二元一次不等式(组)和平面区域讲课教案
- 格式:doc
- 大小:122.50 KB
- 文档页数:3
《二元一次不等式(组)与平面区域》教案一、教学目标(1)知识与技能:了解二元一次不等式组的相关概念,并能画出二元一次不等式(组)来表示的平面区域.(2)过程与方法:本节课首先借助一个实例提出二元一次不等式组的相关概念,通过例子说明如何用二元一次不等式(组)来表示的平面区域.始终渗透“直线定界,特殊点定域”的思想,帮助学生用集合的观点和语言来分析和描述结合图形的问题,使问题更清晰和准确.教学中也特别提醒学生注意0(0)Ax By C ++><表示区域时不包括边界,而0(0)Ax By C ++常则包括边界.(3)情感与价值:培养学生数形结合、化归、集合的数学思想.二、教学重、难点重点:灵活运用二元一次不等式(组)来表示的平面区域.难点:如何确定不等式0(0)Ax By C ++><表示0Ax By C ++=的哪一侧区域.三、教学过程(一)引例:一家银行的信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔贷款至少可带来30000元的收益,其中从企业贷款中获益12﹪,从个人贷款中获益10﹪.那么,信贷部应如何分配资金呢?提问:1.这个问题中从在一些不等关系,我们应该用什么不等式模型来刻画它们呢?2.设用于企业贷款的资金为x 元,用于个人贷款的资金为y 元,由于总资金为25000000元,得到:25000000x y +? ① 3.由于计划从企业贷款中获益12%,从个人贷款中获益10%,共创收30000元以上, 所以(12)(10)3000000x y +?%%4.企业和个人贷款不能为负,所以解:分析题意,我们可得到以下式子25000000,12103000000,0,0.x y x y x y ì+?ïïï+?íïï吵ïïî(二)概念1.二元一次不等式:2.我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式. 我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.满足二元一次不等式(组)的x 和y 的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集. 注意:有序实数对可以看成直角坐标平面内点的坐标.于是, 二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.例如二元一次不等式6x y -<的解集为}{(,)6x y x y -< (三)问题: 二元一次不等式6x y -<所表示的图形?在直角坐标系中,所有点被直线6x y -=分成三类: 一类是在直线6x y -=上;二类是在直线6x y -=左上方的区域内的点;三类是在直线6x y -=右下方的区域内的点.尝试:设点P ()11,x y 是直线上的点,任取点A ()22,x y ,使它的坐标满足不等式6x y -<,在图中标出点P 和点A.观察并讨论我们发现,在直角坐标系中,以二元一次不等式6x y -<的解为坐标的点都在直线的左上方;反之,直线左上方点的坐标也满足不等式6x y -<.因此,在直角坐标系中,不等式6x y -<表示直线6x y -=左上方的平面区域. 类似地, 不等式6x y ->表示直线6x y -=右下方的平面区域.我们称直线6x y -=为这两个区域的边界.将直线6x y -=画成虚线,表示区域不包括边界.结论:1、一般地, 在直角坐标系中,二元一次不等式0Ax By C ++>表示0Ax By C ++=某侧所有点组成的平面区域.我们把直线画成虚线,表示区域不包括边界.而不等式0Ax By C ++?表示区域时则包括边界,把边界画成实线.2、二元一次不等式0Ax By C ++>表示的平面区域常采用“直线定界,特殊点定域”的方法,即画线---取点---判断.当0C ¹ 时,常把原点(0,0)作为测试点.(四)举例分析例1、画出44x y +<表示的平面区域分析:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法. 特别是,当0C ¹ 时,常把原点(0,0)作为测试点.例2、画出36020x y x y ì++?ïïíï-+<ïî表示的平面区域. 例3、用平面区域表示不等式组3122y x x y ì<-+ïïíï<ïî的解集. 分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.(五)小结:(1)懂得画出二元一次不等式0(0)Ax By C ++><在平面区域中表示的图形.(2)注意如何表示边界.。
实际问题 数学模型 数学模型的解 实际问题的解二元一次不等式〔组〕所表示的平面区域 [教学目标]1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。
[教学重点]用二元一次不等式〔组〕表示平面区域;[教学过程]Jack 准备在2006年德国世界杯期间,一边看球,一边去卖点纪念品。
现在他有本钱1000美元,准备投入去购买单价50美元球衣和单价20元足球纪念品,希望使足球纪念品,球衣的总数尽可能多,但足球纪念品数量不多于球衣数量1.5倍,那么Jack 买足球纪念品和球衣各多少才行?一般实际问题的求解步骤如下表:你有..遇到什么难题了吗?.........设:..球衣x 件,足球纪念品y 只,总和为S 1.5502010000,0,y x x y x y x y N≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩ S=x+y 学生此时应该到第三步,无法解决数学模型的解!二元一次不等式所表示的平面区域对于像上面这样有两个参量控制的取值X 围问题,我们都可以用下面的几何方法来求解。
第一步:研究出问题的约束条件,确定数对〔x,y 〕的X 围第二步:在第一步所得到的数对〔x,y 〕的X 围中,通过图形的方法,找出所求问题达到最大数对的〔x,y 〕我们不妨来画出其中一个32y x ≤练一练〔113x + 〔3〕260y +< 小结:一般地,直线y=kx+b 把平面分成两个部分: __________________________________________________________想一想请根据上面所画的图象时所得到的规律,完成下表B>0 表示的区域是直线0Ax By C ++= B<0 表示的区域是 直线0Ax By C ++= 0Ax By C ++> 0Ax By C ++>0Ax By C ++< 0Ax By C ++<请体会你在研究上面新的问题的过程中,用到了什么样的思想?〔化归〕大家有没有发现判断二元一次不等式所表示的平面区域问题,我们可以有新的方法了???〔由上面规律的总结,发现特殊点法〕如果有这样一个二元一次不等式组变化 1.550201000y x x y ≤⎧⎨+≤⎩如何表示出它的几何意义?我们在必修2中,学过曲线与方程的思想,它有这样两句话 〔1〕以方程0Ax By C ++=的解x,y 为横、纵坐标的点(x,y)都在直线0Ax By C ++=上 〔2〕直线0Ax By C ++=上的任一点〔x,y 〕的横、纵坐标值都是方程0Ax By C ++=的解 那么请你试描述一个关于不等式与曲线的关系 见必修5的教学参考书再变化1.5502010000,0y xx yx y≤⎧⎪+≤⎨⎪≥≥⎩,那么又有什么变化??再再变化1.5502010000,0,y xx yx yx y N≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩那么又有什么变化???如果问题现在倒过来怎么办呢?倒过来:如果给出阴影,如何用不等式表示!小结:我们今天学习了:______________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ ____作业:书P78页练习4,5 80页1,2,3,4!并阅读P88页上的第7题的阅读题,并写下你的感受!。
芯衣州星海市涌泉学校探究教学课例—二元一次不等式〔组〕与平面区域2、教学策略选择与设计讨论,从而加深对本节课教学内容的理解,使之形成理性认识.3、教学目的知识与技能:知道二元一次不等式〔组〕的几何意义——表示平面区域;会画二元一次不等式〔组〕表示的平面区域并能用平面区域表示二元一次不等式〔组〕.过程与方法:通过画二元一次不等式〔组〕表示的平面区域的过程体会不等式的几何意义;通过详细例子,引导学生会用)1,0(),0,1(),0,0(等特殊点检验不等式0(0)Ax By C ++><所表示的平面区域,由此归纳、猜想确定不等式所表示的平面区域在直线的哪一侧的一般方法,即“直线定界,特殊点定域〞的方法.情感、态度与价值观:通过画图的过程训练学生养成用直尺标准作图的良好习惯,认同事物是普遍联络的辩证唯物主义观点,体验一些事物在一定的条件下是可以互相转化的.4、教学内容简单的线性规划是应用数形结合思想解题的重要方法之一,应用线性规划解决“最优化〞问题是数学的一个重大应用.“二元一次不等式〔组〕所表示的平面区域〞是简单的线性规划的重要根底,因此本节课内容重点强调“平面区域〞与“不等式的〔组〕〞的对应关系.而建立这种对应关系的过程可以引导学生自主探究发现.本节课内容的难点在于寻求二元一次不等式〔组〕所表示的平面区域,打破难点的有效方法可以通过对详细例子探究、尝试获得结论,培养学生复杂问题简单化、普遍规律一般化的思维方式.同时探究不等式“定域〞方法时,可以鼓励学生发挥协作精神,采用探究的学习方法,充分调动学生的思维.5、教学重点和难点教学重点:二元一次不等式表示平面区域,体会数形结合思想;教学难点:把实际问题转化成线性规划问题,并给出解答。
解决难点的关键是根据实际问题中的条件,找出约束条件和目的函数,利用图解法求得最优解。
6、教学过程为了表达课改特色以及结合本节课内容的特点,将本节课设计为“思-疑-释-讲-练〞的教学形式,详细如下:①完成学案:明确课标对本节课的要求;设计预习导引问题;自主学习、解决部分问题;整理疑问、课上解决.②创设情境、导悟要点→生生互释、教师点拨→小组讨论、探究→魅力精讲、概括升华→理论、成就素能→课堂点评、目的反响.学案的精心设计,可以使学生把感悟时间是是置于课前,有利于培养学生的自学才能、质疑才能、探究才能,做到学生有准备的进入本节课的学习;教学过程中“导悟要点、生生互释、小组讨论、魅力精讲、理论〞的设计表达了“思-疑-释-讲-练〞的教学形式,唤起学生的主体意识,突出学生的主体地位,培养学生的自主学习、探究问题和勇于创新的才能.7、教学媒介本节课的教学内容设计目的在于通过二元一次不等式表示平面区域来让学生体会到数与形的结合,因此为了进步作图的快捷、图示的准确性和直观性,本节课将恰当使用多媒体进展教学辅助.同时多媒体的引入可直观演示本节课所设计问题及相关习题答案,大大节板书时间是是,进步课堂效率.二元一次不等式〔组〕所表示的平面区域〔导学案〕二、教学过程实录〔一〕创设情境、导悟要点【师生活动】一家银行的信贷部方案年初投入25000000元用于企业和个人贷款,希望这笔资金至少可带来30000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么,信贷部应该如何分配资金呢?这个问题中存在一些不等关系,我们应该用什么不等式模型来刻画它们呢?同学们陆陆续续列出不等式。
3.3 二元一次不等式组与简单的线性规划问题第一课时二元一次不等式(组)与平面区域一、教学目标(1)知识与技能:了解二元一次不等式组的相关概念,并能画出二元一次不等式(组)来表示的平面区域(2)过程与方法:本节课首先借助一个实例提出二元一次不等式组的相关概念,通过例子说明如何用二元一次不等式(组)来表示的平面区域。
始终渗透“直线定界,特殊点定域”的思想,帮助学生用集合的观点和语言来分析和描述结合图形的问题,使问题更清晰和准确。
教学中也特别提醒学生注意表示区域时不包括边界,而则包括边界(3)情感与价值:培养学生数形结合、化归、集合的数学思想二、教学重点、教学难点教学重点:灵活运用二元一次不等式(组)来表示的平面区域教学难点:如何确定不等式表示的哪一侧区域三、教学设计(一)引例:一家银行的信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔贷款至少可带来30000元的收益,其中从企业贷款中获益12﹪,从个人贷款中获益10﹪。
那么,信贷部应如何分配资金呢?提问:1.这个问题中从在一些不等关系,我们应该用什么不等式模型来刻画它们呢?2.设用于企业贷款的资金为元,用于个人贷款的资金为元,由于总资金为25000000元,得到:①3.由于计划从企业贷款中获益12﹪,从个人贷款中获益10﹪,共创收30000元以上,所以(12﹪)+(10﹪)4.企业和个人贷款不能为负,所以解:分析题意,我们可得到以下式子(二)概念1、二元一次不等式:我们把含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式。
我们把由几个二元一次不等式组成的不等式组称为二元一次不等式组。
3、满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.注意:有序实数对可以看成直角坐标平面内点的坐标.于是, 二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.例如二元一次不等式的解集为(三)问题: 二元一次不等式所表示的图形?在直角坐标系中,所有点被直线分成三类:一类是在直线上; 二类是在直线左上方的区域内的点;三类是在直线右下方的区域内的点.尝试:设点P是直线上的点,任取点A,使它的坐标满足不等式,在图中标出点P和点A.观察并讨论我们发现,在直角坐标系中,以二元一次不等式的解为坐标的点都在直线的左上方;反之,直线左上方点的坐标也满足不等式.因此,在直角坐标系中,不等式表示直线左上方的平面区域.类似地, 不等式表示直线右下方的平面区域.我们称直线为这两个区域的边界.将直线画成虚线,表示区域不包括边界.结论:1、一般地, 在直角坐标系中,二元一次不等式表示某侧所有点组成的平面区域.我们把直线画成虚线,表示区域不包括边界.而不等式表示区域时则包括边界,把边界画成实线.2、二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法,即画线---取点---判断。
§3.3.1二元一次不等式(组)与平面区域
董燕
【教学目标】
1.知识与技能:了解二元一次不等式(组)的相关概念,并能画出二元一次不等式(组)来表示的平面区域.
2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
3.情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。
【教学重点】
从实际问题中抽象出二元一次不等式(组),会画二元一次不等式
(组)表示的平面区域。
【教学难点】
如何确定不等式0(
Ax By C
++>或<0)表示0
Ax By C
++=的哪一侧区域.
【教学过程】
一.创设情境,引出问题
在现实生活中,许多问题都可以用数学知识来解决。
数学里有相等的关系,也有各种不同的不等关系,这就需要用不同的数学模型来刻画和研究它们。
前面我们学习了一元二次不等式及其解法,本节课我们将学习另一种新的不等关系,即二元一次不等式(组)及它的解集。
(板书课题)
现看一个实际例子:
一家银行的信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔贷款资金至少可以带来30000元的效益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么,信贷部应该如何分配资金?
问题1:如果你是信贷部的主管,你该如何分配资金?
教师引导,问题分解:1.题目中存在不等关系,该用什么模型刻画资金的分配问题?
2.把题目中的不等关系表示出来,你打算从哪里入手?
3.如何将文字语言转化为数学语言,列出不等式?
把实际问题转化数学问题:
设用于企业贷款的资金为x元,用于个人贷款的资金为y元。
(把文字语言转化符号语言)
(资金总数为25 000 000元)⇒25000000
x y
+≤
(1)(预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上)⇒(12%)x+(10%)y30000
≥即12103000000
x y
+≥
(2)(用于企业和个人贷款的资金数额都不能是负值)⇒0,0
x y
≥≥
(3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:
25000000
12103000000
0,0
x y
x y
x y
+≤
⎧
⎪
+≥
⎨
⎪≥≥
⎩
二.新课解读
(一).二元一次不等式和二元一次不等式组的定义:
问题2:你能试着给二元一次不等式和二元一次不等式组下定义吗?
教师引导,类比于一元一次不等式(组)和二元一次不等式(组)的定义。
(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式。
(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组。
(二).二元一次不等式和二元一次不等式组的解集:
1.二元一次不等式的解集是满足二元一次不等式的有序实数对(x,y)构成的集合。
也就是直角坐标系内的点构成的集合。
2. 二元一次不等式组的解集:是每个二元一次不等式解集的交集。
(三)二元一次不等式(组)解集的表示方法:
1.回忆:在数轴上一元一次不等式(组)的解集怎么表示呢?
是数轴上的区间。
2.探究:
问题3:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?
教师引导:有序数对(x,y)可以看作平面直角坐标系内的点,而二元一次不等式的解集有点的坐标构成,这些点又构成什么图形呢?
我们先研究具体的二元一次不等式x-y<6的解集所表示的图形。
问题4:在平面直角坐标系中,x-y=6表示什么图形?
教师引导:x-y=6即y= x-6,是直线方程,画出直线,直线上点的坐标(x,y)满足方程x-y=6。
问题5:二元一次不等式x-y<6即y> x-6的解集与y= x-6的解集有什么关系?满足x-y<6的点在哪个区域呢?满足x-y>6的点在哪个区域呢?
教师引导:取几个特殊点代入
设点是直线x-y=6上的点,选取点,使它的坐标满足不等式
x-y<6,请同学们完成下面的表格:
当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系?直线x-y=6右下方点的坐标呢?
学生思考、讨论、交流,归纳总结:
在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。
因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图。
(1)(2)
类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图(2)
直线x-y=6叫做这两个区域的边界。
由特殊例子推广到一般情况:
3结论:
二元一次不等式Ax+By+C>0(<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
问题6:你能归纳出判断二元一次不等式表示平面区域的方法吗?试试看
4.方法:判断二元一次不等式表示平面区域的方法:
直线Ax+By+C=0同一侧的所有点(x,y)代入Ax+By+C所得实数的符号都相同,只需在直线的某一侧任取一点(x
,y
),根据Ax+By+C的正负即可判断Ax+By+C>0
表示直线的
哪一侧区域,C≠0
时,常把原点作为特殊点。
三.典例教学,巩固新知
例1:画出不等式x+4y<4表示的平面区域。
(让学生按照总结的方法,在坐标系中画出不等式x+4y<4表示的平面区域,教师检查学生画图的情况。
)
师启发:“你们是怎么画出图像的?谁能总结一下画图的过程?”
解:先画直线44
x y
+=(画成虚线).
取原点(0,0),代入x+4y-4,∵0+4×0-4=-4<0,
∴原点在44
x y
+<表示的平面区域内,不等式44
x y
+<表示的区域
如图:
归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。
特殊地,当0
≠
C时,常把原点作为此特殊点。
变式1、画出不等式12
3
4≤
-y
x所表示的平面区域。
变式2、画出不等式1
≥
x所表示的平面区域。
例2 用平面区域表示.不等式组
312
2
y x
x y
<-+
⎧
⎨
<
⎩
的解集。
分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
解:不等式312
y x
<-+表示直线312
y x
=-+右下方的区域,2
x y
<表示直线
2x y =右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解
集。
归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
变式1、画出不等式组⎪⎩
⎪
⎨⎧≤≥+≥+-300
5x y x y x 表示的平面区域。
变式2、由直线02=++y x ,012=++y x 和012=++y x 围成的三角形区域(包括边界)
四.课堂小结
(让学习自己总结:学到了什么知识?掌握了什么方法?还有什么问题?教师再指导补充。
) 1、小结:
(1)二元一次不等式表示平面区域: 是直线某一侧所有点组成的平面区域。
(2)二元一次不等式组表示平面区域: 是各个不等式所表示平面区域的公共部分 (3)判断方法:直线定界,特殊点定域。
五.作业布置
布置作业:课本P 练习1、2、3。