高二数学试题(理科)
- 格式:doc
- 大小:243.50 KB
- 文档页数:4
高二上学期理科数学测试题本卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A .5,10,15,20,25B .2,4,8,16,32C .1,2,3,4,5D .7,17,27,37,47解析:选D 利用系统抽样,把编号分为5段,每段10个,每段抽取一个,号码间隔为10, 2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A .至少有1个白球,都是白球B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球解析:选C 结合互斥事件和对立事件的定义知,对于C 中恰有1个白球,即1白1红,与恰有2只白球是互斥事件,但不是对立事件,因为还有2只都是红球的情况,故选C. 3.执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于()A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]解析:选A 由程序框图得分段函数s =⎩⎪⎨⎪⎧3t ,t <1,4t -t 2,t ≥1.所以当-1≤t <1时,s =3t ∈[-3,3);当1≤t ≤3时,s =4t -t 2=-(t -2)2+4,所以此时3≤s ≤4.综上函数的值域为[-3,4],即输出的s 属于[-3,4],选择A.4.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡5.设一随机试验的结果只有A 和A ,且P (A )=p ,令随机变量X =⎩⎪⎨⎪⎧1(A 出现),0(A 不出现),则X 的方差D (X )等于()A .pB .2p (1-p )C .-p (1-p )D .p (1-p ) 解析:选D X 服从两点分布,故D (X )=p (1-p ). 6.二项式41(1)n x +-的展开式系数最大项为( A )A .第2n +1项B .第2n +2项C .第2n 项D .第2n +1项和第2n +2项7.一人有n 把钥匙,其中只有一把可把房门打开,逐个试验钥匙,房门恰好在第k 次被打开(1≤k ≤n )的概率是( B )A .1!n B .1nC .knD .1(1)!k n-8.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:11n n a n ⎧-⎪=⎨⎪⎩第次摸取红球第次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为(B )A .525712()()33C B .225721()()33C C .525711()()33C D .325712()()33C9.盒中有红球5个,蓝球11个,其中红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球,现从中任取一球,假设每个球被摸到的可能性相同.若已知取到的球是玻璃球,则它是蓝球的概率为()A.23B.13C.1116D.516解析:选A 记“取到蓝球”为事件A ,“取到玻璃球”为事件B ,则已知取到的球为玻璃球,它是蓝球的概率就是B 发生的条件下A 发生的条件概率,记作P (A |B ).因为P (AB )=416=14,P (B )=616=38,所以P (A |B )=P (AB )P (B )=1438=23. 10.节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,若都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是()A.14B.12C.34D.78解析:选C 设第一串彩灯亮的时刻为x ,第二串彩灯亮的时刻为y ,则⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,要使两串彩灯亮的时刻相差不超过2秒,则⎩⎪⎨⎪⎧ 0≤x ≤4,0≤y ≤4,-2≤x -y ≤2.如图,不等式组⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,所表示的图形面积为16,不等式组⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,-2≤x -y ≤2所表示的六边形OABCDE 的面积为16-4=12,由几何概型的公式可得P =1216=34. 二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,采用分层抽样的方法从中抽取一个容量为若干户的样本,若从高收入家庭中抽取了25户,则低收入家庭被抽取的户数为________.解析:设低收入家庭被抽取的户数为x ,则有25125=x95,解得x =19.12. 某班有50名学生,一次考试后数学成绩X (X ∈N )服从正态分布N (100,102),已知P (90≤X ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为________.解析:由题意知,P (X >110)=1-2P (90≤X ≤100)2=0.2.∴该班学生数学成绩在110分以上的人数为0.2×50=10.答案:1013.旅游公司为3个旅游团提供4条旅游线路,每个旅游团只能任选其中一条,则不同的选择方法有_____种.解析:64 14 .⎝⎛⎭⎫x 2+1x +25的展开式中的常数项为________.(用数字作答) 解析:原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x 5·[()x +22]5=132x 5()x +210. 求原式的展开式中的常数项,转化为求()x +210的展开式中含x 5项的系数,即C 510·()25. 所以所求的常数项为C 510·()2532=6322.答案:632215.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析:设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽,又成活为幼苗).出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.答案:0.72三.解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(1)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,求实数m 的值。
郑州一中高二数学(理)联考试题共150分,考试用时120分钟。
一、选择题(本大题共12小题,每小题5分,共60分)1.已知ab >0,ac <0,则直线ax+by+c=0一定不经过A.第一象限B.第二象限C.第三象限D.第四象限 2.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的A .ab ac >B .c b a ()-<0C .cb ab 22<D .0)(<-c a ac3.不等式221x x +>+的解集是A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞4.若直线L 上两点A (—4,1),B (X,—3) 且直线L 的倾斜角是135°则X 的值为A, 0 B, —8 C ,8 D ,—45.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+②)11(log )1(log aa a a +>+ ③a a a a 111++<④aaaa111++> 其中成立的是A .①与③B .①与④C .②与③D .②与④6.设μμ则且,10)(4,4,0,022++-⋅==+≥≥y x y x y x y x 的最值情况是A .有最大值2,最小值2)22(2-B .有最大值2,最小值0C .有最大值10,最小值2)22(2-D .最值不存在7.已知0<a<b<1,则a b 、log b a 、b a1log 的大小1log a关系是A .a a b b b alog log 1<<B .b b aa ab <<log log 1C .log b a<b aa b <1logD .a b <a b b alog log 1<8.直线2x-y+3=0,的倾斜角所在的区间是A .(00, 450)B .(450, 900)C .(900,1350)D .(1350,1800)9.与直线3x+4y+5=0 的方向向量共线的一个单位向量是 A .(3、4) B .(4、-3) C .(0.6、0.8) D .(0.8、-0.6)10.过点P (-1、2)且方向向量为a=(-1、2)的直线方程是A .2x+y=0B .x-2y+5=0C .x-2y=0D .x+2y-5=011.若函数()f x =R ,则实数a 的取值范围是A .(0,4)B .[0,4]C .[4,)+∞D .(0,4]12.下列命题中,(1)x x 1+的最小值是2,(2)1222++x x 的最小值是2,(3)4522++x x 的最小值是2,(4)xx 432--的最小值2,正确的有A .1个B .2个C .3个D .4个 二、填空题(本大题共5小题,每小题4分,共20分)13、不等式(0x -≥的解集为{|12}X X X ≥=-或.14.已知⎩⎨⎧≥〈-=,0,1,0,1)(x x x f 则不等式2)(≤+x x xf 的解集是{|1}X X ≤{|1}X X ≤.15.直线L 经过M(2、1),其倾斜角为直线x-y+4=0的倾斜角的二倍,则直线L 的方程是20X -=。
高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。
A。
5+2i B。
5-2i C。
-5+2i D。
-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。
A。
1/3+cos1 B。
11/3sin1+cos1 C。
3sin1-cos1 D。
sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。
A。
0 B。
1 C。
2 D。
-14.定积分∫1x(2x-e)dx的值为()。
A。
2-e B。
-e C。
e D。
2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。
A。
1项 B。
k项 C。
2k-1项 D。
2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。
A。
40/3 B。
13 C。
25/2 D。
157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。
A。
(3,-3) B。
(-4,11) C。
(3,-3)或(-4,11) D。
不存在8.函数f(x)=x^2-2lnx的单调减区间是()。
A。
(0,1] B。
[1,+∞) C。
(-∞,-1]∪(0,1] D。
[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。
A。
f(x)=4/(2x+2) B。
f(x)=2^(12/(x+1)) C。
f(x)=(x+1)/2 D。
f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。
A。
[-1,+∞) B。
(-1,+∞) C。
2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣72.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.103.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.724.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±35.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣16.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.188.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.59.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC210.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣403411.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.14.()dx=.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)=.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:曰需48 49 50 51 52 53 54求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】A2:复数的基本概念.【分析】直接由题意求得a,b的值,则答案可求.【解答】解:∵a+bi(a,b∈R)与2﹣3i互为共轭复数,∴a=2,b=3,则a﹣b=﹣1.故选:B.2.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.10【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性即可得出a﹣2=2.【解答】解:∵随机变量ξ~N(l,25),∴P(ξ≤0)=P(ξ≥2),∴a﹣2=2,即a=4.故选A.3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,则有2×24=48个五位偶数,故选:B.4.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±3【考点】DC:二项式定理的应用.【分析】在二项式(x+a)10的展开式中,令x的幂指数等于8,求得r的值,可得x8的系数,再根据x8的系数为45,求得a的值.【解答】解:二项式(x+a)10的展开式的通项公式为 T r+1=•x10﹣r•a r,令10﹣r=8,求得r=2,可得x8的系数为•a2=45,∴a=±1,故选:A.5.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣1【考点】67:定积分.【分析】由题意首先求得原函数,然后利用微积分基本定理即可求得定积分的值.【解答】解:由微积分基本定理可得.故选:C.6.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.【考点】CM:条件概率与独立事件.【分析】由题意利用条件概率的计算公式,求得甲中奖的前提下乙也中奖的概率.【解答】解:每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为P(A),乙中奖的概率为P(B),两人都中奖的概率为P(AB),则P(A)=0.6,P(B)=0.6,两人都中奖的概率为P(AB)=0.4,则已知甲中奖的前提下乙也中奖的概率为P(B/A)===,故选:D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.18【考点】67:定积分.【分析】本题考查定积分的实际应用,首先求得交点坐标,然后结合题意结合定积分的几何意义计算定积分的数值即可求得封闭图形的面积.【解答】解:联立直线与曲线的方程:可得交点坐标为(﹣2,2),(4,8),结合定积分与几何图形面积的关系可得阴影部分的面积为:.故选:D.8.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.5【考点】BK:线性回归方程.【分析】根据表中数据计算、,代入回归直线方程中求出m的值.【解答】解:根据表中数据,计算=×(0+1+2+3+4)=2,=×(1.2+m+2.9+4.1+4.7)=,代入回归直线方程=x+1中,得=2+1,解得m=2.1.故选:B.9.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2【考点】F3:类比推理.【分析】由题意结合平面与空间类比的关系即可得出题中的结论.【解答】解:平面与空间的对应关系为:边对应着面,边长对应着面积,结合题意类比可得.故选:C.10.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣4034【考点】DC:二项式定理的应用.【分析】在所给的等式中,两边同时对x求导,再令x=2,可得a1+2a2+3a3+…+2017a2017 的值.【解答】解:在(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017中,两边同时对x求导,可得﹣2×2017(3﹣2x)2016=a1+2a2(x﹣1)+…+2017a2017(x﹣1)2016,再令x=2,可得a1+2a2+3a3+…+2017a2017=﹣4034,故选:D.11.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出f′(x)的解析式,判断奇偶性,再根据f″(x)的单调性得出f′(x)的增长快慢变化情况,得出答案.【解答】解:f′(x)=x+sin(x+π)=x﹣sinx,∴f′(﹣x)=﹣x+sinx=﹣f′(x),∴f′(x)是奇函数,图象关于原点对称,排除B,D;∵f″(x)=1﹣cosx在(0,π)上是增函数,∴f′(x)在(0,π)上的增加速度逐渐增大,排除C,故选A.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)【考点】6B:利用导数研究函数的单调性.【分析】根据函数的单调性得到x+1>x2﹣5>0,解不等式即可.【解答】解:∵f(x)>﹣(x+1)f′(x),∴[(x+1)•f(x)]′>0,故函数y=(x+1)•f(x)在(0,+∞)上是增函数,由不等式f(x+1)>(x﹣2)f(x2﹣5)得:(x+2)f(x+1)>(x+2)(x﹣2)f(x2﹣5),即(x+2)f(x+1)>(x2﹣4)f(x2﹣5),∴x+1>x2﹣5>0,解得:﹣2<x<3,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.【考点】CH:离散型随机变量的期望与方差.【分析】利用二项分布的性质求解即可.【解答】解:∵离散型随机变量ξ~B(5,),Dξ=5×=,故答案为:.14.()dx=.【考点】67:定积分.【分析】本题考查定积分的几何意义,首先确定被积函数表示的几何图形,然后结合图形的形状和圆的面积公式即可求得定积分的数值.【解答】解:函数即:(x﹣1)2+y2=1(x≥1,y≥0),表示以(1,0)为圆心,1为半径的圆在x轴上方横坐标从1到2的部分,即四分之一圆,结合定积分的几何意义可得.故答案为.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)= ﹣9 .【考点】63:导数的运算.【分析】由题意首先求得f'(2)的值,然后结合导函数的解析式即可求得最终结果.【解答】解:由函数的解析式可得:∴f′(x)=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.【考点】RG:数学归纳法.【分析】归纳S n的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…S n=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即S k=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即S k+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出f (x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程;(Ⅱ)求出函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再由极值的定义,可得所求极值.【解答】解:(Ⅰ)函数f(x)= [(x﹣5)2+121nx]的导数为f′(x)=x﹣5+=,可得y=f (x)在点(1,f(1))处的切线斜率为2,切点为(1,8),即有切线的方程为y﹣8=2(x﹣1),即为2x﹣y+6=0;(Ⅱ)由f′(x)=x﹣5+=,结合x>0,由f′(x)>0,可得x>3或0<x<2,f(x)递增;由f′(x)<0,可得2<x<3,f(x)递减.则f(x)在x=2处取得极大值,且为;f(x)在x=3处取得极小值,且为2+6ln3.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(Ⅰ)首先由题意求得优秀的人数,据此结合列联表的特征写出列联表即可;(Ⅱ)结合(1)中的列联表结合题意计算K2的值即可确定喜欢数学是否与性别有关.【解答】解:(Ⅰ)由题意可知:所有优秀的人数为:人,据此完成列联表如下所示:优秀非优秀合计甲班10 30 40乙班30 30 60合计40 60 100(Ⅱ)由列联表中的结论可得:,则若按99%的可靠性要求,不能认为“成绩与班级有关系”.20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为,由此能求出曲线C的参数方程;(Ⅱ)求得直线AB的方程,设P点坐标,根据点到直线的距离公式及正弦函数的性质,即可求得点P到直线AB的距离的最大值.【解答】解:(Ⅰ)曲线C的极坐标方程为ρ2(1+3sin2θ)=4,即ρ2(sin2θ+cos2θ+3sin2θ)=4,由x=ρcosθ,y=ρsinθ,得到曲线C的直角坐标方程为x2+4y2=4,即;∴曲线C的参数方程为(α为参数);(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,∴由已知可得A(2,0),B(0,1),直线AB的方程:x+2y﹣2=0,设P(2cosφ,sinφ),0<φ<2π,则P 到直线AB的距离d==丨sin(φ+)﹣1丨,∴当φ+=π,即φ=时d取最大值,最大值为(+1).点P到直线AB的距离的最大值(+1).21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:48 49 50 51 52 53 54曰需求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)根据利润公式得出函数解析式;(2)(i)求出利润的可能取值及其对应的概率,得出分布列和数学期望;(ii)求出n=51时对应的数学期望,根据利润的数学期望大小得出结论.【解答】解:(1)当n≤50时,y=5n﹣50×3=5n﹣150,当n>50时,y=50×(5﹣3)=100,∴y=.(2)(i)由(1)可知n=48时,X=90,当n=49时,X=95,当n≥50时,X=100.∴X的可能取值有90,95,100.∴P(X=90)==,P(X=95)==,P(X=100)==,∴X的分布列为:X 90 95 100P∴E(X)==98.(ii)由(i)知当n=50时,E(X)=98,当n=51时,y=,∴当n=48时,X=87,当n=49时,X=92,当n=50时,X=97,当n≥51时,X=102,∴P(X=87)=,P(X=92)=,P(X=97)==,P(X=102)=.∴E(X)=87+++=97.7.∵98>97.7,∴每天应购进50盒比较合理.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的X围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式 x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.。
高二年级理科数学综合试题本试卷分选择题和非选择题两部分,共3页,满分150分.考试时间120分钟. 注意事项:1. 答第I 卷前,务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3. 考试结束后,监考人将答题卡收回,试卷考生自己保管.一、选择题:本大题共有8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把它选出后在答题卡规定的位置上用铅笔涂黑. 1. “3x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 2. 已知0a b >>,那么下列不等式成立的是( ).A a b ->- .B a c b c +<+ ()()22.C a b ->- 11.D a b> 3. 设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( ).A .8B .7C .6D .54. 已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是 ( )A .q p ∨⌝)(B .q p ∧C .)()(q p ⌝∧⌝D .)()(q p ⌝∨⌝5. 小明在玩投石子游戏,第一次走1米放2颗石子,第二次走2米放4颗石子,…,第n 次走n 米放2n颗石子,当小明一共走了36米时,他投放石子的总数是( ) A .36 B .254 C .510 D .5126. 锐角ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若2C A =,则ca 的取值范围是( )().1,2A (.B ).,2C .D7. 有甲、乙两个粮食经销商每次在同一粮食生产地以相同的价格购进粮食,他们共购进粮食两次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮食10000元,在两次统计中,购粮的平均价格较低的是( )A.甲B.乙C.一样低D.不确定8. 设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( )A.340x y ±=B.350x y ±=C.430x y ±=D.540x y ±=二、填空题:本大题共有6个小题,每小题5分,共30分。
高二理科数学(2)一、选择题(本大题共12小题,共60.0分)1.若复数(i是虚数单位)为纯虚数,则实数a的值为()A. 2 B. C. D.2.若函数的极小值为﹣1,则函数的极大值为()A. 3 B. C. D. 23.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B. C. D.4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+cos x,则f′(2)=()A. B. C. D.5.定义在R上的函数y=f(x)满足:f(x)+f′(x)>1,f(0)=2017,则不等式e x f(x)-e x>2016(其中e为自然对数的底数)的解集为()A. B. C. D.6.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A. a,b,c都是奇数B. a,b,c都是偶数C. a,b,c中至少有两个偶数D. a,b,c中至少有两个偶数或都是奇数7.定积分的值为()A. 1 B. C. D.8.已知函数ƒ(x)=ax3+bx2+cx的图象如图所示,则有()A. ,B. ,C. ,D. ,9.利用回归分析的方法研究两个具有线性相关关系的变量时,下面说法:①相关关系r满足|r|≤1,而且|r|越接近1,变量间的相关程度越大;|r|越接近0,变量间的相关程度越小;②可以用R2来刻画回归效果,对于已获取的样本数据,R2越小,模型的拟合效果越好;③如果残差点比较均匀地落在含有x轴的水平的带状区域内,那么选用的模型比较合适;这样带状区域越窄,回归方程的预报精度越高;④不能期望回归方程得到的预报值就是预报变量的精确值;⑤随机误差e是衡量预报精确度的一个量,它满足E(e)=0.其中正确的结论为( )A. ①②③ B. ①②④ C. ③④⑤ D. ①③④⑤10.箱子里有5个黄球,4个白球,每次随机取一个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为()A. B. C. D.11.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为()A. 60B. 480C. 420D. 7012.对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为()A. ,B. ,C. ,D. ,二、填空题(本大题共4小题,共20.0分)13.圆ρ=4cosθ的圆心到直线tan()=1的距离为______ .14.(1-)4展开式中含x-3项的系数是______.15.已知,则的值是______ .16.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到.则认为选修文科与性别有关系出错的可能性为________.三、解答题(本大题共7小题,共84.0分)17.已知m∈R,复数.(1)若z是纯虚数,求m的值;(2)当m为何值时,z对应的点在直线x+y+3=0上?18.3名女生和5名男生排成一排(Ⅰ)如果女生必须全排在一起,可有多少种不同的排法?(Ⅱ)如果女生必须全分开,可有多少种不同的排法?(Ⅲ)如果两端都不能排女生,可有多少种不同的排法?(Ⅳ)如果两端不能都排女生,可有多少种不同的排法?19.在数列{a n}中,a1=2,a n+1=(n∈N+),(1)计算a2、a3、a4并由此猜想通项公式a n;(2)证明(1)中的猜想.20.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在[40,45)内的人数为X,求X的分布列及数学期望.21.某中学研究性学习小组,为了研究高中理科学生的物理成绩是否与数学成绩有关系,在本校高三年级随机调查了50名理科学生,调查结果表明:在数学成绩优秀的25人中16人物理成绩优秀,另外9人物理成绩一般;在数学成绩一般的25人中有6人物理成绩优秀,另外19人物理成绩一般.(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)以调查结果的频率作为概率,从该校数学成绩优秀的学生中任取100人,求100人中物理成绩优秀的人数的数学期望和标准差.参考公式:K2=,其中n=a+b+c+d.22.已知曲线的极坐标方程为,直线∈,直线∈.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.(1)求直线,的直角坐标方程以及曲线的参数方程;(2)已知直线与曲线交于,两点,直线与曲线交于,两点,求的面积.23.已知函数f(x)=ln(2x+a)-e2x-1.(1)若函数f(x)在x=处取得极值,求f(x)的单调区间;(2)当a≤1时,f(x)<0,求x的取值范围.高二理科数学(2)答案和解析1.【答案】A解:复数=为纯虚数,∴,≠0,解得a=2.故选A.2.【答案】A解:f′(x)=3x2-3,令f′(x)=0,解得x=±1,当x>1或x<-1时,f′(x)>0,当-1<x<1时,f′(x)<0.故f(x)在(-∞,-1),(1,+∞)上是增函数,在(-1,1)上是减函数,故f(x)在x=1处有极小值f(1)=1-3+m=-1,解得m=1.所以f(x)在x=-1处有极大值f(-1)=-1+3+1=3.故选A.3.【答案】B解:从甲、乙等5名学生中随机选出2人,基本事件总数n==10,甲被选中包含的基本事件的个数m==4,∴甲被选中的概率p===.故选:B.4.【答案】A解:∵f(x)=2xf′(2)+cosx,∴f'(x)=2f′(2)-sinx,令x=2,则f'(2)=2f′(2)-sin2,即f′(2)=sin2,故选:A.5.【答案】D解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)-e x>2016,∴g(x)>2016,又∵g(0)=e0f(0)-e0=2017-1=2016,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞),故选D.6.【答案】D解:用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设是:a,b,c中至少有两个偶数或都是奇数.故选:D.7.【答案】C解: ,因为,所以x2+y2=1,y≥0,即等于圆心在原点,半径为1的圆的面积的,所以,又,所以.故选C.8.【答案】A解:由函数f(x)的图象知f(x)先递增,再递减,再递增∴f′(x)先为正,再变为负,再变为正∵f′(x)=3ax2+2bx+c∴a>0∵在递减区间内∴f′(0)<0即c<0故选A9.【答案】D解:相关系数r是用来衡量两个变量之间线性相关关系的方法,当r=0时,表示两变量间无线性相关关系,当0<|r|<1时,表示两变量存在一定程度的线性相关.且|r|越接近1,两变量间线性关系越大.故①正确;由R2计算公式可知,R2越小,说明残差平方和越大,则模型拟合效果越差.故②错误;由残差图的定义可③正确;在利用样本数据得到回归方程的过程中,不可避免的会产生各种误差,因此用回归方程得到的预报值只能是实际值的近似值.故④正确.随机误差e是衡量预报精确度的一个量,它满足E(e)=0.正确.故答案为:D.10.【答案】B解:第四次取球之后停止表示前三次均取到黄球,第四次取到白球,由题意知本题是一个有放回的取球,是一个相互独立事件同时发生的概率,取到一个白球的概率是,去到一个黄球的概率是其概率为()3×,故选:B.11.【答案】C解:分两步,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用乘法原理可求解.由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S,A,B染好时,不妨设所染颜色依次为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C 染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法,即当S,A,B染好时,C,D还有7种染法.故不同的染色方法有60×7=420种.故选:C.12.【答案】A解:根据2×2列联表与独立性检验的应用问题,当与相差越大,X与Y有关系的可能性越大;即a、c相差越大,与相差越大;故选:A.13.【答案】解:圆ρ=4cosθ为ρ2=4ρcosθ,化为直角坐标方程为:x2+y2-4x=0,圆心坐标为C(2,0),直线tan()=1,即cotθ=1,即=1,化为直角坐标方程为:x-y=0,∴圆心C(2,0)到直线的距离d==.故答案为:.14.【答案】解:由,令-r=-3,得r=3.∴(1-)4展开式中含x-3项的系数是.故答案为:.15.【答案】()2018解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=-2,得a0=0再令x=-,得到a0+=(-+1)2(-+2)2016=()2018,∴=,故答案为:()2018,16.【答案】%解:∵根据表中数据,得到K2的观测值解,因为4.844>3.841,∴认为选修文科与性别有关系出错的可能性为5%.故答案为5%.17.【答案】解:(1)当z为纯虚数时,则,解得m=0,∴当m=0时,z为纯虚数;(2)当z对应的点在直线x+y+3=0上时,则,即,解得m=0或,∴当m=0或时,z对应的点在直线x+y+3=0上.18.【答案】解:(1)女生全部排在一起有A66A33=4320种.(2)女生必须全分开有A55A63=14400种.(3)因为两端都不能排女生,所以两端只能从5个男生中选2个排在两端,有A52种排法,其余6人有A66种排法,所以共有A52•A66=14400种排法.(4)8个人站成一排共有A88种不同的排法,排除掉两端都是女生的排法有A32•A66种,所以符合条件的排法有A88-A32•A66=36000种.19.【答案】解:(1)在数列{a n}中,∵a1=2,a n+1=(n∈N*)∴a1=2=,a2==,a3==,a4==,∴可以猜想这个数列的通项公式是a n=;(2)下面利用数学归纳法证明:①当n=1时,成立;②假设当n=k时,a k=,则当n=k+1(k∈N*)时,a k+1===,因此当n=k+1时,命题成立,综上①②可知:∀n∈N*,a n=都成立.20.【答案】解:(1)根据题意,计算平均数的估计值为=(27.5×0.01+32.5×0.04+37.5×0.07+42.5×0.06+47.5×0.02)×5=38.5≈39;中位数的估计值为:因为5×0.01+5×0.04=0.25<0.5,5×0.06+5×0.02=0.4<0.5,所以中位数位于区间[35,40)年龄段中,设中位数为x,所以0.24+0.07×(x-35)=0.5,x≈39;(2)用分层抽样的方法,抽取的20人,应有6人位于[40,45)年龄段内,14人位于[40,45)年龄段外;依题意,X的可能值为0,1,2;P(X=0)==,P(X=1)==,P(X=2)==;X数学期望为EX=0×+1×+2×=.所以K2=≈8.117>7.879,所以有99.5%把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)由题意可得,数学成绩优秀的学生中物理成绩优秀的概率为,随机变量X符合二项分布,所以数学期望E(X)=100×=64,标准差==.22.【答案】解:(1)依题意,直线l1的直角坐标方程为,直线l2的直角坐标方程为,因为为+,故ρ2=ρcosθ+2ρsinθ,故x2+y2=x+2y,故(x-)2+(y-1)2=4,故曲线C的参数方程为++(α为参数).(2)∵联立,∴得到|OA|=4,同理,又∵,∴,∴ AOB的面积为.23.【答案】解:(1)f′(x)=-2e2x-1,由已知得f′()=0,即-1=0,所以a=0,所以f(x)=ln2x-e2x-1,函数f(x)的定义域为(0,+∞),f′(x)=-2e2x-1,由于f′(x)在(0,+∞)上为减函数,而f′()=0,所以当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,所以f(x)的单调递增区间为(0,),单调递减区间为(,+∞).(2)由于a≤1,所以ln(2x+a)≤ln(2x+1),所以f(x)≤ln(2x+1)-e2x-1,令g(x)=ln(2x+1)-2x(x>-),则g′(x)=,所以,当-<x<0时,g′(x)>0,当x>0时,g′(x)<0,所以g(x)≤g(0)=0,即:ln(2x+1)≤2x令h(x)=e2x-1-2x,则h′(x)=2(e2x-1-1),所以,当x>时,h′(x)>0,当-<<时,h′(x)<0,所以h(x)≥h(),即:e2x-1≥2x.所以,对任意x>,ln(2x+1)-e2x-1<0,因此,当a≤1时,对任意x>-,ln(2x+1)-e2x-1<0,所以x的取值范围为(-,+∞)。
晋城中学高三12月阶段性测试数 学 试 题(理科)命题人:贺 江一、选择题(本大题共12个小题,每小题5分,满分60分;在每小题给出的四个选项中,只有一项符合题目要求,请将答案填在答题栏内) 1、抛物线x y 82=的焦点坐标为( ) A 、(0,4)B 、(0,2)C 、(4,0)D 、(2,0)2、运行如右的程序后输出变量y 的值是( ) A 、16B 、4C 、8D 、23、已知条件01:<-x p ,条件01:2<-x q ,则p 是q 成立的( ) A 、必要不充分条件 B 、充分不必要条件 C 、充要条件 D 、既非充分也非必要条件4、某中学高中一年级有540人,高二年级有440分,高三年级有420人用分层抽样的方法抽取样本容量为70的样本,则高一、高二、高三三个年级分别抽取( ) A 、27人、22人、21人 B 、25人、24人、21人 C 、26人、24人、20人 D 、28人、24人、18人5、如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ) A 、32 B 、41 C 、21 D 、316、阅读如图所示的程序框图,运行相应的程序输出的结果是( ) A 、123 B 、38 C 、11 D 、37、已知圆)0(4)2()(32>=-+-a y a x C :以直线03:=+-y x l ,当直线l 被圆C 截得的弦长为32时,则a 等于( )A 、2B 、22-C 、12+D 、12-8、设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则目标函数y x x -=3的最大值为( )A 、5B 、34 C 、4 D 、09、方程0)1(2222=-++y x x 表示的图形是( )A 、两个点B 、一条直线和一个圆C 、一个点和一个圆D 、一个圆 10、抛物线x y 42=上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A 、6 B 、4 C 、5 D 、2911、正方体ABCD —A 1B 1C 1D 1的棱长为1,点M 在棱AB 上,且31=AM ,点P 是平面ABCD上的动点,且点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹是( ) A 、线段 B 、椭圆的一部分C 、双曲线的一部分D 、抛物线的一部分12、双曲线12222=-by ax )0,(>>b b a 的两个焦点为1F 、2F,P 为其上一点,且||||21PF m PF =)1(>m ,若双曲线的离心率),3[+∞∈e ,则实数m 的最大值为( )A 、2B 、4C 、8D 、9 二、填空题(本大题共4个小题,每小题4分,满分16分)。
高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。
精品基础教育教学资料,仅供参考,需要可下载使用!第二学期第一次月考高二数学理科试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,仅有一项符合题目要求)1. 已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P Q=()A.[-1,3] B . [1,3] C. [1,2] D. (],3-∞2. 已知,则()A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)3.下列说法正确的是()A.“sinα=”是“cos2α=”的必要不充分条件B.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”C.已知命题p:∃x∈R,使2x>3x;命题q:∀x∈(0,+∞),都有<,则p∧(¬q)是真命题D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样4.已知函数f(x)的定义域为[﹣1,4],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.x ﹣1 0 2 3 4f(x) 1 2 0 2 0当1<a<2时,函数y=f(x)﹣a的零点的个数为()A.2 B.3 C.4 D.55. 如图,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A. B.C. D.6.函数f(x)=sinx•ln(x2+1)的部分图象可能是()A. B.C. D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.18B.16C. D.18.如果函数f (x )为奇函数,当x<0时,f (x )= ln(-x)+3x,则曲线在点(1,-3)处的切线方程为 ( ).32(1) .32(1) .34(1) .34(1)A y x B y x C y x D y x +=--+=-+=--=+9. 已知圆C :(x ﹣3)2+(y ﹣4)2=1和两点A (﹣m ,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( ) A .7B .6C .5D .410.如图,四棱锥P ﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD ,△PAB 和△PAD 都是等边三角形,则异面直线CD 与PB 所成角的大小为( ) A .45° B .75° C .60° D .90° 11.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y=0交椭圆E 于A ,B 两点,若|AF|+|BF|=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A .(0,] B .(0,] C .[,1) D .[,1)12. 设函数f (x )在(m ,n )上的导函数为g (x ),x ∈(m ,n ),若g (x )的导函数小于零恒成立,则称函数f (x )在(m ,n )上为“凸函数”.已知当a ≤2时,3211()62f x x ax x =-+,在x ∈(﹣1,2)上为“凸函数”,则函数f (x )在(﹣1,2)上结论正确的是( ) A .有极大值,没有极小值 B .没有极大值,有极小值C .既有极大值,也有极小值D .既无极大值,也没有极小值二、填空题(本大题共4小题,每小题5分,共20分). 13.设向量(,1)a m =,(1,2)b =,且222a b a b +=+,则m=________. 14.函数2cos 2y x =的图象可由sin 2cos 2y x x =+的图象至少向左平移_______个单位长度得到.15.若函数2()f x x x a =-()在 2x =处取得极小值,则a =________. 16. 设函数()f x 的导函数是'()f x ,且'1()2() () ,2f x f x x R f e ⎛⎫>∈=⎪⎝⎭(e 是自然对数的底数),则不等式2()f lnx x <的解集为___________.三.解答题(本大题共6小题,共70分;说明:17-21共5小题,每题12分,第22题10分). 17. 已知数列{a n }(n ∈N *)的前n 项的S n =n 2. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,记数列{b n }的前n 项和为T n ,求使成立的最小正整数n 的值.18.设函数f (x )=lnx ﹣x+1. (Ⅰ)分析f (x )的单调性; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x.19.如图,△ABC 和△BCD 所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E 、F 分别为AC 、DC 的中点.(Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E ﹣BF ﹣C 的正弦值.20.已知椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的焦点,点A (0,﹣2),直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.21.已知函数2()1xe f x x mx =-+.(Ⅰ)若()2,2m ∈-,求函数()y f x =的单调区间;(Ⅱ)若10,2m ⎛⎤∈ ⎥⎝⎦,则当[]0,1x m ∈+时,函数()y f x =的图象是否总在直线y x =上方?请写出判断过程.22.(选修4-4坐标系与参数方程)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.高二第一次月考理科数学参考答案一、BDCCC DBBBD BA 二、13. -2 ; 14 . 8π; 15. 2 ; 16. ()0,e .三、 17.解:(Ⅰ)∵S n =n 2,当n ≥2时,S n ﹣1=(n ﹣1)2∴相减得a n =S n ﹣S n ﹣1=2n ﹣1又a 1=S 1=1符合上式∴数列{a n },的通项公式a n =2n ﹣1 (II )由(I )知∴T n =b 1+b 2+b 3++b n ==又∵∴∴成立的最小正整数n 的值为518.解:(Ⅰ)由f (x )=lnx ﹣x+1,有'1()(0)xf x x x-=>,则()f x 在(0,1)上递增,在(1,+∞)递减; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x ,即为lnx <x ﹣1<xlnx .结合(Ⅰ)知,当1x >时'()0f x <恒成立,即()f x 在(1,+∞)递减,可得f (x )<f (1)=0,即有lnx <x ﹣1;设F (x )=xlnx ﹣x+1,x >1,F′(x )=1+lnx ﹣1=lnx ,当x >1时,F′(x )>0,可得F (x )递增,即有F (x )>F (1)=0, 即有xlnx >x ﹣1,则原不等式成立; 19.解:(Ⅰ)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,易得B (0,0,0),A (0,﹣1,),D (,﹣1,0),C (0,2,0),因而E (0,,),F (,,0),所以=(,0,﹣),=(0,2,0),因此•=0,所以EF ⊥BC .(Ⅱ)在图中,设平面BFC 的一个法向量=(0,0,1),平面BEF 的法向量=(x ,y ,z ),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E ﹣BF ﹣C 的大小为θ,由题意知θ为锐角,则 cosθ=|cos <,>|=||=,因此sinθ==,即所求二面角正弦值为.20.解:(Ⅰ) 设F (c ,0),由条件知,得又,所以a=2,b 2=a 2﹣c 2=1,故E 的方程.….(6分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y=kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y=kx ﹣2代入,得(1+4k 2)x 2﹣16kx+12=0, 当△=16(4k 2﹣3)>0,即时,从而又点O 到直线PQ 的距离,所以△OPQ 的面积=,设,则t >0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y=x ﹣2或y=﹣x ﹣2.…(12分)21. 解:(Ⅰ)易知()2,2m ∈-时,函数的定义域为R ,()()()2'2222(1)2(1)(1)()11x xx e x mx x m e e x x m f x xmx xmx -+-----==-+-+,①若11,m +=即0m =,则'()0f x ≥,此时()f x 在R 上递增;②11,m +>即02m <<,则当(),1x ∈-∞和()1,x m ∈++∞时,'()0f x >,()f x 递增;当()1,1x m ∈+时,'()0f x <,()f x 递减;综上,当0m =时,()f x 的递增区间为(),-∞+∞;当02m <<时,()f x 的递增区间为(),1-∞和()1,m ++∞,()f x 的减区间为()1,1m +(Ⅱ)当10,2m ⎛⎤∈ ⎥⎝⎦时,由(Ⅰ)知()f x 在()0,1上单调递增,在()1,1m +上单调递减.令()g x x =,①当[]0,1x ∈时min max ()(0)1,()1,f x f g x ===这时函数()f x 的图象总在直线()g x 上方. ②当[]1,1x m ∈+时,函数()f x 单调递减,所以1min()(1)2m e f x f m m +=+=+,()g x 的最大值为1m +.下面(1)f m +判断与1m +的大小,即判断xe 与(1)x x +的大小,其中311,.2x m ⎛⎤=+∈ ⎥⎝⎦解法一:令()(1)xm x e x x =-+,则'()21xm x e x =--,令'()()h x m x =,则'()2xh x e =-.因为311,.2x m ⎛⎤=+∈ ⎥⎝⎦所以'()20x h x e =->,所以'()m x 单调递增.又因为'(1)30m e =-<,3'23()402m e =->,所以存在031,2x ⎛⎤∈ ⎥⎝⎦,使得0'00()210.x m x e x =---所以()m x 在()01,x 上单调递减,在03,2x ⎛⎫ ⎪⎝⎭上单调递增,所以022200000000()()21 1.x m x m x e x x x x x x x ≥=--=+--=-++因为当031,2x ⎛⎤∈ ⎥⎝⎦时,2000()10,m x x x =-++>所以(1)x e x x >+,即(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方.解法二:判断xe 与(1)x x +的大小可以转化为比较x 与[]ln (1)x x +的大小.令[]()ln (1)x x x x ϕ=-+,则2'21()x x x x x ϕ--=+,令2()1,u x x x =--当31,2x ⎛⎤∈ ⎥⎝⎦时,易知()u x 递增,所以31()()024u x u ≤=-<,所以当31,2x ⎛⎤∈ ⎥⎝⎦时,'()0x ϕ<,()x ϕ递减,所以3315()()ln0224x ϕϕ≥=->.所以[]ln (1)x x x >+,所以(1)xe x x >+,所以(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方. 22.解:(1)曲线C 1的参数方程为(α为参数),移项后两边平方可得+y 2=cos 2α+sin 2α=1,即有椭圆C 1:+y 2=1; 曲线C 2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y ﹣4=0,即有C 2的直角坐标方程为直线x+y ﹣4=0; (2)由题意可得当直线x+y ﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).。
莘县实验高中高二年级阶段性检测高二数学试题(理科)命题人 :焦长兴一、 选择题:(本题共12个小题,每小题4分,共48分,每题所给的四个选项中只有一个正确的)1. 函数()y f x =在x x =处的导数定义中,自变量x 在x 处的增量x ∆ ( )A 、大于0B 、小于0C 、等于0D 、不等于02. 已知)1(2)(/2xf x x f += ,则)0(/f = ( )A 、0B 、-4C 、-2D 、23. 函数13)(23+-=x x x f 是减函数的区间是 ( ) )2,0(.)0,(.)2,(.),2(.D C B A -∞-∞+∞4.考函数),在(∞+∞-=-cos 2)(x x x f 上 ( )A.是增函数B.是减函数C.有最大值D.有最小值5. 以下四个关于复合函数如何复合而成的结论中,不正确的结论是 ( )复合而成的是由343411,sin ,)11(sin .xv v u u y xy A +===+=复合而成的是由mnnmx u u y x y B 43,)43(.+==+=C. ,log )1(2log 22u y x y =+=是由 u=2v v=x+1复合而成D.y=Asin(ωx+φ)是由y=Asinu u=ωx+φ复合而成 6.函数y=xx sin 的导数为 ( )A.y ′=2sin cos xxx x + B.y ′=2sin cos xxx x -C.y ′=2cos sin x xx x - D.y ′=2cos sin xxx x +7. 函数y=xa x 22+(a>0)的导数为0,那么x 等于 ( )A.aB.±aC.-aD.2a8. 若函数f(x)=3)1()1(2131/2/3+-+x f x f x ,则f(x)在点(0,f(0))处切线的倾斜角为( )A.π4B.π3C.2π3D.3π49.物体A 以速度v =132+t (m/s)在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t(m/s)的速度与A 同向运动,出发后物体A 追上物体B 所用的时间t(s)为 ( ) A.3 B.4 C.5 D.610.函数c bx ax x x f +++=23)(,其中c b a ,,为实数,当032<-b a 时,)(x f ()A.增函数B.减函数C.常数D.既不是增函数也不是减函数11.如图,直线l 和圆C ,当l 从0l开始在平面上绕点P 按逆时针方向匀速转动(转动角度不超过090)时,它扫过的圆内阴影部分的面积S 是时间t 的函数, 这个函数的图象大致是 ( )12.函数 )(x f =223x a bx ax +--在1=x 时有极值10,则b a ,的值为 ( )A .11,43,3=-=-==b a b a 或 B.1,4=-=b a 11,1-==b a 或 C.11,4==b a D.以上都不对二、填空题(本题共4个小题,每小题4分,共16分) 13. .___________2)1()1(lim,1 1)(0=-+=→xf x f x x f x 则处的导数为在已知函数14.=⎰dx 211-x -1_________.15. 如图,函数)(x f y =的图象在点P 处的切线是l ,则=+)2()2(/f f ___ ______.16. 将正数a 分成两部分,使其平方和为最小,这两部分应分成_____ 和_____ .三.解答题:(共56分,解答应写出必要的文字说明、证明过程或演算步骤.) 17. (本题满分10分)已知函数193)(23+++-=x x x x f .(Ⅰ)求)(x f 的单调递减区间;(Ⅱ)求)(x f 在区间[]2,2-上的最大值和最小值 18. (本题满分10分)计算由直线,4-=x y 曲线x y 2=以及x 轴所围成的面积.19. (本题满分12分) 已知函数x a x x f ln 21)(2-=(R x ∈)(1)若函数)(x f 的图象在2x =处的切线方程为b x y +=,求b a ,的值;(2)若函数)(x f 在(1,∞)上是增函数,求a 的取值范围.20. (本题满分12分)某个体户计划经销A 、B 两种商品,据调查统计,当投资额为x (0≥x )万元时,在经销A 、B 商品中所获得的收益分别为)(x f 万元与)(x g 万元, 其中2)1()(+-=x a x f ,)ln(6)(b x x g +=(0,0>>b a ),已知投资额为零时,收益为零. (Ⅰ)试求出a 、b 的值;(Ⅱ)如果该个体户准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收入的最大值.(精确到0.1,参考数据:10.13ln ≈)21.(本题满分12分) 已知函数f(x)=x 321-x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f(x)在x=1处取得极值,且x ∈[-1,2]时,f(x)<2c 恒成立, 求c 的取值范围.4 2 4.5xy O(第15题图)y =f (x )l P莘县实验高中高二年级阶段性检测 高二数学试题(理科)参考答案一、选择题:1. D2. B3. D4. A5. C6. B (y ′=22sin cos )(sin )(sin xxx x xx x x x -='⋅-'.)7. B y ′=2222222222222)()(xa xxxa xxa xx a x-=--=+'-'+由于y ′=0,所以x2-a2=0,解得x=±a.8. D 由题意得:f′(x)=x2+f′(1)x -f′(2), 令x =0,得f′(0)=-f′(2), 令x =1,得f′(1)=1+f′(1)-f′(2), ∴f′(2)=1,∴f′(0)=-1,即f(x)在点(0,f(0))处切线的斜率为-1, ∴倾斜角为34π.9. C 因为物体A 在t 秒内行驶的路程为∫t 0(3t2+1)dt ,物体B 在t 秒内行驶的路程为∫t 010tdt ,所以∫t 0(3t2+1-10t)dt =(t3+t -5t2)|t 0=t3+t -5t2=5 ⇒(t -5)(t2+1)=0,即t =5. 10. A 11. D 12. C二、填空题:13、1214、2π15、98 16、;22a a三、解答题:17.解:(Ⅰ)'2()369f x x x =-++令'2()03690f x x x <-++<即(,1)(3,)x ∴∈-∞-+∞解得x>3或x<-1 和单调递减(Ⅱ)令()0f x =解得x=-1或x=3(舍)f(2)=-8+12+18+1=23f(-2)=8+12-18+1=3f(-1)=1+3-9+1=-4f(x)的最大值为23,最小值为-4.8解:340(见课本57P 例2)19.解:(1)()21ln ()(0)2a fx x a x f x x x x'=-⇒=->由题意得:(2)12212(2)22ln 22ln 22a f a f b b a b⎧'==-=⎧⎧⎪⇔⇔⎨⎨⎨=+=-⎩⎩⎪-=+⎩(2)函数()f x 在1x >上是增函数()0a f x x x '⇔=-≥在1x >上恒成立2a x ⇔≤在1x >上恒成立1a ⇔≤20.解:解:(Ⅰ)根据问题的实际意义,可知:0)0(=f ,0)0(=g ;即⎩⎨⎧==+-0ln 602b a , ∴⎩⎨⎧==12b a ,(Ⅱ)由(Ⅰ)的结果可得:x x f 2)(=,)1ln(6)(+=x x g ,依题意,可设投入B 商品的资金为x 万元(0 < x ≤5),则投入A 商品的资金为x -5万元、 若所获得的收入为)(x S 万元,则有102)1ln(6)1ln(6)5(2)(+-+=++-=x x x x x S (0 < x ≤5)∵216)(-+='x x S ,令0)(='x S ,得2=x ;当2<x 时,0)(>'x S ;当2>x 时,0)(<'x S ;∴2=x 是)(x S 在区间[0,5]上的唯一极大值点,此时)(x S 取得最大值:6.1263ln 6)2()(max ≈+==S x S (万元)、 此时,35=-x (万元)答:该个体户可对A 商品投入3万元,对B 商品投入2万元,这样可以获得12. 6万元的最大收益.21.解:(1))(x f ' =3x2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x2-x+b ≥0,∴b ≥x-3x2在(-∞,+∞)恒成立.设g(x)=x-3x2.当x=61时,g(x)max=121,∴b ≥121. (2)由题意知)1('f =0,即3-1+b=0,∴b=-2.x ∈[-1,2]时,f(x)<c2恒成立,只需f(x)在[-1,2]上的最大值小于c2即可.因)(x f '=3x2-x-2,令)(x f '=0,得x=1或x=-32.∵f(1)=-23+c,f(-,21)1(,2722)32c f c +=-+=f(2)=2+c.∴f(x)max=f(2)=2+c,∴2+c<c2.解得c>2或c<-1,所以c 的取值范围为 (-∞,-1)∪(2,+∞).。