第七章 最优控制
- 格式:ppt
- 大小:811.50 KB
- 文档页数:17
国家精品课程/ 国家精品资源共享课程/ 国家级精品教材国家级十一(二)五规划教材/ 教育部自动化专业教学指导委员会牵头规划系列教材控制系统仿真与CAD第七章控制器设计的经典方法最优控制器设计(下)Design of Optimum Controllers (III)主讲:薛定宇教授最优控制器设计界面——OCDOCD = Optimal Controller Designer,2005用MATLAB编写的程序界面用户由用 Simulink 画出仿真模型并定义出目标函数 如 ITAE 准则、ISE准则等给 ocd 命令启动程序选择模型名、优化变量、终止时间按 Create File 按钮自动生成目标函数文件按 Optimize 即可启动最优设计过程设计时打开示波器观察优化过程OCD程序界面需要用Simulink画出控制系统 实际的控制系统框图定义出误差准则可以人工选择初值可以指定决策变量的上下限可以选择不同的优化算法无须给出如何命令,即可设计出最优控制器,可以解决非线性系统问题例7-10OCD设计举例 受控对象PID控制器设计:绘制Simulink 模型:c7mpidsys.slx优化参数:Kp,Ki,Kd终止时间:30最优控制器设计必要的参数Simulink模型的文件名需要优化的决策变量名,用逗号分隔终止仿真时间自动生成目标函数的 MATLAB文件按按钮设计控制器修改目标函数,如 ISE,比较结果演示参数变化、饱和非线性引入等控制器设计的结果例7-10串级PI控制器设计 双闭环DC调速系统Simulink仿真模型:c7model2.mdl 优化参数:Kp1,Kp2,Ki1,Ki2终止时间:tn=0.6OCD的其他应用从理论上说,只要能画出来误差目标函数、可以指定决策变量的问题就可以用OCD程序界面直接求解其他应用模型降阶如果给出原始模型,可以用OCD逼近其模型参数后续内容可以尝试使用OCD,如模型参考自适应控制系统 对于PID控制器设计,建议使用后面更专门的optimpid程序例7-11最优降阶的例子原始模型G(s) = 1/(s+1)6FOPDT由静态误差相同可以得出k = 1Simulink模型:c7mmr.mdl优化参数:L, T终止时间:10OCD程序的编程简介可以由 guide ocd 命令打开编辑界面 开放的结构,如控制器设计最优控制器设计小结探讨了目标函数的选择问题演示了ITAE类指标比ISE指标更适合伺服控制结合数值最优化技术和Simulink建模仿真技术 给出了对任意复杂系统的最优控制器设计方法 使用 assignin()、fminsearch() 等函数演示了作者开发的 OCD 图形用户界面 用户需要提供 Simulink 框图指出待优化变量和终止时间等参数按动相关按钮即可“可视”优化过程。
第七章 最优控制(Optimal Control )最优化(Optimization ):生产过程的控制,企业的生产调度,对资金、材料、设备的分配,经济政策的制定等都与最优化有关。
最优控制:通常是针对控制系统本身而言的,目的是使一个机组、一台设备、或一个生产过程实现局部最优。
7-1概述1.最优分配问题:仓库(水泥) 运费(元/包) 工地(需要水泥)问应怎样发送这些水泥,才能使运费最省?设:从甲仓库运往A 、B 、C 工地的水泥数分别为1x 、2x 、3x ;从乙仓库运往A 、B 、C 工地的水泥数分别为4x 、5x 、6x 目标函数()x f (总运费):()65432195442x x x x x x x f +++++= 最优化的任务:确定[]Tx x x x x x x 654321=的值,使()x f 为最小。
约束条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+≤++≤++1200600900180********241654321x x x x x x x x x x x x该问题称为具有不等式约束条件的线性最优化问题,属于静态最优化问题,变量x 与时间无关2.动态最优化问题动态最优化问题:在最优控制系统中,受控对象是一个动态系统,所有变量都是时间的函数。
目标函数:是时间函数的函数,称为泛函数(简称泛函) 例:目标泛函 ()()[]⎰=ft t dt t t u t x L J 0,,基本约束条件(受控对象的状态方程):()()()[]t t u t x f t x ,,= J----标量L----标量函数()t x ----n 维状态矢量 ()t u ----r 维控制矢量f ----n 维矢量函数最优控制问题:在满足约束条件下,寻求最优控制函数()t u ,使目标泛函J 取极值(最小或最大),即()max min =J 。
3.求解动态最优化问题的方法古典变分法、极小(大)值原理、动态规划法7-2研究最优控制的前提条件1.给出受控系统的动态描述,即状态方程()()()[]t t u t x f t x,,= 2.明确控制作用域控制集:()(){}0,≤=u x j t u U ϕ()()r m m j u x j ≤=≤;,,2,10, ϕ----()t u 满足的约束条件容许控制:()U t u ∈ 3.明确始端条件 固定始端:()0t x 给定 自由始端:()0t x 任意可变始端:()00Ω∈t x 始端集:()()[]{}0000==Ωt x j t x ρ()[]()n m m j t x j ≤==;,2,100 ρ----()0t x 必须满足的约束条件 4. 明确终端条件固定终端:f t 、()f t x 给定 自由终端:f t 给定、()f t x 任意可变终端:()f f t x Ω∈ 目标集:()()[]{}0==Ωf j t x ff t x ϕ()[]()n m m j t x f j ≤==;,2,10 ϕ----()f t x 必须满足的约束条件5. 给出目标泛函(即性能指标) 对于连续时间系统,一般表示为:()[]()()[]⎰+Φ=ft t f dt t t u t x L t x J 0,, (综合型或鲍尔扎型)()[]f t x Φ----终端指标函数,反映对终端性能的要求;()()[]⎰ft t dt t t u t x L 0,,----动态指标函数,L 为状态控制过程中对动态品质及能量或燃料消耗的要求等。
第7章最优控制原理总结第7章的最优控制原理是指在动态系统中,通过分析系统的状态和控制输入,确定最佳的控制策略,以达到系统的最优性能。
这一原理在工程、经济和生态等领域都有广泛的应用。
本文将从最优控制的基本概念、最优控制方法以及最优控制的应用方面进行总结。
最优控制的基本概念包括系统模型、性能指标和约束条件。
系统模型描述了动态系统的行为,可以通过微分方程或差分方程表示。
性能指标用来衡量系统的性能,可以是一些状态的值、系统的能耗等。
约束条件是系统在控制过程中必须满足的限制条件,例如系统的输入上下限、状态的约束等。
最优控制方法主要包括动态规划、变分法和数值优化等。
动态规划是一种通过将问题分解为一系列子问题来求解最优控制策略的方法。
通过选取最优子问题解来确定最优策略,并使用递推算法进行求解。
变分法是一种通过构建泛函,并通过最小化泛函来求解最优控制策略的方法。
通过求解欧拉-拉格朗日方程,得到最优控制策略的微分方程,并通过求解微分方程得到最优策略。
数值优化是一种通过数值计算方法求解最优化问题的方法。
通过建立优化模型,将最优控制问题转化为最优化问题,并应用优化算法进行求解。
最优控制在实际应用中有广泛的应用。
在工程领域,最优控制可以应用于飞行器、机器人和自动控制系统等。
例如,对于无人机飞行控制问题,可以通过最优控制方法来实现自动飞行,提高飞行性能。
在经济领域,最优控制可以应用于经济模型和金融产品的定价等。
例如,在股票市场中,可以通过最优控制方法来确定最佳交易策略,以最大化利润。
在生态领域,最优控制可以应用于生态系统的保护和管理等。
例如,通过最优控制方法来优化捕鱼策略,保护渔业资源。
最优控制原理的研究还面临一些挑战和问题。
首先,最优控制问题的求解往往需要耗费大量的计算资源和时间。
因此,如何提高求解效率是一个重要的问题。
其次,最优控制的求解通常需要对系统进行建模,而模型的准确性对最优控制的效果有重要影响。
因此,如何建立准确的系统模型也是一个关键问题。