最优控制-第七章-动态规划法
- 格式:ppt
- 大小:639.00 KB
- 文档页数:68
华中科技大学现代控制理论--动态规划与离散系统最优控制Ch.7 最优控制原理目录 1/1 目录 7.1 最优控制概述 7.2 变分法 7.3 变分法在最优控制中的应用 7.4 极大值原理7.5 线性二次型最优控制 7.6 动态规划与离散系统最优控制 7.7 Matlab问题本章小结动态规划与离散系统最优控制 1/3 7.6 动态规划与离散系统最优控制前面讨论了连续系统最优控制问题的基于经典变分法和庞特里亚金的极大值原理的两种求解方法。
所谓连续系统,即系统方程是用线性或非线性微分方程描述的动态系统。
该类系统的控制问题是与传统的控制系统和控制元件的模拟式实现相适应的,如模拟式电子运算放大器件、模拟式自动化运算仪表、模拟式液压放大元件等。
随着计算机技术的发展及计算机控制技术的日益深入,离散系统的最优控制问题也必然成为最优控制中需深入探讨的控制问题,而且成为现代控制技术更为关注的问题。
动态规划与离散系统最优控制 2/3 离散系统的控制问题为人们所重视的原因有二。
1 有些连续系统的控制问题在应用计算机控制技术、数字控制技术时,通过采样后成为离散化系统, 如许多现代工业控制领域的实际计算机控制问题。
2 有些实际控制问题本身即为离散系统, 如某些经济计划系统、人口系统的时间坐标只能以小时、天或月等标记; 再如机床加工中心的时间坐标是以一个事件如零件加工活动的发生或结束为标志的。
动态规划与离散系统最优控制 3/3 本节将介绍解决离散系统最优控制的强有力工具--贝尔曼动态规划,以及线性离散系统的二次最优控制问题。
内容为最优性原理与离散系统的动态规划法线性离散系统的二次型最优控制最优性原理与离散系统的动态规划法 1/3 7.6.1 最优性原理与离散系统的动态规划法基于对多阶段决策过程的研究,贝尔曼在20世纪50年代首先提出了求解离散多阶段决策优化问题的动态规划法。
如今,这种决策优化方法在许多领域得到应用和发展,如在生产计划、资源配置、信息处理、模式识别等方面都有成功的应用。
最优控制问题的时间规划算法最优控制问题是研究如何在给定的约束条件下,使得系统状态达到最佳状态的一种数学模型。
时间规划算法是用于解决最优控制问题的一种算法。
本文将探讨最优控制问题的时间规划算法及其在实际问题中的应用。
一、问题描述最优控制问题是在给定的系统状态和约束条件下,寻找一种控制策略,使得系统状态达到最佳状态,同时满足约束条件。
具体来说,我们需要确定系统的控制输入函数,使系统从初始状态汇总经过一段时间达到最佳状态或者达到一个特定的目标。
二、时间规划算法时间规划算法是解决最优控制问题的一种常用方法。
它通过对时间的划分,将最优控制问题转化为一系列子问题的求解。
常用的时间规划算法包括动态规划、贝尔曼方程、最优性原理等。
1. 动态规划动态规划是一种通过将问题分解为子问题的方式来求解最优解的方法。
在最优控制问题中,动态规划可以表示为一个递归的方程,通过逐步向前推进,求解问题的最优解。
动态规划算法的基本思想是将问题划分为相互重叠的子问题,并使用一个状态函数来存储这些子问题的解,从而减少计算量,提高求解效率。
2. 贝尔曼方程贝尔曼方程是最优控制问题中的基本方程之一,它描述了系统在给定控制输入下的状态转移规律。
贝尔曼方程可以用递归的方式表示为:V(x) = min_u { C(x, u) + ∫ [ V(f(x, u, t))·P(dt | x, u) ] }其中,V(x)表示系统在状态x下的最优价值函数,C(x, u)表示给定控制输入u情况下从状态x到达最优状态的成本函数,f(x, u, t)表示系统在状态x下,在时间间隔[t, t+dt]内的状态转移方程,P(dt | x, u)表示在给定状态和控制输入下,时间间隔 [t, t+dt]内的概率密度函数。
3. 最优性原理最优性原理是最优控制问题中的重要原理之一,它可以将一个复杂的最优控制问题转化为一个较简单的问题。
最优性原理的基本思想是,如果一个控制策略是最优的,那么在给定初始状态和约束条件下,该策略的部分路径也是最优的。
控制系统最优控制法控制系统是现代工程领域中的一个关键领域,它涉及到对物理或工程系统的管理和调节。
控制系统的目标是通过在系统中引入控制信号,以使系统在给定的条件下达到最佳性能。
在控制系统中,最优控制法起着重要的作用。
本文将介绍控制系统最优控制法的概念、应用和实现方式。
一、最优控制法的概念最优控制法是指在给定的约束条件下,通过优化目标函数,确定最优控制策略的方法。
最优控制法可以帮助工程师在设计控制系统时做出最佳选择,以达到系统稳定性、鲁棒性和性能的最优化。
二、最优控制法的应用领域最优控制法广泛应用于很多领域,例如机械控制系统、电力系统、化工过程、交通运输等。
在机械控制系统中,最优控制法可以优化机器人的运动轨迹,提高生产效率和准确性。
在电力系统中,最优控制法可以优化电网的输电效率,提高能源利用率。
在化工过程中,最优控制法可以实现精确的温度和压力控制,提高生产效益。
在交通运输中,最优控制法可以优化车辆的行驶路线,减少交通拥堵和能源消耗。
三、最优控制法的实现方式最优控制法可以基于不同的数学原理和算法来实现。
其中最常用的方法包括动态规划法、最优性原理、线性二次调节器和模型预测控制等。
1. 动态规划法动态规划法是一种通过将问题划分成子问题并递归地求解这些子问题的方法。
在最优控制中,动态规划法可以用来确定最优控制策略。
通过构建动态规划的状态转移方程,可以优化系统的控制性能。
2. 最优性原理最优性原理是最优控制法的一种基本原理,它可以用来解决连续时间和离散时间系统的最优控制问题。
最优性原理的核心思想是通过对一组控制变量的函数进行优化,找到最优的控制策略。
3. 线性二次调节器线性二次调节器是一种常用的最优控制方法,适用于线性系统。
线性二次调节器通过优化目标函数和约束条件,确定最优控制策略。
它在实际控制系统中有广泛的应用,可以通过数学工具和计算算法进行求解。
4. 模型预测控制模型预测控制是一种基于系统模型的最优控制方法。
第七章 最优控制(Optimal Control )最优化(Optimization ):生产过程的控制,企业的生产调度,对资金、材料、设备的分配,经济政策的制定等都与最优化有关。
最优控制:通常是针对控制系统本身而言的,目的是使一个机组、一台设备、或一个生产过程实现局部最优。
7-1概述1.最优分配问题:仓库(水泥) 运费(元/包) 工地(需要水泥)问应怎样发送这些水泥,才能使运费最省?设:从甲仓库运往A 、B 、C 工地的水泥数分别为1x 、2x 、3x ;从乙仓库运往A 、B 、C 工地的水泥数分别为4x 、5x 、6x 目标函数()x f (总运费):()65432195442x x x x x x x f +++++= 最优化的任务:确定[]Tx x x x x x x 654321=的值,使()x f 为最小。
约束条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+≤++≤++1200600900180********241654321x x x x x x x x x x x x该问题称为具有不等式约束条件的线性最优化问题,属于静态最优化问题,变量x 与时间无关2.动态最优化问题动态最优化问题:在最优控制系统中,受控对象是一个动态系统,所有变量都是时间的函数。
目标函数:是时间函数的函数,称为泛函数(简称泛函) 例:目标泛函 ()()[]⎰=ft t dt t t u t x L J 0,,基本约束条件(受控对象的状态方程):()()()[]t t u t x f t x ,,= J----标量L----标量函数()t x ----n 维状态矢量 ()t u ----r 维控制矢量f ----n 维矢量函数最优控制问题:在满足约束条件下,寻求最优控制函数()t u ,使目标泛函J 取极值(最小或最大),即()max min =J 。
3.求解动态最优化问题的方法古典变分法、极小(大)值原理、动态规划法7-2研究最优控制的前提条件1.给出受控系统的动态描述,即状态方程()()()[]t t u t x f t x,,= 2.明确控制作用域控制集:()(){}0,≤=u x j t u U ϕ()()r m m j u x j ≤=≤;,,2,10, ϕ----()t u 满足的约束条件容许控制:()U t u ∈ 3.明确始端条件 固定始端:()0t x 给定 自由始端:()0t x 任意可变始端:()00Ω∈t x 始端集:()()[]{}0000==Ωt x j t x ρ()[]()n m m j t x j ≤==;,2,100 ρ----()0t x 必须满足的约束条件 4. 明确终端条件固定终端:f t 、()f t x 给定 自由终端:f t 给定、()f t x 任意可变终端:()f f t x Ω∈ 目标集:()()[]{}0==Ωf j t x ff t x ϕ()[]()n m m j t x f j ≤==;,2,10 ϕ----()f t x 必须满足的约束条件5. 给出目标泛函(即性能指标) 对于连续时间系统,一般表示为:()[]()()[]⎰+Φ=ft t f dt t t u t x L t x J 0,, (综合型或鲍尔扎型)()[]f t x Φ----终端指标函数,反映对终端性能的要求;()()[]⎰ft t dt t t u t x L 0,,----动态指标函数,L 为状态控制过程中对动态品质及能量或燃料消耗的要求等。
第四章 最优控制模型(管理、决策方面应用,因此可说管理决策模型)§1 最优控制的问题提法: §1.1 最优控制问题举例 §1.2 最优控制数学模型一、例,详见最优控制课听课笔记第一节; 二、问题的数学描述――最优控制模型.寻找U )t (*u ∈(开,闭)[]f f 0t ,t ,t 可以固定或自由,使得: [][])t ( u J min )t (*u J Uu∈= (){()()0t ),t ( x g 0 t ),t ( x g ,R )t (x )t (x M x )t (x x )t ( x t ),t ( u ),t (x f dt (t) x d :t .s f f 2f f1f f f f 00≤=∈=∈==其中: n R )t (x ∈ ,且1C )t (x ∈ (一个连续可微), R U )t (u m ≤∈,[] t ,u (t), x f:向量值函数,且)( f ⋅ 对t ),t ( u ),t ( x 连续,对t ),t ( x 连续可微. []()()()[]。
都可微 t (t), x 对 t (t), u (t), x L ,t ),t ( x,dt t ),t ( u ),t ( x L t ),t ( x )t ( u J f f tt f f fϕ+ϕ=⎰最优控制问题的求解方法:1. 古典变分法:U 开集;2. 极大值原理:U 闭集;现代变分法,把古典变分法看作特例 3. 动态规划:便于数值计算,并有通用算法; 发展了变分法,结果要充分条件.§2 最优控制模型的动态规划解法 §2.1 动态规划方法概述§2.2 生产——库存——销售管理系统的解法§2.1 动态规划方法概述某一类管理问题的数学模型(状态方程)是一个差分方程:()⎩⎨⎧∈==+M )(k x x )0( x k ),k ( u ),k ( x f )1k ( x f 0 使 ()∑-==1N 0i i ),i ( u ),i ( x L J 达到最小. 此为一个N 阶决策问题:动态规划法是求这一决策问题的有效办法,具有明显优点:(ⅰ)将一个N 阶决策问题转化为多次一步决策问题,即数学上的嵌入原理——将求一条极值曲线问题,嵌入到求一族极值曲线的更广泛的类似问题中;(ⅱ)大大简化了计算量;(ⅲ)具有局部优,就是整体优的最优性原理:可广泛应用于运输系统、生产库存管理系统、生产计划制定及最优投资分配问题、最优价格制定问题.下面以最短路问题举例说明这种方法: 一、最短路问题(最小时间问题)1.问题:若有一辆汽车以S 城出发经过若干城市到达F 城,如图:3 ,2 ,1i ,Q ,P i i =,是一些可以通过的城镇.·P 1 6 ·P 2 1 ·P 3 4 4 1 2 4S · ·F 5 6 3 ·Q 1 7 · Q 2 2 ·Q 3图中两点间的数字:可以表示两城镇之间的距离(单位10公里),也可以表示行驶两城镇所用时间(应综合考虑:距离远近,路面好坏,是否拥挤等情况).于是:汽车从S 到F 可经多种途径选择到达F . 问题是:从多种途径选择方案中,决定一种使S 到F 所走路线最短.或者若图中数字表示时间,则决定一种路径使从S 到F 所用时间最短.2.方法:Ⅰ决策树法(穷举法):决策树法是最容易想到的一种方法,但运算量很大——即把所有可能选择的路途所用的时间都求出来,然后取最小值,即有最优策略(最优决策).即: {}3 ,2 ,1i F Q SP min F *Q *SP i i i i == 因此有:1 P 3 4 F 15P 26 1 Q 3 3 F 14P 1 62 P34 F 164 Q 22 Q3 3 F 15S1 P 3 4 F 145 P 24 1 Q 3 3 F 13Q 1 7 2 P 3 4 F 18Q 22 Q3 3 F 17因此,最终得出:{}3 ,2 ,1i F Q SP min F P P SQ i i 321== 困难:这样共有8条线路可选择,每条线路要作3次运算.第1次:22211Q Q /P Q /P S →→→;第2次:3322Q /P Q /P →; 第3次:F Q P 33→或因此,共需24次运算:2438=⨯次,若阶段更多,则计算量更大. 2.“走一步瞧一步”(瞎子爬山?)法:第一步:从S 到1P 或1Q :显然 5SQ 4SP 11=<=,因此取决策1SP ;第二步:从1P 到2P 或2Q :显然 2121Q P 6P P ==,因此取2121Q Q ,P P 均可,但从2P 到3P 或3Q 距离为1,而2Q 到32P P 距离为2,因此,第2步决策为2P ,因此取21P P ;第三步:2P 到3P 或2P 到3Q ,均有1Q P P P 3232==,但3Q 到F 的距离为3,因此第3步取路线32Q P .因此使用这种方法得到的决策为:143164F Q P SP 321=+++= 显然不是“最优决策”,同时还有:14F P P SQ 321=问题出现在“局部优不能代替整体优”的问题. 3.动态规划:即可把每一步决策都看成一个状态的转移,而每一种状态的转移又影响到下一阶段的状态,因此又是动态的,故称为动态规划法.将上述问题分为四个阶段的多阶决策问题,故可将问题分为四阶段问题来考虑:第一阶段问题:11Q /P S →; 第二阶段问题:2211Q /P Q /P →; 第三阶段问题:3322Q /P Q /P →; 第四阶段问题:F Q /P 33→ 解题方法从最后一个阶段开始:1° 分别计算33Q ,P 到F 的最小代价,此处花费代价为时间,记为J ,用[][]33Q J ,P J 分别表示3P 或3Q 到F 的代价,则显然有:[][]3Q *J 4P *J 33==2° 由后往前,考虑倒数第二阶段(即第三阶段),再把第三阶段和第四阶段联合作为一个子问题来考虑,若从2P 出发到F ,则有两种可能:[][]431Q *J 2J F Q P 541P *J 1J F P P 332332=+=+==+=+=∴ 线路F Q P 32最短,且[]4P *J 2=,故将线路F Q P 32记成P 2④Q 3.类似以2Q 出发到F ,则有两种可能:[][]532Q J 2J F Q Q 642P J 2J F P Q 332332=+=+==+=+=∴ 线路F Q Q 32最短,则[]5Q *J J 2==,故将线路F Q Q 32记成2Q ⑤3Q .3° 再由2、3、4这三个阶段构成的子问题:若从1P 出发到F 有两种可能:[][]1156Q *J 6J F Q P 61046P *J 6J F P P 221221=+=+==+=+=∴ 有线路F P P 21最短,且[]10P *J 1=,故将F P P 21记成:1P ⑩2P若从1Q 出发到F 有两种可能:[][]1257Q *J 7J F Q Q 844P *J 4J F P Q 221221=+=+==+=+=∴ 有线路F P Q 21最短,则[]8Q *J 1=,故将F P Q 21记成:1Q ⑧2P4° 把由1、2、3、4阶段作为子问题来考虑:从S 出发到F 有两种可能:[][]1385Q *J 5J F SQ 14104P *J 4J F SP 1111=+=+==+=+=且且故: F SQ 1最短,且[]13S *J = 5° 因此有最优策略:F SQ 1即: []13S *J F Q P SQ F SQ 3211==,除“二决一”比较之外,且运算只用了10次,而穷举法则算了24次,上次这种动态规划的办法:是将把一个四阶段决策问题化为四个互相嵌入子问题,逐一进行简化的计算方法,即数学上嵌入定理. 3.最优性原理“最优策略的一部分也是最优策略”例如:上例中知:F Q P SQ 321是最优决策,则F Q P Q 321也一定是从Q 1出发到F 的最优决策:证明[反证法]:设SQ 1P 2Q 3F 是最优决策,则Q 1P 2Q 3F 不是最优决策,则必存在另一个最优决策,不妨设为Q 1Q 2Q 3F 为最优决策.因而,SQ 1Q 2Q 3F 是整体最优决策,因而与SQ 1P 2.)1N (*u , ),1(*- 是N 阶决策问题的最优策略序列,那么:)1N (*u , ),1(*u - 也是一个最优策略序列,其初始状态为:())0(*u ),0(x f )1(x =证明:同最短路4. 多阶决策问题的一般想法:设某系统的状态方程为:()⎩⎨⎧==+0x )0(x )i (u ),i (x f )1i (x目标函数为:()∑-==1N 0i N i ),i (u ),i (x L J ,NJ表示控制N 步时的目标函数值.最优控制问题,即:求最优决策序列{}{})1N (u , ),0(*u )i (*u -= ,使N J 取最小(大)值.为简化假定为定常状态,即L 不明显还有时间变量i因而有:()⎩⎨⎧==+0x )0( x )i (u ),i (x f )1i ( x()∑-==1N 0i N )i (u ),i ( x L J对目标函数(3)逐次应用(1)式有:()()()()()()()()()()())1N (u ),2N (u ,u(1) ,)0(u ),0(x f f f L ,u(1) ,)0(u ),0(x f L )0(u ),0(x L ,)1N ( u ),1N ( x L )1(u ),1(x L )0(u ),0(x L J N --+++=--+++=因此,可以由上式看出:N J 只依赖于)1N (u , ),1(u ),0(x - 因而可写成:())1N (u , ),1(u ),0(x J J N N -=又若用某种方法求出了最优决策)1N (*u , ),0(*u - ,则N J 的最小值只依赖于初始值)0(x ,记为() )0( x *J N ,它可用下式来定义:()())1N (u , ),1(u ),0( x J min)0(x *J N )1N (u ,),1(u ),0(u N -=-初始值是可变化的,因此:() )0( x *J N 表示初始状态为)0(x 时,控制N 步的目标函数最小值.5.动态规划的基本方程:动态规划的基本方程,给出N 阶决策问题的目标函数最优值与它的子问题)1N (阶决策问题-目标函数最优值之间的递推关系式,它是用动态规划解一切多阶决策问题的基础.设)0(*u 已求出,则求序列{})1N (*u , ),2(*u ),1(*u - 的问题,构成一个以() )0(u ),0( x f )1( x =为初始条件的1N -阶决策问题,若记这一子问题的目标函数最小值为:() )1(x *J 1N -;又若记() )0( x *J N 为N 阶决策问题最小值,则我们可以导出() )0( x *J N 与() )1(x *J 1N -之间的关系:()()() (k)u (k), x L ) )1(u ),0(x ( L min u(k) x(k),L min )0(x *J 1-N 1k 1)-u(N -u(0)1-N 0k )1N (u ,),1(u ),0(u N ⎭⎬⎫⎩⎨⎧+=⎭⎬⎫⎩⎨⎧=∑∑==- 由于则第一项:()())0(u ),0(x L min )0(u ),0(x L min)0(u )1N (u , ),0(u =-第二项: ()⎭⎬⎫⎩⎨⎧∑-=-1N 1k )1N (u , u(1) ),0(u )k ( u ),k ( x L min 并不明显依赖)0(u ,()())2N (u ),2N (x f )1N (x )0(u ),0(x f )1(x --=-=但由状态方程:可知:实际上第二项仍依赖于)1N (u , ),1(u ),0(u - ,因此,第二项可写成:()()(){})1( x J min (k)u (k), x L min min (k)u (k),x L min *1N )0(u 1-N 1k )1N (u ,),1(u )0(u 1-N 0k )1N (u ,),0(u ---=-=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧∑∑此给出了())1(x J *1N -与())0(x J*N 之间的递推关系.它是动态规划的基本方程.类似有动态规划更一般的基本方程:(**) 因此依据基本递推方程的递推关系:可以把一个多阶决策问题化为若干个子问题,而在决策的每一个阶段中只须对一个变量进行最优化决策即可.例如:()(){})1N (u ),1N (x L min )1N (x J )1N (u *1--=-- 是对一个单变量)1N (u -的优化问题,当())1N (x J *1-求出后,由基本递推方程(**)式可得:()()(){})1N (x J )2N (u ),2N (x L min )2N (xJ *1)2N (u *2-+--=--这又是对)2N (u -的最优化决策问题,因而把原来N 阶决策问题化成一系列对单变量的最优化决策问题,从而使问题简化.§2.2 生产库存——库存管理决策问题的解设某工厂生产某种产品,四个季度定货量为:生产费用与产品平方成正比,即比例系数为0.005,)( u 005.0)x (C 2元= 库存费每件每季为:1.0元. 第i 季度库存量为:)i (x 件; 第i 季度生产量为:)i (u 件; 第i 季度销售量为:定货量=)i (s 因此有:下季度库存是 :)i (S )i (u )i (x )1i (x -本季销售量本季生产量本季度库存量是+=+且要求年初、年终都没有存货即销售已空.x (0)=x (5)=0最优管理问题:求每季度的最优生产量)4(u ),3(u ),2(u ),1(u ,使之能正好完成订货计划且使生产费与库存费总和最小.即:求 {})i (*u 使[][][]∑=+=≤41i 240)i (x )i (u005.0)i (u J )i (*u J (1)⎪⎩⎪⎨⎧===+=+ (4) 0x(5)(3) 0x(0)(2) ,4 1,2,3is(i)-u(i)x(i)1)x(i t .s解:使用动态规划的办法:1. 先由最后一个季度考虑起:)4(x )4(u 005.0J 21+=由(2) 0 x(5))4)4(s )4(u )4(x )14(x =-+=+及(得 200u(4)-(4)-1x(4)0+=得 )4(x 1200)4(*u -=代入(1)[]())4(x 005.0)4(x 117200)4(x )4(x 1200005.0)4(x J 22*4+-=+-= 2. 再考虑3-4两个季度,由基本递推方程知:()()[]{}(){}{})4(x 005.0)4(x 117200)3(x )3(u005.0min )4(x J )3(x )3(u 005.0min )4(x J )3(u ),3(x L min )3(x J 22)3(u *12)3(u *1)3(u *2+-++=++=+=其中 500)3(u )3(x )3(s )3(u )3(x )4(x -+=-+= 代入上式 即有:()()(){}22)3(u *2500)3(u )3(x 005.0500)3(u )3(x 117200)3(x )3(u 005.0min )3(x J -++-+-++=而)3(u 应使上式取最小值,因此有: {}0)3(u /=∂∙∂即:{}0)3(x 01.016)3(u 02.0)3(u =+-=∂∙∂即有: )3(x 5.0800)3(*u -= 为使0)3(*u ≥,必须有1600)3(x ≤,把)3(*u 代入())3(x J *2()()())3(x 0025.0)3(x 77550500)3(*u )3(x 005.0500)3(*u )3(x 117200)3(x )3(*u 005.0)3(x J 22*2+-=-++-+-++=3.再考虑2-3-4,由递推基本方程知:()()(){}{})3(x 0025.0)3(x 77550)2(x )2(u005.0min )3(x J )2(u ),2(x L min )2(x J 22)2(u *2)2(u *3+-++=+=其中 700)2(u )2(x )3(x -+= 代入上式 ())2(x J *3()()(){}22)2(u *3700)2(u )2(x 0025.0700)2(u )2(x 77550)2(x )2(u 005.0min )2(x J --+---++= 令 ()0)2(u /)2(x J *3=∂∂ 得(){}()0700)2(x 005.07)2(u 015.0)2(u )2(u )2(x J *3=-+-=∂∙∂=∂∂得 )2(x 31700)2(*u -= 再代 ())2(x J *3 得 ())2(x 3005.0)2(x 6000,10)2(x J 2*3+-= 4.再考虑1-2―3―4季度,由递推基本方程知:()()(){}⎭⎬⎫⎩⎨⎧+-++=+=)2(x 3005.0)2(x 6000,10)1(x )1(u 005.0min )2(x J )1(u ),1(x L min )1(x J 22)1(u *3)1(u *4 又由于 600)1(u 600)1(u 0)1(s )1(u )1(x )2(x -=-+=-+=并代入上式 ())1(x J *4得:()()()⎭⎬⎫⎩⎨⎧-+--++=22*4600)1(u 3005.0600)1(u 6000,10)1(x )1(u 005.0min )1(x J 令 ()0)1(u )1(x J *4=∂∂ 得()0600)1(u 301.06)1(u 01.0=-+- 得 600)1(*u =得 ()800,11)1(x J *4=(即四个季度总和的生产费用库存费) 于是:由)1(x ),1(*u 代入 )1(s )1(u )1(x )2(x -+=可得 )2(x ,由)2(x 可得 )2(x 31700)2(*u -= 于是由600)1(*u0)1(x == 及方程 )i (s )i (u )i (x )1i (x -+=+ 及 )4(x 1200)4(*u )3(x 5.0800)3(*u )2(x 31700)2(*u -=-=-=可得900)4(*u ,800)3(*u ,700)2(*u ,600)1(*u 0)5(x ,300)4(x ,0)3(x ,0)2(x ,0)1(x =========即有以上最优决策序列:{})i (*u 若不按以上最优决策,按每季销售量生产1200)4(s )4(u 500)3(s )3(u 700)2(s )2(u ,100)1(s )1(u ========则显然总有存为总量0,但总费用: ()∑=+=4124700,12)i (x )i (u005.0J 要多用900元.。