2008年1月高等教育自学考试概率论与数理统计(经管类)04183试题及答案
- 格式:doc
- 大小:582.00 KB
- 文档页数:7
考前复习资料代码:04183科目:概率论数理统计(经管类)目录1、随机事件的关系与计算 (1)2、利用概率的性质计算概率 (1)3、条件概率的定义和公式 (1)4、事件的独立性(概念与性质) (1)5、n重贝努利试验中事件A恰好发生k次的概率公式 (1)6、利用分布函数计算概率的公式 (1)7、连续型随机变量及其概率密度 (1)8、正态分布和一般正态分布的标准化 (2)9、维离散型随机变量联合分布律和边缘分布律 (2)10、二维连续型随机变量的概率密度和边缘概率密度 (2)11、二维随机变量的独立性 (2)12、二维均匀分布、二维正态分布 (3)13、两个随机变量函数的分布 (3)14、随机变量的方差的概念、性质及计算 (3)15、协方差和相关系数 (3)16、独立同分布序列的中心极限定理 (4)17、样本均值、样本方差 (4)18、三大抽样分布 (5)19、参数的矩法估计 (5)20、大似然估计的方法与步骤 (5)21、估计量的无偏性 (5)22、估计量的有效性和相合性 (5)23、假设检验的两类错误 (6)24、用最小二乘法估计回归模型中的未知参数 (6)25、随机事件及其概率 (7)26、概率的定义及其计算 (7)27、分部函数性质 (8)28、离散型随机变量 (8)29、连续型随机变量 (8)30、离散型二维散随机变量边缘分布 (8)31、离散型二维随机变量条件分布 (9)32、连续性二维随机变量的联合分布函数 (9)33、连续型二维随机变量边缘分布函数与边缘密函数 (9)39、二维随机变量的条件分布 (9)40、数学期望 (9)41、数学期望的性质 (9)42、方差 (10)43、方差的性质 (10)44、协方差 (10)45、相关系数 (10)46、协方差和相关系数的性质 (10)47、常见数字分布的期望和方差 (10)48、切比雪夫不等式 (11)49、大数定律 (11)50、中心极限定理 (12)51、总体和样本 (12)52、统计量 (12)53、三大抽样分布 (12)54、参数估计 (13)55、点估计中的矩估计法(总体矩=样本矩) (13)56、点估计中的最大似然估计 (14)1、随机事件的关系与计算事件的包含与相等、和事件、积事件、互不相容、对立事件的概念2、利用概率的性质计算概率)()()()(AB P B P A P B A P -+=⋃,)()()(AB P B P A B P -=-3、条件概率的定义和公式)(B A P )()(B P AB P =4、事件的独立性(概念与性质)定义:若)()()(B P A P AB P =,则称A 与B 相互独立。
全国2008年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6D .0.83.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3eC .11--eD .1311--e4.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31C .3D .45.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161B .163 C .41 D .836.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(ND .)45,11(N8.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( ) A .np p )1(- B .np p )1(- C .)1(p np - D .)1(p np -9.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(tD .)1,1(F10.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计(经管类)一、单项选择题1.设A ,B 为随机事件,且B A ⊂,则AB 等于 B A .A B .B C .ABD .A2..将一枚均匀的硬币抛掷三次,恰有二次出现正面的概率为 CA .81B .14 C .38D .12?3..设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21= AA.41B.31 C.214.已知离散型随机变量X !则下列概率计算结果正确的是DA .P (X =3)=B .P (X =0)=0C .P (X>-1)=lD .P (X ≤4)=l5.设二维随机变量(X ,Y)的分布律右表所示:C且X 与Y 相互独立,则下列结论正确的是A .a =,b = B .a =,b = C .a =,b = D .a =, b =6.设二维随机变量(X ,Y )的分布律为D则P{XY=0}= BA. 121B. 61C. 31D.32 7.设随机变量X 服从参数为2的指数分布,则E (X )= BA .41B .21C .2D .48.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为D |A .1B .2C .3D .49.设总体X~N (2,σμ),2σ未知,x 1,x 2,…,x n 为样本,∑=--=n1i 2i2)x x(1n 1s ,检验假设H 0∶2σ=20σ时采用的统计量是 CA.)1n (t ~n/s x t -μ-=B. )n (t ~n/s x t μ-=C. )1n (~s )1n (2222-χσ-=χ D. )n (~s )1n (2222χσ-=χ 10.设x 1,x 2,x 3,x 4为来自总体X 的样本,D (X )=2σ,则样本均值x 的方差D (x )= AA.214σB.213σ C.212σ D.2σ。
11.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )C A .91B .61 C .31D .2112.对于事件A ,B ,下列命题正确的是 D A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃?D .如果A ,B 对立,则B ,A 也对立13.下列函数中可作为随机变量分布函数的是C A .⎩⎨⎧≤≤=.,0;10,1)(1其他x x F 1B .⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x FC .⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x FD .⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;00,0)(4x x x x F14.设随机变量X 的概率密度为f (x )=1,10,20, ,cx x ⎧+-≤≤⎪⎨⎪⎩其他则常数c = B21]15.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有 C (-a)=1-⎰a0dx )x (fB. F(-a)=F(a)C. F(-a)=⎰-adx )x (f 21 (-a)=2F(a)-116.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}=【 A 】A .41B .21 C .43 D .1~17.已知随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<<, ,0,42,21其他x 则E (X )= D【 】B.21D. 318.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )= B19.设随机变量Z n ~B (n ,p ),n =1,2,…,其中0<p <1,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞→x p np np Z P n n )1(lim B22e21t x-⎰π22e21t x-∞-⎰π`22e21t -∞-⎰π22e21t -∞+∞-⎰π20.设X 1,X 2,X 3,为总体X 的样本,3216121kX X X T ++=,已知T 是E (x )的无偏估计,则k = A A.13B.16C.94 D.21 二、填空题1.设P (A )=,P (B )=,P (A ⋃B )=,则P (B A )=.2.设A ,B 相互独立且都不发生的概率为91,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则P (A )=_____23______. 3.设随机变量X~B (1,)(二项分布),则X的分布函数为______00;(x)0.201;10x F x x <⎧⎪=≤<⎨⎪<⎩_____.)4.已知某地区的人群吸烟的概率是,不吸烟的概率是,若吸烟使人患某种疾病的概率为,不吸烟使人患该种疾病的概率是,则该人群患这种疾病的概率等于 ___.5.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= _x_____.6.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=.(附:)1(Φ= 7.设随机变量(X ,Y )的概率分布为YX0 1}24161 81 141 81 。
2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。
A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
全国2007年4月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB ) B.P (A ) C.P (B )D.13.下列各函数可作为随机变量分布函数的是( ) A.⎩⎨⎧≤≤=.,x ,x )x (F 其他01021;B.⎪⎩⎪⎨⎧≥<≤<=.x x ,,x ;x ,)x (F 1101002;C.⎪⎩⎪⎨⎧≥<≤--<-=.x x ,x ;x ,)x (F 1111113;D.⎪⎩⎪⎨⎧≥<≤<=.x x ,x ;x ,)x (F 11022004;4.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=,,;x ,x )x (f 其他0224则P {-1<X <1}=( )A.41B.21C.43D.1 5.,则P {X +Y =0}=( ) A.0.2 B.0.3 C.0.5 D.0.7 6.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111 则常数c=( ) A.41 B.21C.2D.4 7.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=28.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则D (Z )=( )A.1B.3C.5D.69.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.410.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s x D.)(10μ--x n二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。
高等教育自学考试辅导《概率论与数理统计(经管类)》第二部分数理统计部分专题一统计量及抽样的分布I.考点分析近几年试题的考点分布和分数分布II.内容总结一、总体与样本1.总体:所考察对象的全体称为总体;组成总体的每个基本元素称为个体。
2.样本:从总体中随机抽取n个个体x1,x2…,x n称为总体的一个样本,个数n称为样本容量。
3.简单随机样本如果总体X的样本x1,x2…,x n满足:(1)x1与X有相同分布,i=1,2,…,n;(2)x1,x2…,x n相互独立,则称该样本为简单随机样本,简称样本。
得到简单随机样本的方法称为简单随机抽样方法。
4.样本的分布(1)联合分布函数:设总体X的分布函数为F(x),x1,x2…,x n为该总体的一个样本,则联合分布函数为二、统计量及其分布1.统计量、抽样分布:设x1,x2…,x n为取自某总体的样本,若样本函数T=T(x1,x2…,x n)不含任何未知参数,则称T为统计量;统计量的分布称为抽样分布。
2.样本的数字特征及其抽样分布:设x1,x2…,x n为取自某总体X的样本,(2)样本均值的性质:①若称样本的数据与样本均值的差为偏差,则样本偏差之和为零,即②偏差平方和最小,即对任意常数C,函数时取得最小值. (5)样本矩(7)正态分布的抽样分布A.应用于小样本的三种统计量的分布的为自由度为n的X2分布的α分位点.求法:反查X 2分布表.III.典型例题[答疑编号918020101]答案:D[答疑编号918020102]答案:[答疑编号918020103]答案:B[答疑编号918020104]答案:1[答疑编号918020105]答案:B[答疑编号918020106]故填20.[答疑编号918020107]解析:[答疑编号918020108]答案:解析:本题考核正态分布的叠加原理和x2-分布的概念。
根据课本P82,例题3-28的结果,若X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y~N(0+0,1+1)=N(0,2)。
——给所有为知识而追求的人朋友是会计专业,要参加自考2011年10月的自考,报了两门公共课:概率与数理统计/线性代数,要我给她辅导下。
回想起自己的考研经历,那时都是根据考试大纲/考点复习的,不知道为什么自考没有找到考试大纲,如果有这个东西的话希望有人分享下。
其他方面,个人觉得做真题是最有效果的,因此特意花了点时间整理了历年试题(奇怪的是没找到2011年7月全国卷)。
在此分享给大家,祝她考试顺利,也祝所有参加考试的人,考试顺利。
为了照顾2003版的朋友,以及以后的更新,这里以doc格式上传。
如果大家有新的试题,也请及时更新与共享。
谢谢!注:更新时麻烦更新目录,以方便大家查找。
其中,有个别目录出现乱码,本人没有找到原因,是手动删除的。
目录浙江省2011年7月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。
全国2011年1月自考概率论与数理统计(经管类)试题 ............... 错误!未定义书签。
全国2011年1月自考概率论与数理统计(经管类)参考答案 ....... 错误!未定义书签。
浙江省2011年1月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。
全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2010年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2010年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
课程代码为04183的概率论与数理统计-试题及答案(2007年4月、7月、10月) 2008年1月高等教育自学考试全国统一命题考试概率论与数理统计(经管类) 试卷课程代码 4183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设事件A 与B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.AB=φB.P(A B )=P(A)P(B )C.P(B)=1-P(A)D.P(B |A )=0 2.设A 、B 、C 为三事件,则事件C B A =( )A.A C BB.A B CC.( A B )CD.( A B )C3. 设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是( )4.设随机变量X~N(1,4),Φ(1)=8413.0,Φ(0)=0.5,则事件{1≤X ≤3}的概率为( )A.0.1385B.0.2413C.0.2934D.0.34135.设随机变量(X ,Y )的联合概率密度为f(x,y)=则A=( ) A.21 B.1 C.23 D.2 6.Y X0 5 041 61 2 31 41则P{XY=0}=( ) A. 41 B.125 C.43 D.17.设X~B (10,31),则E (X )=( ) A.31 B.1C.310 D. 10 8.设X~N (1,23),则下列选项中,不成立...的是( ) A.E (X )=1B.D (X )=3C.P (X=1)=0D.P (X<1)=0.59.设且P(A)=0.8,1000021X ,,X ,X 相互独立,令Y=则由中心极限定理知Y 近似服从的分布是( )A.N(0,1)B.N(8000,40)C.N(1600,8000)D.N(8000,1600)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
成都理工大学自学考试省考课程习题集课程名称:《概率论与数理统计(经管类)》课程代码:04183第一部分 习题一、选择题1. 对于事件A 、B ,下列命题正确的是()A. 如果A 、B 互不相容,则A 、B 也互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ⊃,则A B ⊃D. 如果A 、B 对立,则A 、B 也对立 2. 设A 、B 为任意两个事件,则有()A. ()AB B A -= B. ()A B B A -= C. ()A B B A -⊂ D. ()A B B A -⊂3.设事件A 与B 互不相容,且()0P A >,()0P B >,则有()A. ()1P AB =B. ()1()P A P B =-C. ()()()P AB P A P B =D. ()1P AB =4.设随机事件A 与B 互不相容,()0.2P A =,()0.4P B =,则(|)P B A =()A. 0B. 0.2C. 0.4D. 15.若A 与B 互为对立事件,则下式成立的是( )A. ()P AB =Ω B. ()()()P AB P A P B = C. ()1()P A P B =- D. ()P AB φ=6.设事件A 与B 相互独立,且1()5P A =,3()5P B =,则()P A B =( )A.325B.1725C. 45D. 23257.设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是()A. ()0P AB =B. ()()()P A B P A P B -=C. ()()1P A P B +=D. (|)0P A B =8.设事件A 、B 相互独立,且1()3P A =,()0P B >,则(|)P A B =( )A.115B.15C. 415D. 139.设A 、B 为两件事件,已知()0.3P A =,则有()A. (|)(|)1P B A P B A +=B. (|)(|)1P B A P B A +=C. (|)(|)1P B A P B A +=D. ()0.7P B =10.设A 、B 为两个随机事件,且B A ⊂,()0P B >,则(|)P A B =( )A. 1B. ()P AC. ()P BD. ()P AB11.设A 、B 为两事件,已知1()3P A =,2(|)3P A B =,3(|)5P B A =,则()P B =() A.15B.25C.35D. 4512.已知()0.4P A =,()0.5P B =,且A B ⊂,则(|)P A B =()A. 0B. 0.4C. 0.8D. 113.设A 与B 相互独立,()0.2P A =,()0.4P B =,则(|)P A B =()A. 0.2B. 0.4C. 0.6D. 0.814.设随机事件A 与B 互不相容,()0.4P A =,()0.5P B =,则()P AB =()A. 0.1B. 0.4C. 0.9D. 115.某人每次射击命中目标的概率为(01)p p <<,他向目标连续射击,则第一次未中第二次命中的概率为( )A. 2pB. 2(1)p -C. 12p -D. (1)p p -16.同时抛掷3枚均匀的硬币,则恰好有三枚均为正面朝上的概率为( ) A. 0.125 B. 0.25 C. 0.375 D. 0.5017.一批产品中有5%的不合格品,且合格品中一等品占60%,从这批产品中任取1件,则该产品是一等品的概率为( ) A. 0.20 B. 0.30 C. 0.38 D. 0.5718设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( ) A. 16 B. 14C. 13D.1219.下列函数中可作为随机变量分布函数的是()A. 1,01()0,x F x ≤≤⎧=⎨⎩其他B. -1,0(),010,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩D. 0,0(),012,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩20.已知随机变量X 的分布函数为0,01,012()2,1331,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩,则{1}P X ==()A.16B.12C.23D. 121.下列各函数中,可作为某随机变量概率密度的是()A. 2,01()0,x x f x <<⎧=⎨⎩其他B. 1,01()20,x f x ⎧<<⎪=⎨⎪⎩其他C. 23,01()1,x x f x ⎧<<=⎨-⎩其他D. 34,11()0,x x f x ⎧-<<=⎨⎩其他22.设随机变量X 的概率密度为3,01()0,ax x f x ⎧≤≤=⎨⎩其他,则常数a =()A.14B.13C. 3D. 423.设随机变量X 的概率密度为,01()2,120,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其他,则{0.2 1.2}P X <<=() A. 0.5B. 0.6C. 0.66D. 0.724.设随机变量X 在[1,2]-上服从均匀分布,则随机变量X 的概率密度为()f x 为()A. 1,12()30,x f x ⎧-≤≤⎪=⎨⎪⎩其他B. 3,12()0,x f x -≤≤⎧=⎨⎩其他C. 1,12()0,x f x -≤≤⎧=⎨⎩其他D. 1,12()30,x f x ⎧--≤≤⎪=⎨⎪⎩其他25.设随机变量(1,4)XN ,()x Φ为标准正态分布函数,已知(1)0.8413Φ=,(0)0.5Φ=,则事件{13}X ≤≤的概率为()A. 0.1385B.0.2413C. 0.2934D. 0.341326.设随机变量X 的概率密度为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意的实数a ,有()A. 0()1()aF a f x dx -=-⎰B. 01()()2aF a f x dx -=-⎰ C. ()()F a F a -=D. ()2()1F a F a -=-27.设随机变量(,)X Y 只取如下数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且相应的概率依次为12c 、1c 、14c 、54c ,则c 的值为( )A. 2B. 3C. 4D. 528.设二维随机变量(,)X Y 的联合分布为则{0}P XY ==()A.14B.512C.34D. 129.设随机变量X则有()A. 12,99αβ== B. 21,99αβ== C. 12,33αβ== D. 21,33αβ== 30.设二维随机变量(,)X Y 的概率密度为,02,02(,)0,c x y f x y ≤≤≤≤⎧=⎨⎩其他,则常数c =()A.14B.12C. 2D. 431设二维随机变量(,)X Y 的概率密度为1,02,02(,)40,x y f x y ⎧<<<<⎪=⎨⎪⎩其他,则{01,01}P X Y <<<<=() A.14B.12C.34D. 132.设二维随机变量(,)X Y 的概率密度为4,01,01(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其他,则当01y ≤≤时,(,)X Y 关于Y 的边缘概率密度()Y f y =() A.12xB. 2xC.12yD. 2y33.设随机变量X 与Y 独立同分布,它们取-1、1两个值的概率分别为14、34,则{1}P XY =-=()A.116B.316C.14D.3834.设随机变量X 的概率密度为2(3)4()x f x --=,则()E X 、()D X 分别为( )A. -B. 3,2-C. D. 3,2 35.设随机变量X 服从参数为12的指数分布,则()E X =( ) A.14B.12C. 2D. 436.已知随机变量X 的分布函数为21,0()0,x e x F x -⎧->=⎨⎩其他,则X 的均值和方差为()A. ()2,()4E X D X ==B. ()4,()2E X D X ==C. 11(),()42E X D X ==D. 11(),()24E X D X == 37.设随机变量110,3XB ⎛⎫⎪⎝⎭,则()()D X E X =()A.13B.23C. 1D. 10338.设随机变量()21,3X N ,则下列选项中,不成立的是()A. ()1E X =B. ()3D X =C. {1}0P X ==D. {1}0.5P X <=39.设二维随机变量(,)X Y 的分布律为则()E XY =()A. 19-B. 0C.19D.1340.且()1E X =,则常数x =( ) A. 2B. 4C. 6D. 841.设随机变量X 与Y 相互独立,且(0,9)X N ,(0,1)YN ,令2Z X Y =-,则()D Z =() A. 5B. 7C. 11D. 1342.设()E X ,()E Y 、()D X 、()D Y 及(,)Cov X Y ,则()D X Y -=() A. ()()D X D Y +B. ()()D X D Y -C. ()()2(,)D X D Y Cov X Y +-D. ()()2(,)D X D Y Cov X Y -+43.设1(10,)2XB 、(2,10)YN ,又()14E XY =,则X 与Y 的相关系数XY ρ=( )A. -0.8B. -0.16C. 0.16D. 0.844.设随机变量X 服从参数为0.5的指数分布,利用切比雪夫不等式估算概率{}|2|3P X -≥≤() A.16B.13C.49D.1245.设12100,,,x x x 为来自总体2(0,4)XN 的一个样本,以x 表示样本均值,则x()A. (0,16)NB. (0,0.16)NC. (0,0.04)ND. (0,1.6)N46.设总体2(,)XN μσ,其中μ未知,1234,,,x x x x 为来自总体X 的一个样本,则以下关于μ的四个估计:112341ˆ()4x x x x μ=+++,2123111ˆ555x x x μ=++,31212ˆ66x x μ=+,411ˆ7x μ=中,哪一个是无偏估计?()A. 1ˆμB. 2ˆμC. 3ˆμD. 4ˆμ47.在假设检验中,0H 为原假设,则显著性水平α的意义是()A. 00{|}P H H 拒绝为真B. 00{|}P H H 接受为真C. 00{|}P H H 接受不真D. 00{|}P H H 拒绝不真48.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验00:H μμ=,10:H μμ≠,则检验统计量为()A.x B.x C.01()x μ-D.0)x μ-49.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,2211()1ni i s x x n ==--∑,检验假设2200:H σσ=时采用的统计量为()A. (1)x t t n =-B. ()x t t n =C.22220(1)(1)n s n χχσ-=-D.22220(1)()n s n χχσ-=50.设有一组观测数据(,),1,2,,i i x y i n =,其散点图呈线性趋势,若要拟合一元线性回归方程01ˆˆˆy x ββ=+,且01ˆˆˆ,1,2,,i iy x i n ββ=+=,则估计参数0β、1β时应使( )A. 1ˆ()niii y y=-∑最小 B.1ˆ()niii y y=-∑最大 C.21ˆ()niii y y=-∑最小 D.21ˆ()niii y y=-∑最大二、填空题51. 盒中有10个球,分别编有1至10的号码,设A ={取得球的号码是偶数},B ={取得球的号码小于5},则AB =__________.52. 设随机事件A 与B 互不相容,且()0.2P A =,()0.6P A B =,则()P B =__________. 53.设A 、B 为两事件,已知1()3P A =,2()3P A B =,若事件A 与B 相互独立,则()P B =__________.54.设随机事件A 与B 相互独立,且()0.7P A =,()0.6P A B -=,则()P B =__________.55.设事件A 与B 相互独立,且()0.6P A B =,()0.2P A =,则()P B =__________.56.设A 、B 为两个随机事件,且A 与B 相互独立,()0.3P A =,()0.4P B =,则()P AB =__________.57.设事件A 、B 相互独立,且()0.5P A =,()0.2P B =,则()P A B =__________. 58.设事件A 、B 相互独立,且()0.3P A =,()0.4P B =,则()P A B =__________59.设事件A 、B 相互独立,()0.6P AB =,()0.4P A =,则()P B =__________.60.设A 、B 为两个随机事件,若A 发生必然导致B 发生,且()0.6P A =,则()P AB =__________.61.设A 、B 为随机事件,()0.6P A =,(|)0.3P B A =,则()P AB =__________. 62.设A 、B 为随机事件,且()0.8P A =,()0.4P B =,(|)0.25P B A =,则(|)P A B =__________.63.设1(|)6P A B =,1()2P B =,1(|)4P B A =,则()P A =__________. 64.设随机事件A 、B 互不相容,()0.6P A =,()0.8P AB =,则()P B =__________.65.已知()0.7P A =,()0.3P A B -=,则()P AB =__________. 66.设()0.4P A =,()0.3P B =,()0.4P AB =,则()P AB =__________.67.设A 、B 相互独立且都不发生的概率为19,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则()P A =__________.68.设()0.3P A =,(|)0.6P B A =,则()P AB =__________.69.已知事件A 、B 满足:()()P AB P AB =,且()P A p =,则()P B =__________. 70.设事件A 、B 互不相容,已知()0.3P A =,()0.6P B =,则=)/(B A P __________。
2008年1月高等教育自学考试全国统一命题考试
概率论与数理统计(经管类) 试卷
课程代码 4183
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设事件A 与B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( ) A.AB=φ B.P(A B )=P(A)P(B ) C.P(B)=1-P(A)
D.P(B |A )=0
2.设A 、B 、C 为三事件,则事件C B A =( ) A.A C B B.A B C C.( A B )C
D.( A B )C
3. 设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是( )
4.设随机变量X~N(1,4),Φ(1)=8413.0,Φ(0)=0.5,则事件{1≤X ≤3}的概率为( ) A.0.1385 B.0.2413
C.0.2934
D.0.3413
5.设随机变量(X ,Y )的联合概率密度为f(x,y)=则A=( )
A.
2
1 B.1 C.
2
3 D.2
6.设二维随机变量(X 、Y )的联合分布为( )
则P{XY=0}=( ) A.
4
1 B.
12
5
Y X 0
5
0 41
61 2
3
1
4
1
C.
4
3
D.1
7.设X~B (10,3
1
),则E (X )=( )
A.3
1 B.1 C.
3
10
D. 10
8.设X~N (1,23),则下列选项中,不成立...的是( ) A.E (X )=1 B.D (X )=3 C.P (X=1)=0
D.P (X<1)=0.5
9.设且P(A)=0.8,1000021X ,,X ,X 相互独立,
令Y=
则由中心极限定理知Y 近似服从的分布是( )
A.N(0,1)
B.N(8000,40)
C.N(1600,8000)
D.N(8000,1600)
二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
11.连续抛一枚均匀硬币5次,则正面都不出现的概率为 ___________。
12.袋中有红、黄、蓝球各一个,从中任取三次,每次取一个,取后放回,则红球出现的概率为___________。
13.设P (A | B )=,6
1
P (B )=,2
1
P (B | A )=
,
41则P (A )= ___________。
14.设事件A 、B 相互独立,P (A B )=0.6, P( A )=0.4,则P (B )= ___________。
15.设随机变量X 表示4次独立重复射击命中目标的次数,每次命中目标的概率为0.5,则X~ ___________分布。
16.设随机变量X 服从区间[0,5]上的均匀分布,则P ﹛X ≤3﹜= ___________.
则α=_______。
17.设(X ,Y )的分布律为:
18.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独立,则X+Y~___________。
19.设二维随机变量(X ,Y )概率密度为f (x,y )=
则
)(x f x =______________________。
20.设随机变量X 具有分布P ﹛X =k ﹜=,5,4,3,2,1,5
1
k 则E ( X )= ___________。
21.设随机变量X 在区间(0,1)上服从均匀分布,Y=3X-2,则E ( Y )= ___________。
22.设随机变量X 的E(X)=μ,D (X )=σ2,用切比雪夫不等式估计P(||)(X E X -≤3σ)≥ ___________。
23.当随机变量F~F(m,n )时,对给定的α(0<α<1),P(F >F α(m,n))= α若F~F(10,5),则
P(F<
)
10,5(195.0F )= ___________。
24.设总体X ~ N (μ,1),(321,,x x x )为其样本,若估计量=3213
12
1kx x x ++为μ的无偏估计量,
则k = ___________。
25.已知一元线性回归方程为
三、计算题(本大题共2小题,每小题8分,共16分)
26.100张彩票中有7张是有奖彩票,现有甲、乙两人且甲先乙后各买一张,试计算甲、乙两人中奖的概率是否相同?
27.设n x x x ,,21为来自总体X 的样本,总体X 服从(0,θ)上的均匀分布,试求θ的矩估计,并计算当样本值为0.2,0.3,0.5,0.1,0.6,0.3,0.2,0.2时,
的估计值。
四、综合题(本大题共2小题,每小题12分,共24分)
28.袋中装有5只球,编号为1,2,3,4,5,现从袋中同时取出3只,以X 表示取出的3只球中的最大号码,试求:
(1)X 的概率分布; (2)X 的分布函数; (3)Y=2X +1的概率分布。
Y
X
-1
1 2
0 151 α
151 1 10
3
5
1
15
4
29.设离散型随机变量X 的分布律为: 求
(1)D(X);(2)D(Y);(3)Cov( X,Y ).
五、应用题(本大题共1小题,10分)
30. 假设某城市购房业主的年龄服从正态分布,根据长期统计资料表明业主年龄X~N(35,52).
今年随机抽取400名业主进行统计调研,业主平均年龄为30岁.在α=0.01下检验业主年龄是否显著减小.(58.2,32.2005.001.0==u u )
X -1
1
P 4
1 2
1
4
1
,令Y=2X ,。