动态平衡及临界问题
- 格式:doc
- 大小:113.50 KB
- 文档页数:2
第4课时专题强化:动态平衡和临界、极值问题目标要求 1.学会用图解法、解析法等解决动态平衡问题。
2.会分析平衡中的临界与极值问题。
考点一动态平衡问题动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态。
常用方法:图解法、解析法、相似三角形法、辅助圆法、正弦定理法。
1.“一力恒定,另一力方向不变”的动态平衡问题(1)一个力恒定,另一个力始终与恒定的力垂直,三力可构成直角三角形,可作不同状态下的直角三角形,分析力的大小变化,如图甲所示。
(2)一力恒定,另一力与恒定的力不垂直但方向不变,作出不同状态下的矢量三角形,确定力大小的变化,在变化过程中恒力之外的两力垂直时,会有极值出现,如图乙所示。
例1(多选)如图所示,在倾角为α的斜面上,放一质量为m的小球,小球和斜面及挡板间均无摩擦,当挡板绕O点逆时针缓慢地转向水平位置的过程中()A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小答案BC解析对小球受力分析知,小球受到重力mg 、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg 大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B 、C 正确,A 、D 错误。
2.“一力恒定,另两力方向均变化”的动态平衡问题一力恒定(如重力),其他二力的方向均变化,但二力分别与绳子、两物体重心连线方向等平行,即三力构成的矢量三角形与绳长、半径、高度等实际几何三角形相似,则对应边比值相等。
基本矢量图,如图所示基本关系式:mg H =F N R +r =F T L 。
例2如图所示为一简易起重装置,AC 是上端带有滑轮的固定支架,BC 为质量不计的轻杆,杆的一端C 用铰链固定在支架上,另一端B 悬挂一个质量为m 的重物,并用钢丝绳跨过滑轮A 连接在卷扬机上。
秘籍02共点力的静态平衡、动态平衡、临界和极值问题、整体法和隔离法一、共点力的平衡1.平衡状态:物体受到几个力作用时,如果保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。
【注意】“静止”和“v=0”的区别和联系当v=0时:①a=0时,静止,处于平衡状态②a≠0时,不静止,处于非平衡状态,如自由落体初始时刻2.共点力平衡的条件(1)条件:在共点力作用下物体平衡的条件是合力为0。
(2)公式:F合=03.三个结论:①二力平衡:二力等大、反向,是一对平衡力;②三力平衡:任两个力的合力与第三个力等大、反向;③多力平衡:任一力与其他所有力的合力等大、反向。
二、静态平衡与动态平衡的处理方法1.静态平衡与动态平衡态而加速度也为零才能认为平衡状态。
物理学中的“缓慢移动”一般可理解为动态平衡。
2.静态平衡的分析思路和解决方法方法内容合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反。
分解法物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件。
正交分解法物体受到三个或三个以上力的作用而平衡,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件。
力的三角形法对受三个力作用而平衡的物体,将力的矢量图平移使三个力组成一个首尾依次相接的矢量三角形,根据正弦定理、余弦定理或相似三角形等数学知识求解未知力。
3.动态平衡的分析思路和解决方法方法内容解析法对研究对象的任一状态进行受力分析,建立平衡方程,求出已知力与未知力的函数式,进而判断各个力的变化情况图解法①分析物体的受力及特点;②利用平行四边形定则,作出矢量四边形;③根据矢量四边形边长大小作出定性分析;相似三角形法①分析物体的受力及特点;②利用平行四边形定则,作三力矢量三角形;③根据矢量三角形和几何三角形相似作定性分析;拉密定理法①分析物体的受力及特点;②利用平行四边形定则,作三力矢量三角形;③利用正弦或拉密定理作定性分析;三、共点力平衡中的临界极值问题1.临界或极值条件的标志有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点。
第7课时:动态物体 平衡的临界状态和极值问题一、动态平衡二、平衡的临界状态所谓的临界状态是指一种物理现象转变为另一种物理现象,或者从一个物理过程转入到另一个物理过程的转折状态。
我们也可以将其理解为“恰好出现”或者“恰好不出现”某种现象的状态。
而平衡物体的临界状态是指物体所处的平衡状态将要变化的状态。
3.如图所示,小球质量为m=2kg ,用两根轻绳AB ,AC 系好后,将绳固定在竖直墙上,在小球上加一个与水平方向夹角为60°的力F ,使小球平衡时,两绳均伸直,则力F 的大小应满足什么条件?8.如图所示放在光滑斜面上的小球,一端系于固定的O 点,现用外力缓慢将斜面在水平桌面上向左推移,使小球上升(最高点足够高),在斜面运动过程中,绳对球的拉力将( ) A 先增大后减小 B 先减小后增大C 直接增大D 一直减小9.如图所示,用与竖直方向成θ角(θ<45°)的倾斜轻绳a和水平轻绳b共力为1T .现保持小球在原位置不动,使绳b在原竖直同固定一个小球,这时绳b的拉的拉力变为2T ;再转过θ角固定,绳b的拉力为3T ,平面内逆时转过θ角固定,绳b则( )A .1T =3T >2TB .1T <2T <3TC .1T =3T <2TD .绳a的拉力减小三、平衡的极值问题所谓极值问题是指研究平衡问题中某物理量变化情况时出现的最大值或者最小值。
研究物理极值问题和临界问题的基本观点有二:1、物理分析:通过对物理过程分析,抓住临界或者极值条件进行求解;2、数学讨论:通过对物理问题的分析,依据物理规律列出物理量之间的函数关系,用数学方法求极值。
这种方法一定要依据物理理论对解的合理性以及物理意义进行讨论或者说明。
研究临界问题的基本方法:一般采用先假设一种情况的存在,然后再根据平衡条件以及有关知识列方程求解。
研究平衡物体的极值问题有两种方法:1、解析法:根据物体的平衡条件列方程,在解方程时采用数学知识求极值。
高考物理一轮复习动态平衡、平衡中的临界和极值问题导学案旧人教版【考点自清】一、平衡物体的动态问题(1)动态平衡:指通过控制某些物理量使物体的状态发生缓慢变化。
在这个过程中物体始终处于一系列平衡状态中。
(2)动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。
(3)平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。
解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。
图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。
二、物体平衡中的临界和极值问题1、临界问题:(1)平衡物体的临界状态:物体的平衡状态将要变化的状态。
物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。
临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。
(2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。
平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。
解决这类问题关键是要注意“恰好出现”或“恰好不出现”。
2、极值问题:极值是指平衡问题中某些物理量变化时出现最大值或最小值。
平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。
【重点精析】一、动态分析问题【例1】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。
动态平衡
1.如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A点,当缩短细绳小球缓慢上移的过程中,细绳对小球的拉力、墙壁对小球的弹力如何变化?
2.一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-1所示。
现将细绳缓慢往左拉,使杆BO与杆A O间的夹角θ逐渐减少,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是( )
A.F N先减小,后增大 B.F N始终不变 C.F先减小,后增大 D.F始终不变
3.如图3-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G=40N,绳长L=2.5m,OA=1.5m,求绳中张力的大小,并讨论:
(1)当B点位置固定,A端缓慢左移时,绳中张力如何变化?
(2)当A点位置固定,B端缓慢下移时,绳中张力又如何变化?
4.如图所示,小船用绳牵引.设水平阻力不变,在小船匀速靠岸的过程中
A、绳子的拉力不断增大
B、绳子的拉力保持不变
C、船受的浮力减小
D、船受的浮力不变
5.有一个直角支架AOB,AO是水平放置,表面粗糙.OB竖直向下,表面光滑.OA上套有小环P,OB套有小环Q,两环质量均为m,两环间由一根质量可以忽略.不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO杆对P的支持力F N和细绳上的拉力F的变化情况是:
A.F N不变,F变大 B.F N不变,F变小 C.F N变大,F变大 D.F N变大,F变小
6.如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P、Q用轻绳连接并跨过滑轮(不计滑轮的质
量和摩擦),P悬于空中,Q放在斜面上,均处于静止状态。
当用水平向左的恒力推Q时,P、Q仍静止不动,则 (abd)
A.Q受到的摩擦力可能变小B.Q受到的摩擦力可能变大
C.轻绳上拉力一定变小D.轻绳上拉力一定不变
共点力平衡中的极值和临界问题
7.如图所示,跨过定滑轮的轻绳两端,分别系着物体A和B,物体A在倾角为θ的斜面上,已知物体A的质量为m,物体A与斜面间动摩擦因数为μ(μ<tgθ),滑轮的摩擦不计,要使物体静止在斜面上,求物体B质量的取值范围?
8.如图所示,用细线OA、OB悬挂一重物,OA、OB与天花板的夹角分别θ1=30°和θ2=60°,它们所能承受的最大拉力分别为F1=1000N和F2=1500N,求悬挂物的最大重力。
10.如图所示,小球质量为m,用两根轻绳BO、CO系好后,将绳固定在竖直墙上,在小球上加一个与水平方向夹角为60°的力F,使小球平衡时,两绳均伸直且夹角为60°。
则力F的大小应满足什么条件?
11.如图所示,在细绳的下端挂一物体G,用力F拉物体,使细绳偏离竖直方向α角,且保持α角不变,当拉力F与水平方向夹角β多大时,拉力F值最小?。