0处可导,这个极限称为函数在点x0处的导数,记作f'(x0),即f'(x0)=lim┬(Δx→0)〖(Δy)/(Δx)〗。
考研数学高数公式:函数与极限
第一章:函数与极限
第一节:函数
函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。
基础阶段:
1.理解函数的概念,能在实际问题的背景下建立函数关系;
2.掌握并会计算函数的定义域、值域和解析式;
3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质;
4.理解复合函数和反函数的概念,并会应用它们解决相关的问题;
强化阶段:
1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示;
2.掌握基本初等函数的性质及其图形,了解初等函数的概念。
冲刺阶段:
1.综合应用函数解决相关的问题;
2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。
第二节:极限
极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。
在考试大纲中明确要求考生熟练掌握的基本技能之一。
虽在考试中站的分值不大。
但是在其他的试题中得到广泛应用。
因此这部分学习直接营销到整个学科的复习结果
基础阶段
1.了解极限的概念及其主要的性质。
2.会计算一些简单的极限。
3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。
强化阶段:
1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列
极限和函数极限的概念(数三;
▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式;
3.会解决与极限的计算相关的问题(确定极限中的参数;
4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。
冲刺阶段:
深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。
函数与极限的基本公式与定理
1、函数的有界性在定义域内有f(x≥K1则函数f(x在定义域上有下界,K1为下界;如果有f(x≤K2,则有上界,K2称为上界。
函数f(x在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1, 1,-1,(-1n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x有没有极限与f(x在点x0有没有定义无关。
定理(极限的局部保号性如果lim(x→x0时f(x=A,而且A>0(或A<0,就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x>0(或f(x>0,反之也成立。
函数f(x当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即
f(x0-0=f(x0+0,若不相等则limf(x不存在。
一般的说,如果lim(x→∞f(x=c,则直线y=c是函数y=f(x的图形水平渐近线。
如果lim(x→x0f(x=∞,则直线x=x0是函数y=f(x图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x≥F2(x,而limF1(x=a,limF2(x=b,那么a≥b.
5、极限存在准则两个重要极限lim(x→0(sinx/x=1;lim(x→∞(1+1/xx=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么
limxn=a,对于函数该准则也成立。
单调有界数列必有极限。
6、函数的连续性设函数y=f(x在点x0的某一邻域内有定义,如果函数f(x当
x→x0时的极限存在,且等于它在点x0处的函数值f(x0,即lim(x→x0f(x=f(x0,那么就称函数f(x在点x0处连续。
不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0f(x不存在;3、虽在x=x0有定义且lim(x→x0f(x存在,但lim(x→x0f(x≠f(x0时则称函数在x0处不连续或间断。
如果x0是函数f(x的间断点,但左极限及右极限都存在,则称x0为函数f(x的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点。
非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点。
定理有限个在某点连续的函数的和、积、商(分母不为0是个在该点连续的函数。
定理如果函数f(x在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y在对应的区间Iy={y|y=f(x,x∈Ix}上单调增加或减少且连续。
反三角函数在他们的定义域内都是连续的。
定理(最大值最小值定理在闭区间上连续的函数在该区间上一定有最大值和最小值。
如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。
定理(有界性定理在闭区间上连续的函数一定在该区间上有界,即m≤f(x≤M.定理(零点定理设函数f(x在闭区间[a,b]上连续,且f(a与f(b异号(即f(a×f(b<0,那么在开区间(a,b内至少有函数f(x的一个零点,即至少有一点ξ(a<ξ
推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。