1.5有理数的乘方教案
- 格式:docx
- 大小:58.71 KB
- 文档页数:4
1.5有理数的乘方1.5.1乘方(第1课时)一、基本目标【知识与技能】1.理解有理数乘方的意义,能正确区分幂的底数与指数.2.能进行有理数的乘方运算,并能进行有理数的混合运算.【情感态度与价值观】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.二、重难点目标【教学重点】乘方的意义,利用乘方运算法则进行有理数乘方运算.【教学难点】理解一个负数的奇次幂和偶次幂的符号,有理数混合运算的顺序.环节1自学提纲,生成问题【5 min阅读】阅读教材P41~P44的内容,完成下面练习.【3 min反馈】(一)乘方1.求n个相同因数的积的运算叫乘方,乘方的结果叫做幂.2.在式子a n(n为正整数)中,a叫底数,n叫指数,a n叫幂.读作a的n次方或a的n 次幂.3.在94中,底数是9,指数是4,读作9的4次方,或9的4次幂.一个数可以看作这个数本身的一次方,例如5就是5的一次方.指数1通常省略不写.4.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.5.计算:(1)(-3)4;(2)-34;(3)⎝⎛⎭⎫-233; (5)(-1)2018. 解:(1)原式=81. (2)原式=-81. (3)原式=-827. (4)原式=1. (二)有理数的混合运算做有理数的混合运算时,先乘方,再乘除,最后加减;同级运算,从左到右进行;如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-2)100+(-2)101;(2)(-0.25)2017×42018.【互动探索】(引发学生思考)观察算式的特点,利用乘方的意义进行简算.【解答】(1)原式=(-2)100+(-2)×(-2)100=(1-2)×(-2)100=(-1)×2100=-2100.(2)原式=(-0.25)2017×4×42018=(-0.25×4)2017×4=(-1)2017×4=(-1)×4=-4.【互动总结】(学生总结,老师点评)灵活运用乘方的定义的逆应用,把底数相同的幂转化成指数也相同后,再逆应用运算律解答问题.【例2】计算:(1)-14+|3-5|-16÷(-2)×12; (2)6×⎝⎛⎭⎫13-12-32÷(-12). 【互动探索】(引发学生思考)利用有理数的混合运算顺序进行计算.【解答】(1)原式=-1+2-16×⎝⎛⎭⎫-12×12=-1+2+4=5.(2)原式=6×13-6×12-9×⎝⎛⎭⎫-112 =2-3+34=-14. 【互动总结】(学生总结,老师点评)计算有理数的混合运算,正确掌握运算法则是解题关键.活动2 巩固练习(学生独学)1.一根长1 m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( C )A.⎝⎛⎭⎫123 mB .⎝⎛⎭⎫125 m C.⎝⎛⎭⎫126 mD .⎝⎛⎭⎫1212 m2.计算:(1)⎝⎛⎭⎫-172; (2)-1.52;(3)8+(-3)2×(-2);(4)-14-16×[2-(-3)2]; (5)-33+(-1)2018÷16+(-5)2; (6)(-0.125)2016×82018.解:(1)原式=149. (2)原式=-2.25. (3)原式=-10. (4)原式=16. (5)原式=4. (6)原式=64.活动3 拓展延伸(学生对学)【例3】阅读下列材料:求1+2+22+23+...+22017的值,可令S =1+2+22+23+...+22017,则2S =2+22+23+24+ (22018)所以2S -S =22018-1,故S =22018-1.仿照以上推理,求1+5+52+53+…+52017的值.【互动探索】根据题目提供的信息,设S =1+5+52+53+…+52017,用5S -S 整理即可得解.【解答】设S =1+5+52+53+ (52017)则5S =5+52+53+54+ (52018)所以5S -S =52018-1,故S =52018-14. 【互动总结】(学生总结,老师点评)本题考查了乘方,读懂题目提供的信息,是解题的关键,注意整体思想的利用.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的乘方⎩⎪⎨⎪⎧ 乘方的定义负数的奇、偶次幂有理数的混合运算请完成本课时对应练习!1.5.2 科学记数法(第2课时)一、基本目标【知识与技能】理解科学记数法的意义和特征,能够用科学记数法表示大数.【过程与方法】通过收集一些大数,让学生感受大数的普遍存在以及数学与现实的联系,同时增强活动性和趣味性.【情感态度与价值观】正确使用科学记数法表示数,表现出一丝不苟的精神.二、重难点目标【教学重点】会用科学记数法表示大数.【教学难点】掌握10n的特征以及科学记数法中n与数位的关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P44~P45的内容,完成下面练习.【3 min反馈】1.把下面各数写成幂的形式.(1)100=102;(2)1000=103;(3)10000=104;(4)100000=105.2.一个大于10的数都可以表示成a×10n的形式,其中a的取值范围是大于等于1且小于10的数,n是正整数,用这种方法表示数叫做科学记数法.3.用科学记数法表示数时,整数的位数与10的指数的关系是整数位数-1=指数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】用科学记数法表示下列各数:(1)24 800 000;(2)-5 764.3;(3)361万.【互动探索】(引发学生思考)科学记数法中的n怎样确定?【解答】(1)24 800 000=2.48×107.(2)-5 764.3=-5.7643×103.(3)361万=3 610 000=3.61×106.【互动总结】(学生总结,老师点评)对于一个绝对值大于10的有理数,用科学记数法表示时,a是原数的小数点向左移动后的结果,n是比原数整数位数少1的正整数.【例2】将下列用科学记数法表示的数还原成原数.(1)1.2×105;(2)2.3×107;(3)3.6×108;(4)-4.2×106.【互动探索】(引发学生思考)将用科学记数法表示的数还原成原数怎样确定位数?【解答】(1)1.2×105=120 000.(2)2.3×107=23 000 000.(3)3.6×108=360 000 000.(4)-4.2×106=-4 200 000.【互动总结】(学生总结,老师点评)把用科学记数法表示的绝对值大于10的有理数化成原数时,只需把小数点向右移动n位即可,不足的用零补充.活动2巩固练习(学生独学)1.2017年,山西省接待入境游客95.71万人次,实现海外旅游创汇3.5亿美元,同比增长分别为6.38%、10.32%;累计接待国内游客5.6亿人次,实现国内旅游收入5338.61亿元,同比增长分别为26.49%、26.27%.实现旅游总收入约5360亿元,同比增长26.21%.数据5360亿元用科学记数法可表示为(B)A.0.536×1012元B.5.36×1011元C.53.6×1010元D.536×109元2.用科学记数法表示出下列各数.(1)30 060;(2)15 400 000;(3)123 000.解:(1)3.006×104.(2)1.54×107.(3)1.23×105.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解:(1)20 100.(2)607 000.(3)-3000.活动3拓展延伸(学生对学)【例3】比较下列两个数的大小.(1)-3.65×105与-1.02×106;(2)1.45×102017与9.8×102018.【互动探索】根据有理数的大小比较方法对比比较用科学记数法表示的数的方法.【解答】(1)|-3.65×105|=3.65×105,|-1.02×106|=1.02×106.因为1.02×106>3.65×105,所以-3.65×105>-1.02×106.(2)因为9.8×102018=98×102017,98>1.45,所以1.45×102017<9.8×102018.【互动总结】(学生总结,老师点评)比较用科学记数法表示的数时,利用乘方的意义,把10的指数转化成相同的,然后比较a 的大小,若a 大,则原数就大;若a 小,则原数就小.环节3 课堂小结,当堂达标(学生总结,老师点评)科学记数法⎩⎪⎨⎪⎧ 用科学记数法表示数还原用科学记数法表示的数比较用科学记数法表示的数请完成本课时对应练习!1.5.3 近似数(第3课时)一、基本目标【知识与技能】了解近似数的概念,能按要求取近似数.【过程与方法】在认识、理解近似数的过程中感受大数目近似数的使用价值,增强学生的应用意识,提高应用能力.二、重难点目标【教学重点】近似数、精确度和有效数字的意义.【教学难点】由给出的近似数求其精确度及有效数字,按给定的精确度或有效数求一个数的近似数.环节1自学提纲,生成问题【5 min阅读】阅读教材P45~P46的内容,完成下面练习.【3 min反馈】1.在现实生活与生产实践中,能准确地表示一些量的数,称为准确数;近似数是与实际的准确数非常接近的数.2.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是-2 ℃;(3)1 m等于100 cm;(4)教窒里有50张课桌;(5)由于我国人口众多,人均森林面积只有0.128公顷.解:(1)小琳称得体重为38千克,是近似数.(2)现在的气温是-2 ℃,是近似数.(3)1 m等于100 cm,是准确数.(4)教室里有50张课桌,是准确数.(5)由于我国人口众多,人均森林面积只有0.128公顷,是近似数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按照括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0238(精确到0.001);(2)2.605(精确到0.1);(3)20 543(精确到百位).【互动探索】(引发学生思考)什么是精确度?怎样求一个数的近似数?【解答】(1)0.0238(精确到0.001)≈0.024.(2)2.605(精确到0.1)≈2.6.(3)20 543(精确到百位)≈2.05×104.【互动总结】(学生总结,老师点评)近似数一般是由四舍五入得到的,当用四舍五入法取近似值时,近似数的末位数字0不能省略.活动2 巩固练习(学生独学)1.下列说法正确的是( C )A .近似数32与32.0的精确度相同B .近似数5万与近似数5000的精确度相同C .近似数0.0108有3个有效数字2.近似数1.02×105精确到了千位.3.把489 960按四舍五入法保留三个有效数字是4.90×105.4.用四舍五入法,对下列各数按括号中的要求取近似数:(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46 021(精确到百位).解:(1)0.63. (2)8.(3)131.0. (4)4.60×104.活动3 拓展延伸(学生对学)【例2】已知有理数x 的近似值是5.40,则x 的取值范围是________.【互动探索】如果近似值5.40是“四舍”得到的,那么原数x 最大是5.4+0.004=5.404;如果近似值5.40是“五入”得到的,那么原数x 最小是5.40-0.005=5.395.原数x 的取值范围是5.395<x <5.404.【答案】5.395<x <5.404【互动总结】(学生总结,老师点评)本题考查了准确值的取值范围,如果近似值是“四舍”得到的,那么原数最大;如果近似值是“五入”得到的,那么原数最小.环节3 课堂小结,当堂达标(学生总结,老师点评)近似数⎩⎪⎨⎪⎧ 求一个数的近似数精确度、有效数已知近似数求原数请完成本课时对应练习!。
1.5 有理数的乘方1.5.1 乘方第1课时乘方的概念及性质一、教学目标1.理解有理数乘方的意义.2.理解乘方、幂、底数等概念.3.有理数乘方的运算及幂的符号法则.二、教学重难点重点理解有理数乘方的意义,会进行有理数乘方的运算.难点有理数乘方的运算及幂的符号法则.重难点解读1.有理数的乘方,是求几个相同因数的积的运算,所以乘方是特殊的有理数的乘法运算,因而乘方结果的符号与有理数乘法中积的符号的确定方法是一样的.2.在乘方运算时,底数是负数或分数,要先用括号将底数括上,再在其右上角写上指数.负号在括号内,参与乘方的运算,负号在括号外,不参与乘方的运算,先保留,到最后再化简.3.有理数乘方的运算:(1)正数的任何次幂都是正数;(2)负数的偶次幂是正数,负数的奇次幂是负数;(3)0的任何正整数次幂都是0;(4)1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1.三、教学过程活动1 旧知回顾1.回顾有理数的乘法法则.2.算式(-2.5)×0.37×1.25×(-4)×(-8)的值为.活动2 探究新知1.教材第41页内容.提出问题:(1)2个2相乘记作22,3个2相乘记作23,n 个2相乘记作多少?(2)引入负数后,4个-2相乘记作多少?-24和(-2)4一样吗?为什么?(3)求n 个相同因数的积的运算,叫做什么?它们的结果又叫做什么?(4)在a n 中,a 和n 分别叫做什么?2.教材第42页 思考.活动3 知识归纳1.一般地,n 个相同的因数a 相乘,即n a aa ⋅⋅个,记作 a n .在a n 中,a 叫做 底数 ,n 叫做 指数 .求n 个相同因数的积的运算,叫做 乘方 ,乘方的结果叫做 幂 .注意:乘方和幂的区别2.负数的奇次幂是 负 数,负数的偶次幂是 正 数;正数的任何次幂都是 正 数,0的任何正整数次幂都是 0 .活动4 典例赏析及练习例1 将下列各式写成乘方(即幂)的形式:(1)(-5)×(-5)×(-5)×(-5)×(-5)= (-5)5 ;(2)(-14)×(-14)×(-14)×(-14)= (14)4. 例2 (-3)4表示( B )A .-3个4相乘B .4个-3相乘C .3个4相乘D .4个3相乘例3 计算:(1)(-2)5;(2)(-0.4)4;(-75)3. 【答案】(-2)5=(-2)×(-2)×(-2)×(-2)×(-2)=-32.(2)(-0.4)4=(-0.4)×(-0.4)×(-0.4)×(-0.4)=0.025 6.(3)(-75)3=(-75)×(-75)×(-75)=-343125. 例4 用计算器计算下列各式:(1)(-11)5= -161 051 ;(2)(-9)6= 531 441 .练习:1.下列运算正确的是( B )A .-24=16B .-(-2)2=-4C .(-31)2=-91D .-(-21)2=-41 2.下列各组数:-52和(-5)2;(-3)3和-33;-(-2)3和-23;323和(32)3;02 022和 02 021;(-1)2n 和(-1)2 020,其中相等的有( B )A .2组B .3组C .4组D .5组3.35 cm 比较接近于( D )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高(2.26 m )D .一张纸的厚度活动5 课堂小结1.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.当把a n 看作a 的n 次方的结果时,也可读作“a 的n 次幂”.2.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.四、作业布置与教学反思第2课时 有理数的混合运算一、教学目标1.确定有理数混合运算的顺序.2.熟练地进行有理数的混合运算.二、教学重难点重点有理数的混合运算顺序的确定和符号的处理.难点利用运算律进行有理数的混合运算.重难点解读1.进行有理数的混合运算,应注意运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.括号内的运算同样按上述运算顺序进行.算式中有带分数,一般把带分数化为假分数,算式中有小数的,把小数化为分数.2.在进行有理数的混合运算时,若能利用运算律,就利用运算律计算.三、教学过程活动1 旧知回顾1.回顾有理数的加减乘除混合运算的顺序和乘方的相关概念.2.计算:(1)|-512|÷(13-12)×(-111);(2)(-2)3,(-12)3,(-13)3. 活动2 探究新知 观察3+50÷22×(15)-1. 提出问题:(1)式子中有哪几种运算?(2)如何计算这个式子?它的运算顺序是什么?(3)计算过程中,可以运用运算律吗?活动3 知识归纳有理数的混合运算顺序:(1)先 乘方 ,再 乘除 ,最后 加减 ;(2)同级运算,从 左 到 右 进行;(3)如有括号,先做括号内的运算,按 小 括号、 中 括号、 大 括号依次进行.活动4 典例赏析及练习例1 (1)-14-61×[2-(-3)2];(2)(-3)2-(211)3×92-6÷|-32|. 【答案】解:(1)原式=-1-61×(2-9)=-1-61×(-7)=-1+67=61. (2)原式=9-827×92-6÷32=9-43-6×23=9-43-9=-43.例2观察下列等式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62.请你在观察后用你得出的规律填空:(1)48×52+4= 502;(2)n×(n+4)+4= (n+2)2(n为正整数).练习:1.下列计算中:①74-22÷70=70÷70=1;②2×32=(2×3)2=62=36;③-6÷(2×3)=-6÷2×3=-3×3=-9;④223-(-2)×(14-12)=49-(12-1)=49+12=1718.错误的有( D )A.1个B.2个C.3个D.4个2.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中第100个数是( A )A.9 999 B.10 000 C.10 001 D.10 002 3.x,y是有理数,且满足|x-1|=0,|y+3|=0,求x2-3xy+2y2的值.解:因为x,y是有理数,且满足|x-1|=0,|y+3|=0,所以x=1,y=-3.x2-3xy+2y2=12-3×1×(-3)+2×(-3)2=1+9+18=28.活动5 课堂小结1.有理数混合运算的顺序.2.有理数的混合运算.四、作业布置与教学反思。
第一章有理数1.5 有理数的乘方1.5.1 乘方第2课时一、教学目标【知识与技能】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.【过程与方法】通过例题学习,发展学生观察、归纳、猜想、推理等能力.【情感态度与价值观】体验获得成功的感受、增加学习自信心.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运算顺序的确定和性质符号的处理【教学难点】有理数的混合运算五、课前准备教师:课件、直尺、计算器等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课我们学过哪些运算?(出示课件2)学生答:有理数的加、减、乘、除、乘方五种运算。
教师:我们一起来思考下面的问题:教师问1:在2+×(-6)这个式子中,存在着哪几种运算?学生回答:乘方、加法、乘法.教师问2:这道题应按什么顺序运算?学生回答:先算乘方,再算乘法,最后算加法.(二)探索新知1.有理数的混合运算出示课件4-5,学生观察图片,思考问题,列出算式。
圆形花坛的半径为3m,中间雕塑的底面是边长为1m 的正方形。
请同学们估计一下若每平方米种9株花,我要买几株花呀?学生列出算式:(π×32-12)×9教师问3:上式含有哪几种运算?先算什么?后算什么?(出示课件6) 学生回答:下式含有乘方、乘法、减法三种运算,先算乘方,再算括号内的乘法,然后算减法,最后算括号外的乘法.23教师问4:前面我们已经学习加减乘除四则运算,知道要先算乘除,再算加减,现在又多一种乘方运算,你们认为在做有理数混合运算时,应注意哪些运算顺序?师生共同解答如下:(出示课件7)(1)先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1:计算:(出示课件8)(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).师生共同解答如下:解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27(2)原式=-8+(-3)×(16+2)-9÷(-2)=-8+(-3)×18-(-4.5)=-8-54+4.5=-57.5总结点拨:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减.计算时,特别注意符号问题.例2:计算:(出示课件10)师生共同解答如下:解法一、原式= 解法二、原式= =-6+(-5)=-11总结点拨:在运算过程中,巧用运算律,可简化计算.2.探究数字规律例:观察下面三行数:(出示课件12-14)–2, 4, –8, 16, –32, 64,…; ①0, 6, –6, 18, –30, 66,…; ②–1, 2, –4, 8, –16, 32,…. ③(1)第①行数按什么规律排列?师生共同解答如下:分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…(2)对比①②两行中位置对应的数,你有什么发现?()2253[]39⎛⎫-⨯-+- ⎪⎝⎭119119⎛⎫⨯-=- ⎪⎝⎭259939⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭222220,46,86,1618,..++++-−−→−−→-−−→-−−→第②行数是第①行相应的数加2.即 -2+2,(-2)2+2,(-2)3+2,(-2)4+2,…对比①③两行中位置对应的数,你有什么发现?第③行数是第①行相应的数的一半,即-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…(3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5.所以每行数中的第10个数的和是:(-2)10+[(-2)10+2]+[(-2)10×0.5]=1024+(1024+2)+1024×0.5=1024+1026+512=2562(三)课堂练习(出示课件16-20)1.计算4+(–2)2×5=( )A .–16B .16C .20D .242.计算式子(–1)3 +(–1)6的结果是( )A.1B.–1C.0D.1或–13.设a=–2×32, b=(–2×3)2, c=–(2×3)2,那么a 、b 、c 的大小关系是( )A.a<c<bB.c<a<bC.c<b<aD.a<b<c4.计算:(-12)2×(91-41) 5.计算:(-2)2022+(-2)20236.计算:(1)2×(-3)2-4×(-3)+15 ;(2)16122472;⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭(3)()27274;⎛⎫-+-÷- ⎪⎝⎭ (4)-8-3×(-1)3-(-1)4 7.一个长方体的长、宽都是a,高是b,它的体积和表面积怎样计算?当a=2 cm,b=5 cm 时,它的体积和表面积是多少?参考答案:1.D 解析:4+(–2)2×5=4+4×5=4+20=24.2.C3.B4.解:(-12)2×(91-41) =144×41-144×91 =36-16=205.解:原式=22022 – 22023= 22022 – 22022×2= 22022 –22022 –22022= –220226.(1)45;(2)79;(3)0;(4)-6 7.解:体积V=a 2b=22×5=20 cm 3.表面积S=2a 2+4ab=2×22+4×2×5=48 cm 2.(四)课堂小结今天我们学了哪些内容:有理数混合运算的顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左往右进行;3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(五)课前预习预习下节课(1.5.2)的相关内容。
1.5.1 有理数的乘方(一)教学目标1,在现实背景中,理解有理数乘方的意义。
2,能进行有理数的乘方运算,并会用计算器进行乘方运算。
3,掌握幂的符号法则。
教学难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算。
知识重点有理数乘方的意义设置情境引入课题1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果。
2.结合学生熟悉的边长为a的正方形的面积是a•a,棱长为a的正方体的体积是a•a•a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容。
小组合作1. 分小组学习教科书49页,要求能结合教产书中的示意图,用自己的语言表达下列几个概念的意义及相互关系。
底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果。
2. 补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?(1)(-2.3)×(-2.3)×(-2.3)×(-2.3)(2)(-)×(-)×(-)×(-)(3)x•x•x•……•x(1999个)3. 此例可由学生口述,教师板述完成。
教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-2)×(-2)×(-2)记作(-2)此例可由学生口述,教师板书完成。
4、小组讨论:应用新知巩固练习1、做一做:教科书第51页练习第1题。
2、用计算器算,以及教科书51页练习第2题。
3、小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0 .课堂小结1、由学生小结本堂课所学的内容。
2、总结五种已学的运算及其结果:运算加减乘除乘方运算结果和差积商幂课后反思:——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————。
1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方【知识与技能】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【过程与方法】1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.【情感态度】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.【教学重点】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【教学难点】准确建立底数、指数和幂三个概念,并能求幂的运算.一、情境导入,初步认识提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a 的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a 的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,……,5小时后要分裂10次,分裂成1024个.为了简便可将记作210.二、思考探究,获取新知一般地,n个相同的因数a相乘,即a·a·……·a,记作a n,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.【教学说明】(1)举例56说明概念及读法;(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;(4)乘方是一种运算,幂是乘方运算的结果.试一试(1)(-4)3;(2)(-2)4;(3)-24.【教学说明】教师教学时应强调:(1)计算时仍然是要先确定符号,再确定绝对值;(2)注意(-2)4与-24的区别.【归纳结论】根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0.三、典例精析,掌握新知例1 计算:【教学说明】注意观察,分清符号、底数以及指数.试一试教材第42~43页练习第1、2题.例2用计算器计算.(-8)5和(-3)6(教材第42页例2)【教学说明】教师让学生用计算器计算上面的题,注意让学生知道算乘方时的按键为∧.试一试教材第42~43页练习第3题.四、运用新知,深化理解1.在(-2)6中,指数为______,底数为______.2.在-26中,指数为______,底数为_______.3.若a 2=16,则a=______.4.平方等于本身的数为______,立方等于本身的数为______.5.计算(-151)×461=________. 6.在(-2)5,(-3)5,(-21)5,(-31)5中,最大的数是_______. 7.下列说法正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数8.下列运算正确的是( )A.-24=16B.-(-2)+=-4C. (-31)2=-91 D.(- 21)2=-41 9.下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.丨-23丨与丨-23丨10.下列各式计算不正确的是( )A.(-1)2013=-1B.-12012=1C.(-1)2n =1(n 为正整数)D.(-1)2n+1=-1(n 为正整数)【教学说明】以上题目均较简单,可由学生独立完成后再由教师评讲,边评讲边点学生口答.【答案】1.6 -22.6 23.±44.1、0 -1、0、15.-56.(-31) 5 7.D8.B9.A10.B五、师生互动,课堂小结1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:首先,有理数的乘方就是几个相同因数的积的运算,可以运用有理数乘法法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n 与-a n 及(a b )n 与a nb 的区别和联系.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
1.5.1 有理数的乘方(1)第一课时三维目标一、知识与技能(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.二、过程与方法通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.三、情感态度与价值观培养探索精神,体验小组交流、合作学习的重要性.教学重、难点与关键1.重点:正确理解乘方的意义,掌握乘方运算法则.2.难点:正确理解乘方、底数、指数的概念,并合理运算.3.关键:弄清底数、指数、幂等概念,注意区别-a n与(-a)n的意义.四、课堂引入1.几个不等于零的有理数相乘,积的符号是怎样确定的?几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?五、新授边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.a·a简记作a2,读作a的平方(或二次方).a·a·a简记作a3,读作a的立方(或三次方).一般地,几个相同的因数a相乘,记作a n.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n 次幂.例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,•即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?(35)2与235呢?(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.(-2)3与-23的意义不相同,其结果一样.(-2)4的底数是-2,指数是4,读作-2的四次幂,表示(-2)×(-2)×(-2)×(-2),•结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为-(2×2×2×2),其结果为-16.(-2)4与-24的意义不同,其结果也不同.(35)2的底数是35,指数是2,读作35的二次幂,表示35×35,结果是925;235表示32与5的商,即335,结果是95.因此,当底数是负数或分数时,一定要用括号把底数括起来.一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:(1)(-4)3;(2)(-2)4;(3)(-12)5;(4)33;(5)24;(6)(-13)2.解:(1)(-4)3=(-4)×(-4)×(-4)=-64 (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16(3)(-12)5=(-12)×(-12)×(-12)×(-12)×(-12)=-132(4)33=3×3×3=27(5)24=2×2×2×2=16(6)(-13)2=(-13)×(-13)=19例2:用计算器计算(-8)5和(-3)6.解:用带符号键(-)的计算器.开启计算器后按照下列步骤进行:((-) 8 )∧ 5 =显示:(-8)^ 5-32768 即(-8)5=-32768((-) 3 )∧ 6 =显示:(-3)^ 6729 即(-3)6=729用带符号转换键 +/-的计算器:8 +/-∧ 5 =显示:-327683 +/-∧ 6 =显示:729所以(-8)5=-32768 (-3)6=729因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.六、巩固练习1.课本第52页练习1、2.七、课堂小结正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n•两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a 相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n相等.八、作业布置1.课本第47页习题1.5第1题,第48页第11、12题.九、板书设计:1.5.1 有理数的乘方(1)第一课时1、负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.2、随堂练习。
《有理数的乘方》第一课时(教案设计)一、教学目标知识技能目标:1让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;2掌握有理数乘方的符号法则及相关性质,能够正确进行有理数的乘方运算;素质能力目标:1让学生经历知识的发生与发展过程,从中感受转化的数学思想;2培养学生观察、比较、分析、归纳、概括与动手操作的能力。
二、教学重难点重点:理解有理数乘方的意义;会进行有理数乘方的运算。
难点:透彻理解乘方、幂、底数、指数这几个概念的意义及相互关系。
三、教学方法本节课学法指导上着重引导学生通过观察、比较、分析、归纳、概括来研究规律性问题,同时,鼓励学生自主探索,解决问题。
教学中借助多媒体辅助教学,投影例题和练习,采取如下教法:(1)用情景导入法让学生感受引入概念的必要性。
(2)用讲授法讲清概念的形成过程,剖析概念的实质。
(3)用讨论法激起学生对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
(4)用练习法使学生对概念的理解更深刻、更透彻。
四、课时安排1课时五、教学过程(一)创设情境,导入新课珠穆朗玛峰是世界的最高峰,它的海拔高度是8844.43米。
把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。
你信吗?带着这个疑问开启本节课的学习合作探究要求:把一张纸进行对折、再对折……并回答下面的问题,并把答案填写在报告单上(1)对折一次有几层? 2(2)对折二次有几层?2×2(3)对折三次有几层?2×2 ×2(4)对折四次有几层?2×2 ×2 ×220个……(5)对折二十次有几层?2×2 ×2 ……×2×2 ×2(6)对折三十次呢? 2×2 ×2 ……×2×2 ×2问题:像这样的式子表示起来很复杂,那么有没有一种简单的记法呢?(二)新知探究1、通过实例,引出乘方的概念边长为2的正方形的面积是2×2, 简记作22,读作2的二次方(或2的平方); 棱长为2的正方体的体积是2×2×2,简记作23,读作2的三次方(或2的立方). 那么:类似地,2×2×2×2×2 简记作25,读作2的五次方2×2 ×2 ……×2×2 ×2 简记作230,读作2的三十次方2×2 ×2 ……×2×2 ×2 简记作2n ,读作2的n 次方若把2换成有理数aa ×a ×… ×a ×a 简记作 a n 读作a 的n 次方归纳:(1)n 个相同的因数a 相乘,即×a ×… ×a =n a ,读作a 的n 次方求几个相同因数的积的运算,叫做乘方。
1.5.1有理数的乘方数学教案
标题:1.5.1有理数的乘方
一、教学目标:
1. 学生能理解并掌握有理数的乘方运算。
2. 学生能够熟练运用有理数的乘方进行计算。
3. 培养学生的逻辑思维能力和抽象思考能力。
二、教学重点和难点:
1. 教学重点:理解和掌握有理数的乘方运算法则。
2. 教学难点:正确理解和运用负数的乘方。
三、教学过程:
1. 导入新课:通过复习以前学过的乘法知识,引导学生进入新课程的学习。
2. 新课讲解:
- 介绍乘方的概念,解释底数和指数的含义。
- 举例说明正数、零和负数的乘方运算。
- 引导学生发现并总结有理数的乘方运算法则。
3. 练习与应用:设计一系列的练习题,让学生在实践中巩固所学知识。
4. 小结与作业:回顾本节课的内容,布置相关的家庭作业。
四、教学策略:
1. 采用直观教学法,借助实例帮助学生理解有理数的乘方。
2. 采用互动教学法,鼓励学生积极参与课堂讨论,提高他们的主动学习能力。
五、教学评价:
1. 进行课堂小测验,检查学生对有理数的乘方的理解程度。
2. 检查学生的家庭作业,了解他们对所学知识的应用能力。
六、教学反思:
对本次教学进行反思,分析存在的问题,提出改进措施。
以上只是一个基本的大纲,你可以在此基础上添加更多的细节和内容,比如具体的教学活动、案例分析等。
同时,你也可以考虑加入一些更深入的主题,如幂的性质、科学记数法等,以增加你的文档的深度和广度。
1.5-有理数的乘⽅-教案设计(全国优质课⼀等奖)⼈教版义务教育课程标准实验教科书数学七年级上册1.5 有理数的乘⽅教案教学流程安排活动7 讲数学故事活动8 ⼩结与布置作业活动9 思考题容易错的题进⾏分析、⽐较,进⼀步巩固乘⽅的意义。
通过故事让学⽣认识数学在现实⽣活中的重要性,增进学⽣学好数学的⾃信⼼。
梳理知识,学⽣获得巩固和发展。
有利于学有余⼒的学⽣发展他们的数学才能。
问题与情境师⽣⾏为设计意图活动1 问题1.边长为 a 的正⽅形的⾯积是多少? 2.棱长为a 的正⽅体的体积是多少?活动2出⽰细胞分裂⽰意图下图是细胞分裂⽰意图,当细胞分裂到第10次时,细胞的个数是多少?活动3 问题1 思考: 1.什么叫做乘⽅? 2.什么叫做幂? 3.什么叫做底数、指数?问题2 4.在n a 中,底数a 表⽰什么?指数n 表⽰什么?na 就是⼏个⼏相乘?活动4 应⽤新知,巩固提⾼⼀、填空 1.在915中,15是__数,9是___数,读作教师提出问题。
学⽣独⽴回忆,思考并回答问题。
教师创设情境学⽣产⽣疑问教师提出问题1 学⽣⾃学,独⽴思考并回答问题教师板书教师提出问题(2)学⽣分组讨论,观察、思考问题2。
承上启下。
吸引学⽣的注意⼒,唤起学⽣的好奇⼼,激发学⽣兴趣和主动学习的欲望,引出课题。
通过⾃主学习。
培养学⽣分析问题、解决问题的能⼒。
通过分组讨论,提⾼学⽣合作交流意识。
⾂,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的⼤⾂表⽰感谢,国王答应满⾜这个⼤⾂的⼀个要求。
⼤⾂说:“就在这个棋盘上放⼀些⽶粒吧。
第1格放1粒⽶,第2格放2粒⽶,第3格放4粒⽶,然后是8粒、16粒、32粒、······⼀直到第64格。
”“你真傻!就要这么⼀点⽶粒?!”国王哈哈⼤笑。
⼤⾂说:“就怕您的国库⾥没有这么多⽶!”你认为国王的国库⾥有这么多⽶吗?活动8⼩结反思:1、通过本节课的学习,你有什么收获?你还有什么疑惑?2、总结五种已学的运算及其结果?1.教科书47页第1题2.收集⽣活中有关乘⽅运算的例⼦及趣闻故事活动9思考题接着,教师利⽤多媒体演⽰学⽣随教师提问回答最后,教师提问:这个故事给我们什么启⽰?学⽣思考、回答教师补充说明教师提出问题学⽣思考、回答教师补充教师布置作业。
1有理数的乘方教案
教学目标1
的运算;2
力,以及学生的探索精神;3
问题在小学我们已经学习过a·a,记作a2,读作a的平方;a·a·a作a3,读作a的立方;那么,a·a·a·a可以记作什么?读作什么?a·a·a·a·a呢?在小学对于字母a我们只
a还可以取哪些数呢?二讲授新1n个相同因数的
2
an中,a取任意有理数,n
an看作a的n次方的结果时,也可以读作a的n次幂。
3.我们知道,乘方和加、减、乘、除一样,也是一种运算,就是表示n个a相乘,所以可以利用
1 计算:2,2,2,24;
-2,2,3,4;0,02,03,042就是21,指数1
比较、分析这三组计算题中,底数、指数和幂之间有什么关系?模向观察正数的任何次幂都是正数;负数的奇次幂是负
?当a>0时,an>0;
当a<0时,;当a=0时,an=0a2n=2n;=-2n-1;a2n≥0 2
计算:2,3,[-];-32,-33,-
板上计
算结果,让学生自己体会到,n的底数是-a,表示n个相乘,-an是an的相反数,这是n与-an
向观察第题的形式和计算结果,让学生自己体会到,写分数
算:,,,-,;XX,3×22,-42×2,-23÷3;n-1
让学生回忆,做出小结:12
31
2;3;4;;-012;-3;3·3;-6·3;-·32;22
表:3a=-3,b=-,=4时,求下列各代数式的值:2;
a2-b2+2;
2;
a2+2ab+b24a是负数时,判断下列各式是否成
a2=2;
a3=3;
a2=;
a3=*9的数有几个?是什么?有没有平方得-9的有理数?为什么?6*2+|b-2|=0,求aXX·b3
学设计说明1
中,既要注重罗辑推理能力的培养,又重注重观察、归纳等
容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学2
方面前进的:第一是不断的推广;第二是不断的精确化;第
与数池家的研究方式类似,不断进行推广a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a,…,an
一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项an中,a取任意有理数,n取
正整数的说明还是必要的,要培养学生这种良好的学习习惯3
须通过自己的探索才能学会数学和会学数学,与其说学习数
会,让学生自己在学习中扮演主动角色,教师不代替学生思
4
的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使
化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次
让学生完成问题n-1,进一步巩固了分类讨论思想,使这种。