北师大七年级下数学第五章(全)教案2
- 格式:pdf
- 大小:350.96 KB
- 文档页数:16
第五章生活中的轴对称3简单的轴对称图形(第2课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过生活中的轴对称图形,对轴对称图形的特点及对称轴有所了解,并能通过折纸动手制作轴对称图形。
在本章前面一节课中,又学习轴对称现象,对轴对称和轴对称图形的概念有了进一步的了解,具备了动手操作的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些折纸活动,解决了一些简单的现实问题,感受到了从数学活动中积累数学经验的过程;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析(1)知识与技能1.本节通过实践操作与思考的有机结合,帮助我们认识简单的轴对称图形。
经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并了解线段垂直平分线的有关性质.3.应用线段垂直平分线的性质解决一些实际问题.4.尺规作图。
(2)过程与方法本节知识是通过对现实生活情景中的轴对称现象引出课题,在观察生活的基础上,从生活实践中探索轴对称现象的共同特征,进一步发展空间观念,体会轴对称在生活中的广泛运用和丰富的文化价值。
因此,在学习中,首先要养成善于观察的习惯,从不同的情境中,通过思考、分析,总结共性,学会学习。
(3)情感态度与价值观1.培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感。
2.结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
3.通过小组折叠协作活动,培养学生协作学习的意识和研究探索的精神。
三、教学设计分析按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。
教学中,精心设计了一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。
第五章生活中的轴对称2 探索轴对称的性质一、学生起点分析学生的知识技能基础:在本章前面一节课中,学生已经认识了轴对称现象,学习了轴对称的概念,加强了对图形的理解和认识,为接下来的学习奠定了知识和技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些认识轴对称以及轴对称图形的活动,解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析本节课是对轴对称图形的性质进行探索,主要是通过对轴对称图形的分析,培养学生动手、制作、实验、说理的能力,并且给了学生更多表述的机会。
本节课主要培养学生自主探索、合作交流、解决问题,并且要学生学会及时对自己的求解过程进行回顾与思考。
具体地,本节课的教学目标是:1.探索轴对称的基本性质,掌握对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
2.通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。
3.通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的情趣。
教学重点:1.掌握轴对称的性质。
2.运用轴对称的性质解决实际问题。
教学难点:灵活运用轴对称的性质解决实际问题。
教学方法:为了充分体现“以学生为主体”的教学宗旨,结合本节课内容主要采取了“自主、合作、探究”的探究式和启发式教学法。
教学手段和教具准备:长方形白纸一张,圆规一个,并运用了现代多媒体教学平台。
三、教学设计分析本节课设计了七个环节:复习引入、探索发现、巩固新知、能力拓展、课堂小结、布置作业、板书设计。
第一环节复习引入活动内容:(1)提问:什么样的图形是轴对称图形?怎么判断两个图形成轴对称?轴对称图形:如果一个图形沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。
5.1 轴对称现象1.在生活实例中认识轴对称图形;(重点)2.分析轴对称图形,理解轴对称的概念;(重点)3.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.(难点)一、情境导入 观察下面的图片:面对生活中这些美丽的图片,你是否强烈地感受到美就在我们身边!这是一种怎样的美呢?请谈谈你的感想.二、合作探究探究点一:轴对称图形【类型一】 轴对称图形的识别下列体育运动标志中,从图案看不是轴对称图形的有( )A .4个B .3个C .2个D .1个解析:根据轴对称图形的概念可得(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选B.方法总结:要确定一个图形是否是轴对称图形要根据定义进行判断,关键是寻找对称轴,图形两部分折叠后可重合.【类型二】 判断对称轴的条数下列轴对称图形中,恰好有两条对称轴的是()A.正方形B.等腰三角形C.长方形D.圆解析:A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.方法总结:判断轴对称的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:两个图形成轴对称如图所示,哪一组的右边图形与左边图形成轴对称?解析:根据轴对称的意义,经过翻折,看两个图形能否完全重合,若能重合,则两个图形成轴对称.解:(4)(5)(6).方法总结:动手操作或结合轴对称的概念展开想象,在脑海中尝试完成一个动态的折叠过程,从而得到结论.三、板书设计1.轴对称图形的定义2.对称轴3.两个图形成轴对称这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养。
5.2 探索轴对称的性质1.进一步复习生活中的轴对称现象,探索轴对称的性质;2.掌握轴对称的性质,会利用轴对称的性质解决问题.(重点,难点)一、情境导入观察下图,水面上的图形与映在水里的像有什么关系?二、合作探究探究点:轴对称的性质【类型一】 应用轴对称的性质求角度如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是( )A .130°B .150°C .40°D .65°解析:∵这种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,∴∠D =40°,∴∠BCD =360°-150°-40°-40°=130°.故选A.方法总结:轴对称其实就是一种全等变换,所以轴对称往往和三角形的内角和等性质综合考查.【类型二】 利用轴对称的性质求阴影部分的面积如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为()A .4cm 2B .8cm 2C.12cm2D.16cm2解析:根据正方形的轴对称性,可得阴影部分的面积等于正方形ABCD面积的一半.∵正方形ABCD的边长为4cm,∴S阴影=12×42=8cm2.故选B.方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=()A.20°B.30°C.40°D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°.故选B.方法总结:折叠是一种轴对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等.【类型四】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A、B、C关于直线l的对称点,然后连接各点即可.解:如图所示.方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.三、板书设计1.轴对称图形的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.2.画轴对称图形的步骤:(1)确定对称轴;(2)根据对称轴确定关键点的对称位置;(3)将找到的对称点顺次连接起来.本节教学从学生熟知的生活情境出发,让学生初步感知对称的事物,从而引入对称,逐步将实物抽象成平面图形,通过操作实践发现其共同特征,导入教学新授,达到串连教材的效果,让学生在这教学情景中快乐地学习,激发了学生学习数学的兴趣.在列举实际生活中的轴对称的例子时,可以让更多的同学说,更广泛地思考,最后应提醒学生要善于用学到的数学知识认识世界、认识自然5.3简单的轴对称图形第1课时等腰三角形的性质1.理解并掌握等腰三角形的性质;(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点:等腰三角形的性质【类型一】 利用“等边对等角”求角度等腰三角形的一个内角是50°,则这个三角形的底角的大小是( ) A .65°或50° B .80°或40° C .65°或80° D .50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形的角度如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC .∵∠A +∠ABD +∠ADB =180°,∠ADB +∠BDC =180°,∴∠BDC =∠A +∠ABD =2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x +2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形内角和可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .【类型三】 利用“等边对等角”的性质进行证明如图,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,试说明:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .解:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB=∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补. 【类型四】 利用等腰三角形“三线合一”的性质进行证明如图,点D 、E 在△ABC 的边BC 上,AB =AC . (1)若AD =AE ,如图①,试说明:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,试说明:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G .根据等腰三角形的性质得出BG =CG ,DG =EG 即可得出BD =CE ;(2)先求出BF =CF ,再根据等腰三角形的性质求解.解:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG -DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高第2课时线段垂直平分线的性质1.理解线段的垂直平分线的概念;2.掌握线段的垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)一、情境导入1.我们学过轴对称图形,这类图形因为具有轴对称的特征而显得匀称美丽.那么什么样的图形是轴对称图形?2.我们学过的图形中,有哪些图形是轴对称图形?线段是轴对称图形吗?如果是,它的对称轴是什么?二、合作探究探究点一:线段垂直平分线的性质【类型一】利用线段垂直平分线的性质进行证明如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.试说明:∠B=∠CAF.解析:由EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的关系转化,最终得出结论.解:∵AD平分∠BAC,∴∠BAD=∠CAD.∵EF垂直平分AD,∴AF=DF,∴∠ADF=∠DAF.∵∠ADF+∠ADB=180°,∠BAD+∠B+∠ADB=180°,∴∠ADF=∠B+∠BAD.又∵∠DAF=∠CAF+∠CAD,∠BAD=∠CAD,∴∠B=∠CAF.方法总结:解题时,往往利用线段垂直平分线的性质得出线段相等,进而得出角相等,这体现了数学的转化思想.【类型二】利用线段垂直平分线的性质进行判断如图,已知AB是CD的垂直平分线,下列结论:①CO=DO;②AO=BO;③AB⊥CD;④CD⊥AB.正确的有()A.1个B.2个C.3个D.4个解析:因为AB是CD的垂直平分线,所以AB垂直于CD,且把CD分成相等的两部分.所以①CO=DO,③AB⊥CD,④CD⊥AB都正确,只有②AO=BO错误.故选C.方法总结:AB是CD的垂直平分线,它包含两个方面的含义:一是AB与CD垂直,二是AB把CD分成相等的两部分.“垂直”是相互的,而“平分”是“单向”的.【类型三】与线段垂直平分线有关的计算如图,DE是AC的垂直平分线,AB=12厘米,BC=10厘米,则△BCD的周长为()A.22厘米B.16厘米C.26厘米D.25厘米解析:要求△BCD的周长,已知BC的长度,只要求出BD+CD即可.根据线段垂直平分线的性质得CD=AD,故△BCD的周长为BD+DC+BC=AD+BD+BC=AB+BC=12+10=22(厘米).故选A.方法总结:此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.对相等的线段进行转化是解答本题的关键.【类型四】 线段垂直平分线的性质与全等三角形的综合如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .试说明:(1)FC =AD ;(2)AB =BC +AD .解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB =BF 即可解答.解:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD ;(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .又∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段垂直平分线的作图如图,某地由于居民增多,要在公路l 边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站C 建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?解析:作线段AB 的垂直平分线,由垂直平分线的定理可知,垂直平分线上的点到A ,B 的距离相等.解:连接AB ,作AB 的垂直平分线交直线l 于O ,交AB 于E.∵EO 是线段AB 的垂直平分线,∴点O 到A ,B 的距离相等,∴这个公共汽车站C 应建在O 点处,才能使到两个小区的路程一样长.方法总结:对于作图题首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.三、板书设计1.线段垂直平分线的定义2.线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.本节课学习了线段的垂直平分线的定义、性质、判定,由线段的垂直平分线的性质可以得出线段相等;要判定线段的垂直平分线有两种方法:(1)根据定义;(2)根据判定定理.在教学中,让学生主动参与,理解线段的垂直平分线的性质与判定的区别与联系.同时由线段的垂直平分线的性质的教学渗透数学的转化思想第3课时角平分线的性质1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点)2.能运用角的平分线性质定理解决简单的几何问题.(难点)一、情境导入问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的性质【类型一】利用角平分线的性质证明线段相等如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,∠FDC=∠BDE.试说明:(1)CF=EB;(2)AB=AF+2EB.解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即DE =DC.再根据△CDF≌△EDB,得CF=EB;(2)利用角平分线的性质可得△ADC和△ADE全等,从而得到AC=AE,然后通过线段之间的相互转化进行求解.解:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.∵在△CDF和△EDB中,∵⎩⎪⎨⎪⎧∠C=∠DEB=90°,DC=DE,∠FDC=∠BDE,∴△CDF≌△EDB(ASA).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴∠CAD=∠EAD,∠ACD=∠AED=90°.在△ADC和△ADE中,∵⎩⎪⎨⎪⎧∠CAD=∠EAD,∠ACD=∠AED,AD=AD,∴△ADC≌△ADE(AAS),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条垂线段相等.【类型二】角平分线的性质与三角形面积的综合运用如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC的长是()A.6 B.5 C.4 D.3解析:过点D作DF⊥AC于F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=2,∴S△ABC=12×4×2+12AC×2=7,解得AC=3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.【类型三】 角平分线的性质与全等三角形综合如图所示,D 是△ABC 外角∠ACG 的平分线上的一点.DE ⊥AC ,DF ⊥CG ,垂足分别为E ,F .试说明:CE =CF .解析:由△DEC ≌△DFC 得出CD 平分∠EDF ,根据角平分线的性质,得出CE =CF .解:∵CD 是∠ACG 的平分线,∴∠ECD =∠FCD .在△DEC 和△DFC 中,∵⎩⎪⎨⎪⎧∠DEC =∠DFC =90°,∠ECD =∠FCD ,DC =DC ,∴△DEC ≌△DFC (AAS),∠EDC =∠FDC .又∵DE ⊥AC ,DF ⊥CG ,∴CE =CF .方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.【类型四】 角平分线的性质与线段垂直平分线性质的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O.(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可得△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.【类型五】角平分线的性质与等腰三角形的性质综合的探究性问题如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.解析:(1)由△ABC是等腰直角三角形,BE为角平分线,可得△ABE≌△DBE,即AB =BD,AE=DE,所以△ABD和△ADE均为等腰三角形.由∠C=45°,ED⊥DC,可知△EDC 也是等腰三角形;(2)BE是∠ABC的平分线,AE⊥AB,DE⊥BC,根据角平分线定理可知△ABE 关于BE与△DBE对称,可得出BE⊥AD;(3)根据(2),可知△ABE关于BE与△DBE对称,且△DEC为等腰直角三角形,可推出AB+AE=BD+DC=BC=10.解:(1)△ABC,△ABD,△ADE,△EDC;(2)AD与BE垂直.理由如下:由BE为∠ABC的平分线,知∠ABE=∠DBE.又∵∠BAE =∠BDE=90°,BE=BE,∴△ABE沿BE折叠,一定与△DBE重合,∴A、D是对称点,∴AD⊥BE;(3)∵BE是∠ABC的平分线,∴∠ABE=∠DBE,∵DE⊥BC,EA⊥AB,∴∠BAE=∠BDE.在△ABE和△DBE中,⎩⎪⎨⎪⎧∠ABE=∠DBE,∠BAE=∠BDE,BE=BE,∴△ABE≌△DBE(AAS),∴AB=BD,AE=DE.又∵△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°.又∵ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC=AE,即AB+AE=BD+DC=BC=10.探究点二:角平分线的画法如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,求∠MAB的度数.解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°.再根据尺规作图得出AM是∠CAB的平分线,即可得出∠MAB 的度数.解:∵AB ∥CD ,∴∠ACD +∠CAB =180°.又∵∠ACD =120°,∴∠CAB =60°.由尺规作图知AM 是∠CAB 的平分线,∴∠MAB =12∠CAB =30°. 方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM 是∠BAC 的角平分线是解题的关键.三、板书设计1.角平分线的性质:角平分线上的点到这个角的两边的距离相等.2.角平分线的作法本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练5.4 利用轴对称进行设计1.理解图形轴对称变换的性质;(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点:利用轴对称进行设计【类型一】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示.方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型二】利用轴对称设计图案某居民小区搞绿化,要在一块长方形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边长方形中画出你的设计方案.K解析:长方形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示.方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计1.如何由一个平面图形得到它的轴对称图形2.利用轴对称设计图案过程中得到不同的发展。
第五章回想与思虑教课目的:1、梳理全章内容,成立知识系统;掌握等腰三角形、线段、角等简单的轴对称图形的性质并灵巧应用;综合运用轴对称的相关性质,解决实质问题。
2、让学生在丰富的现真相境中,经历察看、折叠、剪纸、赏识与设计等数学活动过程,进一步睁开空间观点 ,丰富学生对轴对称的直观体验和理解,睁开学生有条理的思虑和语言表达能力 .3、在数学活动中睁开学生合作沟通的能力和数学表达能力,感觉数学与现实生活的亲密联系,加强学生的数学应意图识 . 让学生进一步认识轴对称在现实生活中的宽泛应用和丰富的文化价值,增进学生学习数学的兴趣 .教课要点:知识系统的梳理及简单轴对称图形的相关性质,赏识并体验轴对称在现实生活中的宽泛应用 . 会找出简单的轴对称图形的对称轴;认识一些简单轴称图形〔角、线段、等腰三角形〕的性质并应用。
教课难点:轴对称的相关性质在现实生活中的应用。
教课过程一、知识串连,查漏补缺1.在学生展现的根基上,教师课件展告知识框架图:2.会用符号语言表达相关性质。
注意:对称问题 1.请说出轴对称与轴对称图形的差别和联系,轴对称的性质。
轴是直线!问题 2.请用几何语言和符号语言分别描绘等腰三角形的相关性质。
问题 3:举出生活中分别拥有一条、两条、三条、四条对称轴的图形.二、问题 1:必答题填一填①角是轴对称图形, _____是它的对称轴,角均分线上的点到角的两边的距离 ___.②线段也是轴对称图形,____________是它的对称轴 ,线段垂直均分线上的点到这条线段两个端点的距离________.③等腰三角形的对称轴是。
④等腰三角形两边的长分别为3cm 和 6cm,那么这个三角形的周长是。
⑤等腰三角形一内角为400,那么顶角为。
⑥如图—1,在△ ABC 中, C=90 ,点 D 在 AC 上,,将△ BCD 沿着直线 BD 翻折,使点C 落在斜边 AB 上的点 E 处, DC=5cm,那么点D 到斜边 AB 的距离是.⑦如图 5.5 — 2:△ ABC 与△ DEF 对于直线m 成轴对称,那么∠C=度。
5.4利用轴对称进行设计教学目标: 1.经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识.2.能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形.教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点.教学方法:动手实践、讨论.教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________2.轴对称的三个重要性质_________________________________________________________________________________________________ __________________二、提出问题:1.提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴.你能画出这个图案的另一半吗?吸引学生让学生有一种解决难点的想法.2.分析问题:分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可问题转化成:已知对称轴和一个点A ,要画出点A 关于L 的对应点'A ,可采用如下方法:`L在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路.三、探索练习:1. 如图,直线L 是一个轴对称图形的对称轴,画出这个轴对称图形的另一半. L2.试画出与线段AB关于直线L的线段'A'BL3.如图,已知ABC∆的轴∆直线MN,画出以MN为对称轴ABC对称图形'''C∆BA小结:本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形.教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大.因本节课内容较有趣,许多学生上课积极性较高。
第五章三角形5.1 认识三角形(1)教学目标:1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
教学重点:三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
教学难点:灵活运用三角形三边关系解决一些实际问题。
教学方法:探索、归纳总结。
A准备活动:1、能从右图中找出 4 个不同的三角形吗?FG2、这些三角形有什么共同的特点?教学过程:BD E C一、新课:1、在右下图中你能用符号表示上面的三角形吗?2、它的三个顶点分别是,三条边分别是,三个内角分别是 C 。
bA3、分别量出这三角形三边的长度,并计算任意两边之和以及任意两边之差。
你发现了什么?ac结论:三角形任意两边之和大于第三边B三角形任意两边之差小于第三边例:有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?长度为7cm 的木棒呢?二、巩固练习:1、下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(单位:cm)(1)1 ,3 ,3(2)3 ,4 ,7(3)5 ,9 ,13(4)11 ,12 ,22(5)14 ,15 ,302、已知一个三角形的两边长分别是3cm和4cm,则第三边长X 的取值范围是。
若X是奇数,则X 的值是。
这样的三角形有个;若X 是偶数,则X 的值是,这样的三角形又有个3、一个等腰三角形的一边是2cm,另一边是9cm , 则这个三角形的周长是cm4、一个等腰三角形的一边是5cm,另一边是7cm , 则这个三角形的周长是cm小结:掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
教学目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、能证明出“三角形内角和等于180°”,能发现“直角三角形的两个锐角互余”;3、按角将三角形分成三类。
北师大版七年级下册数学第五章和第六章全章教案教学设计第五章生活中的轴对称教材简析本章的主要内容有轴对称和轴对称图形的概念以及它们的区别、联系;简单的轴对称图形的性质;利用轴对称进行图案设计.在对轴对称图象的初步认识的基础上,通过观察、认识、分析生活中的轴对称现象,研究轴对称及其基本性质,进而动手操作利用轴对称进行图案设计.本章是中考的必考内容,主要考查轴对称、轴对称图形的识别、线段垂直平分线的性质及等腰三角形的判定方法与性质,考查形式灵活多样,主要有选择题、填空题和解答题,难度不大.教学指导【本章重点】1.轴对称图形的性质.2.角平分线、线段垂直平分线及等腰三角形的性质.【本章难点】1.利用线段、角、等腰三角形的轴对称性解决简单的计算和书写推理的过程.2.轴对称与轴对称图形的区别与联系.3.利用轴对称的性质进行图案设计.【本章思想方法】1.体会分类讨论思想,如根据等腰三角形的特殊性,需分类讨论已知角是顶角还是底角,已知边是腰还是底边等.2.体会转化思想,如在利用垂直平分线的性质定理求三角形的周长时,把三角形周长转化为已知线段的和.课时计划1 轴对称现象 1课时2 探索轴对称的性质 1课时3 简单的轴对称图形 3课时4 利用轴对称进行设计 1课时1 轴对称现象教学目标一、基本目标1.经历观察生活中的轴对称现象、探索轴对称现象共同特征的过程,进一步积累数学活动经验和发展学生的空间观念.2.理解轴对称图形和成轴对称的图形的定义,能够识别这些图形并能指出它们的对称轴.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和丰富的文化价值.二、重难点目标【教学重点】通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴.【教学难点】理解轴对称图形和轴对称的联系与区别.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P115~P117的内容,完成下面练习.【3 min反馈】1.如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.3.下列图形中是轴对称图形的有( B )A.①②B.①④C.②③D.③④4.两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.解:如图所示:它们的对称轴均为经过两圆圆心的一条直线.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.【互动探索】(引发学生思考)如何判断一个图形是否是轴对称图形?如何找轴对称图形的对称轴?【解答】(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)(8)有1条对称轴;(7)有4条对称轴;(10)有2条对称轴.【互动总结】(学生总结,老师点评)判断一个图形是否为轴对称图形,关键是看能否找到一条直线,沿这条直线折叠,使它两旁的部分能够互相重合.【例2】图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?【互动探索】(引发学生思考)可用两个图形成轴对称的概念来解决.【解答】图中有阴影的三角形与三角形1、3成轴对称.整个图形是轴对称图形,它共有2条对称轴.【互动总结】(学生总结,老师点评)(1)两个图形成轴对称与轴对称图形的联系与区别:称是指两个图形之间的形状与位置的关系.活动2 巩固练习(学生独学)1.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( C )2.如图,某英语单词由四个字母组成,且四个字母都关于直线l对称,则这个英语单词的汉语意思为书.3.试画出下列正多边形的所有对称轴,并完成表格.n条对称轴.解:如图:4.观察图中的各种图形,说明哪些图形放在一起可形成轴对称.解:根据轴对称图形的性质得出:(1)和(6),(2)和(4),(9)和(10)能形成轴对称图形.活动3 拓展延伸(学生对学)【例3】轴对称在数学计算中有巧妙的应用.如图1,现要计算长方形中六个数字的和,我们发现,把长方形沿对称轴l1对折,重合的数字均为4,故六个数字的和为3×4=12;若沿对称轴l2对折,则六个数字的和可表示为4×2+2×2=12.受上面方法的启发,请快速计算正方形(图2)中各数字之和.图1 图2【互动探索】利用轴对称图形对称位置上的两数相加和相等来进行简便计算.【解答】如图所示,一条对角线上的数都是5,若把这条对角线所在直线当作对称轴,把正方形对折一下,对称位置上的两数之和均为10,这样正方形中各数字之和为10×10+5×5=125.【互动总结】(学生总结,老师点评)数形结合是初中数学的一种重要思想方法,在求一组有特殊规律的数字的和时,经常会用到对称的思想及其相关的知识.环节3 课堂小结,当堂达标(学生总结,老师点评)轴对称现象⎩⎪⎨⎪⎧ 轴对称图形——对称轴 联系与区别两个图形成轴对称练习设计请完成本课时对应练习!2 探索轴对称的性质教学目标一、基本目标1.经历探索轴对称性质的过程,积累数学活动经验,发展空间观念.2.理解轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.二、重难点目标【教学重点】探索并掌握轴对称的性质.【教学难点】运用轴对称的性质作图及利用轴对称的性质解决一些实际问题.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P118~P119的内容,完成下面练习.【3 min反馈】1.我们把沿对称轴折叠后能够重合的点叫做对应点,重合的线段叫做对应线段,重合的角叫做对应角.2.轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.3.画轴对称图形,首先应确定对称轴,然后找出对称点.4.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.5.把如图所示的图形补成以直线l为对称轴的轴对称图形.解:如图所示:环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,△ABC和△AED关于直线l对称,若AB=2 cm,∠C=95°,则AE=________,∠D=________.【互动探索】(引发学生思考)因为△ABC和△AED关于直线l对称,AB=2 cm,∠C=95°,所以AE=AB=2 cm,∠D=∠C=95°.【答案】2 cm 95°【互动总结】(学生总结,老师点评)解此类问题应先根据条件确定对应点,从而确定对应线段、对应角.【例2】画出△ABC关于直线l的对称图形.【互动探索】(引发学生思考)画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评)画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到.活动2 巩固练习(学生独学)1.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为( D )A.30°B.50°C.90°D.100°2.如图,直线MN是四边形AMBN的对称轴,与对角线交于点Q,点P是直线MN上面一点,下列判断错误的是( D )A.AQ=BQ B.AP=BPC.∠MAP=∠MBP D.∠ANM=∠NMB3.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠BCD的度数是( A )A.130°B.150°C.40°D.65°4.如图,将已知四边形分别在格点图中补成关于已知直线l、m、n、p为对称轴的轴对称的图形.解:如图所示:5.如图,在长方形的台球桌面上,选择适当的角度打击白球,可以使白球经过两次反弹后将黑球直接撞入袋中,此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口的连线和台球桌面边缘的夹角∠5=30°,那么∠1应该等于多少度才能保证黑球准确入袋?请说明理由.解:∠1=30°才能保证黑球准确入袋.理由如下:如图,因为∠5=30°,所以∠7=∠5=30°.因为∠3=∠4,所以∠6=∠7=30°,所以∠2=∠6=30°,所以∠1=∠2=30°.即∠1=30°才能保证黑球准确入袋.活动3 拓展延伸(学生对学)【例3】如图,将长方形ABCD沿DE折叠,使点A落在BC上的点F处,若∠EFB=60°,则∠CFD=( )A.20°B.30°C.40°D.50°【互动探索】根据图形翻折变换,得△ADE与△FDE关于直线DE 成轴对称,所以△ADE≌△FDE,所以∠EFD=∠EAD=90°.因为∠EFB =60°,所以∠CFD=90°-∠EFB=30°.【答案】B【互动总结】(学生总结,老师点评)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!3 简单的轴对称图形第1课时等腰三角形教学目标一、基本目标1.经历探索等腰三角形和等边三角形的性质的过程,掌握等腰三角形的轴对称性、三线合一、两底角相等等性质.2.能根据等腰三角形的性质解决一些简单的问题.二、重难点目标【教学重点】等腰三角形、等边三角形的性质.【教学难点】等腰三角形、等边三角形的性质及探索过程.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P121~P122的内容,完成下面练习.【3 min反馈】1.等腰三角形的性质:(1)等腰三角形是轴对称图形;(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;(3)等腰三角形的两个底角相等.2.如图,在△ABC中,AB=AC.(1)因为AD⊥BC,所以∠BAD=∠CAD,BD=CD;(2)因为AD是中线,所以AD⊥BC,∠BAD=∠CAD;(3)因为AD是角平分线,所以AD⊥BC,BD=CD;(4)因为AB=AC,所以∠B=∠C.3.完成教材P121“想一想”:解:(1)等边三角形有三条对称轴,内角的平分线(各边上的中线、各边上的高)所在的直线为其对称轴.(2)等边三角形的特征:①三条边都相等,三个内角都相等,且每个内角都是60°;②是轴对称图形;③具有等腰三角形的一切特征.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC =AD,求△ABC中各内角的度数.【互动探索】(引发学生思考)设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【解答】因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠ABC=∠C=∠BDC=∠ABD+∠A=2x.在△ABC中,因为∠A+∠ABC+∠C=180°,所以x+2x+2x=180°,解得x=36°.所以在△ABC中,∠A=36°,∠ABC=∠C=72°.【互动总结】(学生总结,老师点评)当题中等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.【例2】如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.【互动探索】(引发学生思考)由∠BAD=2∠DBC,考虑作∠BAD 的平分线,即作等腰三角形的高,再根据“等角的余角相等”证明结论.【证明】过点A作AE⊥BC于点E.因为AB=AC,AE⊥BC,所以∠BAD=2∠2.因为BD⊥AC于点D,所以∠BDC=90°,所以∠2+∠C=∠C+∠DBC=90°,所以∠DBC=∠2,所以∠BAD=2∠DBC.【互动总结】(学生总结,老师点评)解决本题的关键:(1)从要证的等式中角之间的数量关系,考虑利用等腰三角形“三线合一”作辅助线;(2)在有直角的平面几何图形中,可用“等角的余角相等”证明角相等.活动2 巩固练习(学生独学)1.已知等腰三角形的一个角为80°,则其顶角为( D )A.20°B.50°或80°C.10°D.20°或80°2.如图,在△ABC中,AB=AC,BC=6 cm,AD平分∠BAC,则BD=3 cm.3.在△ABC中,AB=AC=5,∠A=60°,则BC=5.4.在△ABC中,AB=AC,过点C作CN∥AB且CN=AC,连结AN 交BC于点M.求证:BM=CM.证明:因为AB=AC,CN=AC,所以AB=CN,∠N=∠CAN.又因为AB∥CN,所以∠BAM=∠N,所以∠BAM=∠CAM,所以AM为∠BAC的平分线.又因为AB=AC,所以AM为△ABC的边BC上的中线,所以BM=CM.活动3 拓展延伸(学生对学)【例3】已知△ABC是等腰三角形,且∠A+∠B=130°,求∠A 的度数.【互动探索】要求∠A,需讨论∠A是等腰△ABC的顶角还是底角,再结合三角形的内角和求解.【解答】分情况讨论:当∠A为顶角时,则∠B=∠C.因为∠A+∠B+∠C=180°,∠A+∠B=130°,所以∠B=∠C=50°,所以∠A=80°.当∠C为顶角时,则∠A=∠B.因为∠A+∠B=130°,所以∠A=65°.当∠B为顶角时,则∠A=∠C.因为∠A+∠B+∠C=180°,∠A+∠B=130°,所以∠A=∠C=50°.综上所述,∠A的度数可以为80°,65°或50°.【互动总结】(学生总结,老师点评)本题体现了分类讨论思想.等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角.本题易忽略讨论∠B是顶角还是底角.环节3 课堂小结,当堂达标(学生总结,老师点评)等腰三角形⎩⎪⎨⎪⎧轴对称性三线合一等边对等角练习设计请完成本课时对应练习!第2课时 线段的垂直平分线教学目标 一、基本目标1.探索并了解线段垂直平分线的有关性质,并利用垂直平分线的性质解决一些实际问题.2.会用尺规作图作一条线段的垂直平分线.3.经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.二、重难点目标 【教学重点】垂直平分线的有关性质. 【教学难点】用尺规作图作线段的垂直平分线,并利用垂直平分线的性质解决一些实际问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P123~P124的内容,完成下面练习. 【3 min 反馈】1.线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.线段的垂直平分线的定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线,简称中垂线.3.线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.4.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长为( B )A.6 B.5C.4 D.3环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】详细过程见教材P124例1.【例2】如图,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为点E,交AC于点D.若△DBC的周长为35 cm,求BC的长.【互动探索】(引发学生思考)DE垂直平分AB→AD=BD→△DBC 的周长为35 cm→BC+AD+CD=35 cm→求出BC.【解答】因为DE垂直平分AB,所以AD=BD.因为△DBC的周长为35 cm,即BC+BD+CD=35 cm,所以BC+AD+CD=35 cm.又因为AC=AD+DC=20 cm,所以BC=35-20=15( cm).【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.活动2 巩固练习(学生独学)1.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E、D 两点,CE=4,△ABC的周长是25,则△ABD的周长为( C )A.13 B.15C.17 D.192.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC、AC于点D、E,∠B=60°,∠C=25°,则∠BAD为( B )A.50°B.70°C.75°D.80°3.如图,在△ABC中,AC=20 cm,DE垂直平分AB,垂足为点E,交AC于点D.若△DBC的周长为35 cm,则BC长为15 cm.4.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,求∠C的度数.解:因为∠B=90°,∠BAE=10°,所以∠BEA=80°.因为ED是AC的垂直平分线,所以AE=EC,所以∠C=∠EAC.因为∠BAC+∠B+∠C=180°,∠BAC=∠BAE+∠EAC,所以10°+∠EAC+90°+∠C=180°.所以∠C=∠EAC=40°.活动3 拓展延伸(学生对学)【例3】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【互动探索】(1)根据AD∥BC可知∠ADE=∠ECF,再根据E是CD的中点可证得△ADE≌△FCE,从而根据全等三角形的性质得到结论;(2)根据线段垂直平分线的性质判断出AB=BF即可.【证明】(1)因为AD∥BC,所以∠ADE=∠ECF.因为E是CD的中点,所以DE=EC.又因为∠AED=∠CEF,所以△ADE≌△FCE,所以FC=AD.(2)因为△ADE≌△FCE,所以AE=EF,AD=CF.因为BE⊥AE,所以BE是线段AF的垂直平分线,所以AB=BF=BC+CF.因为AD=CF,所以AB=BC+AD.【互动总结】(学生总结,老师点评)此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.【例4】如图,A、B、C三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置.【互动探索】根据线段垂直平分线上的点到这条线段两个端点的距离相等作图.【解答】如图,连结AB、AC,分别作出AB、AC的垂直平分线,两线的交点P就是供水站的位置.【互动总结】(学生总结,老师点评)此题主要考查了应用作图,关键是掌握线段垂直平分线上的点到这条线段两个端点的距离相等.环节3 课堂小结,当堂达标(学生总结,老师点评)线段的垂直平分线⎩⎪⎪⎨⎪⎪⎧ 线段是轴对称图形对称轴线段的垂直平分线⎩⎪⎨⎪⎧定义性质作法练习设计请完成本课时对应练习!第3课时 角平分线的性质教学目标 一、基本目标1.经历探索角的轴对称性的过程,理解并掌握角平分线的有关性质,并能运用角平分线的性质解决一些实际问题.2.掌握作已知角的平分线的尺规作图方法. 二、重难点目标 【教学重点】掌握角平分线的性质,会用尺规作已知角的平分线. 【教学难点】角平分线的性质的应用. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P125~P126的内容,完成下面练习. 【3 min 反馈】1.角是轴对称图形,角平分线所在的直线是它的对称轴.2.角平分线上的点到这个角的两边的距离相等.3.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长为( D )A.2 B.3C.4 D.64.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,AC=7,DE=4,则△ADC的面积等于14.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】详细过程见教材P126例2.【例2】如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3 cm,那么AE、AC、DE这三条线段之间有怎样的数量关系?请说明理由.【互动探索】(引发学生思考)根据角平分线上的点到角的两边距离相等可得DE=CE,从而可知AE、AC、DE之间的数量关系.【解答】AE+DE=AC=3 cm.理由如下:因为∠ACB=90°,BE平分∠ABC,DE⊥AB,所以DE=CE,所以AC=AE+CE=3 cm.【互动总结】(学生总结,老师点评)本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.活动2 巩固练习(学生独学)1.观察图中尺规作图痕迹,下列说法错误的是( C )A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE2.如图,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,则点D到AB的距离是( D )A.9 B.8C.7 D.63.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为点A,交CD于点D.若AD=8,则点P到BC的距离是4.4.如图,已知BD是∠ABC的平分线,DE⊥BC于点E,S△ABC=36 cm2,AB=12 cm,BC=18 cm,则DE的长为2.4 cm.教师点拨:过点D作DF⊥AB于点F.根据角平分线上的点到角的两边距离相等,得DE=DF,再根据S△ABC=S△ABD+S△BCD列方程求解即可.5.如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别为点M、N.试说明:PM=PN.证明:因为BD是∠ABC的平分线,所以∠ABD=∠CBD.又因为AB=BC,BD=BD,所以△ABD≌△CBD(SAS),所以∠ADB=∠CDB,即DB是∠ADC的平分线.因为PM⊥AD,PN⊥CD,所以PM=PN.活动3 拓展延伸(学生对学)【例3】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,你能说出可供选择的地址有几处吗?【互动探索】根据角平分线的性质,得货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点.【解答】因为中转站要到三条公路的距离都相等,所以货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点.而外角平分线有3个交点,内角平分线有1个交点, 所以货物中转站可以供选择的地址有4个.【互动总结】(学生总结,老师点评)本题主要考查了应用与设计作图,关键是掌握角平分线的性质:角平分线上的点到这个角的两边的距离相等.环节3 课堂小结,当堂达标 (学生总结,老师点评)角的轴对称性⎩⎪⎨⎪⎧角是轴对称图形对称轴角平分线⎩⎪⎨⎪⎧性质作法练习设计请完成本课时对应练习!4 利用轴对称进行设计教学目标一、基本目标1.经历观察、分析、作图、折叠等过程,进一步理解轴对称及其性质,发展空间观念.2.能够利用轴对称进行一些图案设计.3.欣赏中国民间剪纸艺术中的一些图案,体会轴对称在现实生活中的广泛应用和丰富的文化价值.二、重难点目标【教学重点】掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形.【教学难点】掌握有关画图的技能及设计轴对称图形.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P128~P129的内容,完成下面练习.【3 min反馈】1.轴对称的性质:在轴对称图形中,(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.2.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的( A )A.轴对称性B.蝴蝶效应C.颜色鲜艳D.数形结合3.下列有关“安全提示”的图案中,可以看作轴对称图形的是( C )4.如图的四个图案都是轴对称图形,它们分别有着自己的含义,如图1可以代表针织品、联通;图2可以代表法律、公正;图3可以代表航海、坚固;图4可以代表邮政、友谊等.请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.解:答案不唯一,如图:环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】在3×3的正方形网格图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形网格图中限画一种,若两个图形中的对称轴是平行的,则视为一种)【互动探索】(引发学生思考)根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形即可.【解答】如图,△DEF即为所求.(答案不唯一)【互动总结】(学生总结,老师点评)本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.解题时注意:若两个图形中的对称轴是平行的,则视为一种.活动2 巩固练习(学生独学)1.下列古代的吉祥图案中,不是轴对称图形的是( C )2.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有3种.3.用四块如图1所示的是小正方形瓷砖拼成一个轴对称的大正方形图案(如图2).请在图3、图4中分别给出两种不同的拼法,且使拼出的图案为轴对称图形.解:如图所示:活动3 拓展延伸(学生对学)【例2】观察设计:(1)观察如图1~图4中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)在图5的网格中,设计一个新的图案,使该图案同时具有你在(1)中所写出的两个共同特征.(注意:新图案与如图1~图4的图案不能重合)【互动探索】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】(1)答案不唯一,如:所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征均正确.例如:同时具备特征①、②的部分图案如图:【互动总结】(学生总结,老师点评)此题主要考查了利用轴对称设计图案,正确把握图形的特征是解题关键.环节3 课堂小结,当堂达标(学生总结,老师点评)利用轴对称进行设计⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫欣赏图案动手操作体验轴对称在现实生活中的应用和文化价值 练习设计请完成本课时对应练习!第六章 概率初步教材简析本章的主要内容有事件的分类及判断随机事件可能性的大小;随机事件发生频率的稳定性;等可能事件的概率及计算简单事件发生的概率.在认识可能性的基础上,进一步理解事件的分类和随机事件可能性的大小,然后通过试验感受在实验次数很大时,随机事件发生频率的稳定性,进而认识等可能事件的概率,体会概率是描述随机现象的数学模型.本章内容是中考重要考点之一,主要以考查随机事件、必然事件与不可能事件等概念的区分以及简单的概率计算为主,题型以选择题、填空题为主,难度较小.教学指导【本章重点】求等可能事件的概率.【本章难点】借助频率的稳定性理解概率,根据事件发生的概率解决实际问题.【本章思想方法】1.体会和掌握类比的学习方法,如通过类比,学习和区分随机事件、必然事件与不可能事件.2.体会数形结合思想,如从图表中获取有用信息,从而利用图表解决实际问题;根据几何图形的面积的大小,确定随机事件发生的概率,并解决有关实际问题.3.体会转化思想,如本章所涉及的有关几何概率的计算题都转化为用公式P(A)=m n来解.。
第五章生活中的轴对称1轴对称现象【知识与技能】通过观察、分析现实生活实例和典型图形的过程,认识轴对称和轴对称图形,会找出简单的对称图形的对称轴,了解轴对称和轴对称图形的联系和区别.【过程与方法】通过大量的实例初步认识轴对称,能识别简单的轴对称图形及其对称轴.【情感态度】通过欣赏现实生活中的轴对称图形,体验轴对称在现实生活中的广泛应用,体会数学来源于生活.【教学重点】正确理解轴对称图形以及轴对称的概念.【教学难点】能正确区分轴对称图形和轴对称.一、情景导入,初步认知从各小组收集的图片中有代表性的选择一些,用投影仪演示.使学生能够形象直观地感受图形的对称.【教学说明】通过幻灯片演示.使学生能够形象直观地感受图形的对称.使学生明白对称在美学和自然界中的作用.二、思考探究,获取新知1.观察下列图片,它们有什么共同特点?【归纳结论】如果把一个平面图形沿着某条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线叫做对称轴.理解轴对称图形应注意三点:(1)轴对称图形是一个图形;(2)对折;(3)重合.2.做一做:将一张纸对折后,用笔尖扎出如图所示的图形,然后将纸打开铺平,你会得到什么图形?你还能用这样的方法得到其它的轴对称图形吗?3.议一议,观察课本(P116图5-4)中的每组图片,你发现了什么?【归纳结论】如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.理解轴对称图形应注意三点:(1)“轴对称”是两个图形;(2)对折;(3)重合.【教学说明】通过感官加深对轴对称图形和成轴对称的理解.三、运用新知,深化理解1.如图所示的几个图案中,是轴对称图形的是( A )2.如图所示,下面的5个英文字母中是轴对称图形的有( B )A.2个B.3个C.4个D.5个3.如图所示的图案中,是轴对称图形的有( B )A.1个B.2个C.3个D.4个4.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.解:(3)比较独特,它有无数条对称轴,其他图形只有两条对称轴.5.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.解:(1)2条;(2)4条;(3)5条;(4)3条.画图略.6.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?请指出这个图形,并简述你的理由.解:②不是轴对称图形7.如图所示,以虚线为对称轴画出图形的另一半.解:略【教学说明】进行适当的由浅入深,由感性到理性的一些练习,为学生的知识技能和运算能力打好基础.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题5.1”中第1、3题.2.完成同步练习册中本课时的练习.本节课通过大量生动的生活实例引领学生进入图形中的对称世界,深刻体会对称在现实生活中的广泛应用和丰富的文化价值.同时通过本节的学习与探索,使同学们对对称的认识由感性到理性,由浅到深,为后面学习抽象的对称图形作好铺垫工作.2 探索轴对称的性质【知识与技能】掌握轴对称的性质,学会运用轴对称性质作图.【过程与方法】通过动手操作探索轴对称的性质,运用轴对称性质解决实际问题.【情感态度】培养独立观察思考的习惯,感受数学几何图形的美,体验设计轴对称图形带来的快乐.【教学重点】理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质.【教学难点】轴对称性质的探索及运用.一、情景导入,初步认知将一张白纸对折后用笔尖扎出“14”这个数字,将纸打开后铺平.回答几个问题:(1)图中的两个“14”有什么关系?(2)在上面扎字的过程中,点E与点E′重合,点F与点F′重合.设折痕所在直线为l,连接点E与点E′的线段与直线l有什么关系?点F与点F′呢?(3)线段AB与线段A′B′有什么关系?CD与C′D′呢?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.【教学说明】指导学生有目的的预习教材,培养学生的自学能力.二、思考探究,获取新知做一做:探索飞机的“奥秘”.观察图示的飞机,从这个轴对称图形中:(1)找出它的对称轴.(2)连接点A与点A′的线段被对称轴平分吗?与对称轴互相垂直吗?连接点B与点B′的线段呢?(3)线段AD与线段A′D′是否相等?线段BC与线段B′C′呢?为什么?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.【归纳结论】在轴对称或两个成轴对称的图形中:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.【教学说明】让学生在准备好的图案上动手操作,通过观察、测量、对折等解决以上问题.解决问题的方法和结论学生会说出好多种,对这些结论进行整理,就是轴对称的性质.三、运用新知,深化理解1.下列说法错误的是( C )A.等边三角形是轴对称图形B.轴对称图形的对应边相等,对应角相等C.成轴对称的两条线段必在对称轴一侧D.成轴对称的两个图形对应点的连线被对称轴垂直平分2.下列说法正确的是( B )A.两个全等的三角形一定关于某条直线对称B.关于某条直线的对称的两个三角形一定全等C.直角三角形是轴对称图形D.锐角三角形都是轴对称图形3.设AB两点关于直线MN轴对称,则直线MN垂直平分线段AB.4.若直角三角形是轴对称图形,则其三个内角的度数分别为45°,45°,90°.5.已知Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称轴点 B′,如图所示,则与线段BC相等的线段是B′C,与线段AB相等的线段是BB′和AB′,与∠B相等的角是∠BAB′和∠B′,因此,∠B=60°.6.下列各图都是一个汉字的一半,你能想像出它的另一半并能确定它是什么字吗?(有几个字的笔划在对称轴上)解:图略(1)中(2)林(3)南(4)京(5)米(6)来(7)共(8)品(9)吉(10)木(11)釜7.找出图中是轴对称图形的图形,并找出两对对应点、两对对应线段、两对对应角.解:图(A)是轴对称图形.如图,若以EF为对称轴,则点A与点B、点M与点N.点C与点D等是对称点.线段AG与BH、CM与DN、PG与PH等是对应线段,∠A与∠B、∠C与∠D、∠AMC 与∠BND等是对应角.8.如图,∠AOB内一点P,分别画出P关于OA、OB的对称点P1、P2,连P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?解:画图如图所示,易知PP1,PP2关于OA、OB对称,∴PM=P1M,PN=P2N,∴△PMN的周长=P1P2,∴△PMN的周长是5cm.【教学说明】通过不同的题型加深学生对轴对称图形和对称轴的理解,对本节知识进行巩固练习.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题5.2”中第1、3、4题.2.完成同步练习册中本课时的练习.本节课应采用小组学习模式,在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组讨论给予适当的指导,包括知识的启发引导.学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.根据不同学生的不同特点应注意适当增减内容以保证课堂教学的顺利完成.3 简单的轴对称图形第1课时等腰三角形的性质【知识与技能】探索并掌握等腰三角形的轴对称性及其相关性质.【过程与方法】通过探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念.【情感态度】通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念.【教学重点】掌握等腰三角形的轴对称性及其相关性质.【教学难点】探索等腰三角形的轴对称性及其性质的过程.一、情景导入,初步认知观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?【教学说明】通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形,乐于探索研究的学习品质及全面思考的能力.二、思考探究,获取新知探究1:等腰三角形1.认识等腰三角形.给出三种等腰三角形的图形,包括锐角、钝角、直角形状的图形.2.介绍等腰三角形的概念及各部分名称.给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象.如艾菲尔铁塔、埃及金字塔等.3.等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有其他一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?4.思考:(1)等腰三角形是轴对称图形吗?找出对称轴.(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?【归纳结论】等腰三角形的特征:①等腰三角形是轴对称图形②等腰三角形的顶角平分线.底边上的中线.底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.③等腰三角形的两个底角相等.【教学说明】探索等腰三角形的轴对称性及其有关性质,教学时,可以让学生先动手折一折等腰三角形纸片,自己发现有哪些结论.然后小组成员一起通过操作验证自己的结论,并由此归纳现象,探索等腰三角形的有关特征.探究2:等边三角形1.等边三角形的有关概念?2.你能发现等边三角形的哪些特征?【教学说明】教师应鼓励学生通过操作和思考分析等边三角性的轴对称性,并尽可能多的探索它的特征.探究3:你有哪些方法可以得到一个等腰三角形?与同伴交流.1.折纸:将长方形纸片对折,沿对角线折叠,再沿折痕展开.2.利用圆规.【教学说明】以动手操作的形式得出一个等腰三角形,鼓励学生充分的进行交流,充分利用等腰三角形的特征,逆向思维,达到学以致用的目的.同时充分体现了数学来源于生活,同时也更好的服务于生活的理念.三、运用新知,深化理解1.下列图形中,不是轴对称图形的是( D )A.正方形B.等边三角形C.等腰三角形D.平行四边形2.等腰三角形的一个内角等于100°,则另两个内角的度数分别为( A )A.40°,40°B.100°,20°C.50°,50°D.40°,40°或100°,20°3.下列说法正确的是( B )A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形4.填空题:(1)①如图所示,在△ABC中,①因为AB=AC,所以∠ =∠;②因为AB=AC,∠1=∠2,所以BD= ,⊥ .(2)若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为 .(3)已知等腰三角形的一个角是80°,则顶角为 .(4)在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC 的面积为 .(5)如图所示,O 为△ABC 内一点,且OA=OB=OC ,∠ABO=20°,∠BCO=30°,则∠CAO= .答案:(1)①B C ②DC (或21BC ) AD BC (2)40° (3)80°或20° (4)21cm 2(5)40°5.在等腰三角形ABC 中,AB =AC ,周长为14cm ,AC 边上的中线BD 把△ABC 分成了周长差为4cm 的两个三角形,求△ABC 各边长.解:如图,设AD =x,则DC =x,AB =2x.设BC =y.由题意可以列方程: 2x+2x+y=14,(2x+x+BD)-(BD+x+y)=4, 解之得:x=3,y=2. 或2x+2x+y=14,(BD+x+y)-(2x+x+BD)=4,解之得:x=35,y=322.显然第二种情况不符合“三角形两边之和大于第三边”,所以舍去. 所以△ABC 的三边长分别为:AB=AC=2x=6cm,BC=y=2cm.6.一个等腰三角形的两个内角度数之比为4∶1,求这个三角形各角度数.解:△ABC中AB=AC,所以∠C=∠B,若∠BAC∶∠B=4∶1,则:∠BAC+∠B+∠C=6∠B=180°,所以∠B=30°=∠C,∠BAC=120°.若∠B∶∠BAC=4∶1,则:∠BAC+∠B+∠C=9∠BAC=180°,所以∠BAC=20°,∠B=∠C=80°.7.如图,已知AB=AC,BD=DC,AE平分∠CAF,试判断AE与AD的位置关系,并说明理由.解:AE⊥AD.说理如下:因为AB=AC,BD=DC,所以AD⊥BC(等腰三角形三线合一),∠B=∠C.因为∠CAF=∠B+∠C,所以∠CAF=2∠B.因为AE平分∠CAF,所以∠CAF=2∠EAF,所以∠EAF=∠B,所以AE∥BC(同位角相等,两直线平行),所以∠EAD=∠BDA=90°,所以AE⊥AD.【教学说明】对本节内容的知识进一步的理解、巩固、提高.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题5.3”中第1、2题.2.完成同步练习册中本课时的练习.本节内容的学习包括大量的实践活动,学生空间观念的培养,推理能力的发展,对图形美的感受等都是在实践活动中发展起来的.因此,教学中应充分利用这部分内容的特点,将观察、操作等实践活动以及实践活动中的思考与交流贯穿于教学活动的始终,使学生体会所学内容与现实世界的广泛联系,体验轴对称的数学内涵,积累丰富的数学活动经验,发展良好的空间观念和一定的创新意识.第2课时线段垂直平分线的性质【知识与技能】1.探索并了解线段垂直平分线的有关性质.2.尺规作图.3.应用线段垂直平分线的性质解决一些实际问题.【过程与方法】从生活实践中探索轴对称现象的共同特征,进一步发展空间观念.【情感态度】培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感.【教学重点】线段的垂直平分线的性质及作法、应用.【教学难点】用尺规作线段的垂直平分线.一、情景导入,初步认知1.什么是轴对称图形及轴对称图形的性质?2.下列图形哪些是轴对称图形?【教学说明】使学生对小学学过的生活中的轴对称图形进一步加深印象,熟悉轴对称图形及对称轴,为本节课学习做铺垫.二、思考探究,获取新知探究1:线段的对称性1.线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗?这条对称轴与线段存在着什么关系?2.做一做:按下面步骤做:①用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.②把纸展开.3.观察自己手中的图形,回答下列问题:①折痕与AB有什么样的位置关系?②AO与OB相等吗?能说明你的理由吗?【归纳结论】①线段是轴对称图形.它的对称轴有两条:一条是线段AB本身所在的直线;另一条是折痕.②它的对称轴垂直于这条线段并且平分它.③垂直于一条线段且平分这条线段的直线叫这条线段的垂直平分线(简称中垂线).探究2:垂直平分线的性质动手操作:作线段AB的中垂线MN,垂足为C;在MN上任取一点P,连结PA、PB;量一量:PA、PB的长,再换别的点试试,你能发现什么?PA=PB P1A=P1B由此你能得到什么规律?【归纳结论】线段垂直平分线上的点到这条线段两个端点的距离相等.【教学说明】可以运用全等来说明.教师适时的引导,学生的动手操作,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想.探究3:作线段的垂直平分线1.已知线段AB,请画出它的垂直平分线.作法:第一步:分别以A、B为圆心,以大于AB一半的长度为半径画弧,两弧在AB 的两侧分别相交于点M和点N;第二步:经过点M和点N画直线;直线MN就是线段AB的垂直平分线.2.各小组讨论:为什么所作的直线就是已知线段的垂直平分线?【教学说明】尺规作图能培养学生严谨的学习习惯,严密的逻辑思维和空间想象能力.尺规作图既能展现数学美,又能培养学生的学习兴趣.三、运用新知,深化理解1.见教材P124例12.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为( B )A.6B.5C.4D.33.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( C )A.80°B.70°C.60°D.50°4.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,求线段DE 的长.解:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,∴ED+DC+EC=24,①BE+BD-DE=12.②①-②得,DE=6.5.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.6.如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连结BE.试判断EF与DE的数量关系并说明理由.解:(1)直线l即为所求.(2)EF=2DE.理由:在Rt△ABC中,∵∠A=30°,∴∠ABC=60°,又∵l为线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∠AED=∠BED=60°∴∠EBC=30°=∠EBA,∠FEC=60°又∵ED⊥AB,EC⊥BC∴ED=EC.在Rt△ECF中,∠FEC=60°,∴∠EFC=30°,∴EF=2EC,∴EF=2ED.【教学说明】通过对不同题型的练习来对本节知识进行巩固.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题5.4”中第1、2、3题.2.完成同步练习册中本课时的练习.数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流的方式去获取数学知识.本节的教学主要是通过学生的动手实验来获取中垂线的有关知识,用纸张进行折叠活动使学生真正的经历了数学知识的形成过程,使课堂气氛变得生动而活泼.在得出实验结论后,提供典型的练习题和实际应用题,让学生经历数学知识的应用过程,同时培养他们解决实际问题的能力.第3课时角平分线的性质【知识与技能】1.掌握作已知角的平分线的尺规作图方法.2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.【过程与方法】在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉.【情感态度】使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.【教学重点】角平分线的性质.【教学难点】角平分线性质的应用.一、情景导入,初步认知不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?【教学说明】体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫,为下一步设置问题墙打下基础.二、思考探究,获取新知探究1:角的对称性角是轴对称图形吗?把∠AOB对折,你发现了什么?【归纳结论】角是轴对称图形,对称轴是角平分线所在的直线.探究2:角平分线的性质动手操作:1.把∠BAC对折.2.在折痕(即角平分线)上任意找一点O,3.过点O折AC边的垂线,得到新的折痕OD,其中,点D是折痕与AC的交点,即垂足.4.过点O折AB边的垂线,将纸打开,新的折痕与AB边交点为E.观察:OD与OE有什么关系?改变O的位置,OD与OE还存在这种关系吗?【归纳结论】角的平分线上的点到角两边的距离相等.几何语言:∵AO是∠BAC的平分线,OE⊥AB,OD⊥AC,∴OE=OD.【教学说明】从实验探索中发现角的平分线的性质,培养学生的数学抽象概括能力及理性精神,让学生体验成功.探究3:尺规作角平分线已知:∠BOA;求作:∠BOA的角平分线.作法:1.以O为圆心,任意长度为半径作弧,分别与角的两边交于点D、E;2.分别以D、E为圆心,大于DE一半的相同长度为半径作弧,两弧在角的内部交于C;3.作射线OC,∴射线OC为∠BOA的角平分线.你能证明吗?【教学说明】从实验中抽象出几何模型,明确几何作图的基本思路和方法.培养学生运用直尺和圆规作已知角的平分线的能力,让学生体验成功的乐趣.三、运用新知,深化理解1.见教材P126例22.如图所示,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是( A )A.3B.4C.5D.63.如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE ⊥AB于E,且AB=6cm,则△DEB的周长为( B )A.4cmB.6cmC.10cmD.以上都不对4.如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有( D )A.一处B.二处C.三处D.四处5.如图:△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°.DE与DF相等吗?为什么?解:DE=DF.理由:如图,作DM⊥AB于M,DN⊥AC于N,又∵AD平分∠BAC,∴DM=DN,∵∠EAF+∠EDF=180°,∴∠AED+∠AFD=360°-180°=180°,∵∠AFD+∠CFD=180°,∴∠AED=∠CFD,∴△DME≌△DNF(AAS),∴DE=DF.6.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.AC与BC相等吗?为什么?解:AC=BC.理由:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE,∵∠DCA=∠ECB,∠ADC=∠BEC=90°,∴△ACD≌△BCE(ASA),∴AC=BC.7.如图所示,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G 在A区,到公路和铁路距离相等,且到铁路图上距离为1cm.(1)在图上标出仓库G的位置.(比例尺为1∶10000,用尺规作图)(2)求出仓库G到铁路的实际距离.解:(1)图略,仓库G在∠NOQ的平分线上,(2)仓库G到铁路的实际距离是100m.8.有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.解:他这种作法对,理由如下:由作法可知:OC=OD,OB=OA,∠COB=∠DOA,∴△BCO≌△ADO(SAS),AC=BD,∴∠OCE=∠ODE,∵∠AEC=∠BED,∴△ACE≌△BDE(AAS),∴CE=DE,∵OE=OE,∴△OCE≌△ODE(SSS),∴∠COE=∠DOE,即OE平分∠MON.【教学说明】通过学生对角的平分线的知识进行独立练习,自我评价学习效果,及时发现问题.解决知识盲点,培养学生的创新精神和实践能力.四、师生互动,课堂小结我们这节课学习了哪些知识?五、教学板书1.布置作业:教材“习题5.5”中第1、2、3题.2.完成同步练习册中本课时的练习.本课题设计思路按操作、猜想、验证的学习过程,遵循学生的认知规律,体现了数学学习的必然性.教学始终围绕着问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,而后设计了第一个学生活动——折纸,让学生体验角的轴对称性,为角平分线性质做好铺垫.紧接着通过介绍简易角平分线推出了第二个学生活动——尺规作图,以达到复习全等和再次验证猜想的目的,猜想是否正确?还得进行证明,从而激发了学生学习数学的欲望和兴趣,使教学目标顺利达成.整堂课都以学生操作、探究、合作贯穿始终,在教学过程中给学生的思考留下足够的时间和空间,由学生自己去发现结论,学生在经历“将现实问题转化成数学问题”的过程中,对角平分线性质有了更深刻的认识,培养了学生动手、合作、概括能力,同时也提高了思维水平和应用数学知识解决实际问题的意识.4 利用轴对称进行设计【知识与技能】了解什么样的图形是轴对称图形及其对称轴的条数,能画出简单图形的对称轴及作出简单轴对称图形的另一半.【过程与方法】通过大量的观察分析、总结归纳和动手操作,不但对轴对称的基本知识有了充分的理解,而且体验到了轴对称的美与和谐.【情感态度】感受轴对称与生活的广泛联系和丰富的文化价值.【教学重点】通过观察、操作,进一步理解对称及其性质.【教学难点】利用轴对称的知识,描述图形经折叠剪开后的图案.一、情景导入,初步认知我们生活在一个充满美丽与和谐的空间,在这里大到有宏伟的建筑,小到有精巧的剪纸都是对称的.轴对称带给我们的美丽无时无刻不在感染着我们.今天,就让我们也为这美妙的世界添上一笔靓丽的色彩:利用轴对称进行设计.【教学说明】调动学生的积极性,激发兴趣.二、思考探究,获取新知1.请同学们取出准备好的长30cm、宽6cm的纸条.如果先把纸条纵向对折,再折成“手风琴”,然后在上面画上其他图案,会得到怎样的花边,先猜一猜,再做一做,把你得到的花边剪下来.观察展开图回答下面的问题:在“手风琴”式的折纸中,纸上的折痕是对称。
北师大版七年级数学下册教案-第五章-三角形(1)一、教学目标1.掌握三角形的定义;2.理解三角形的性质,能应用相关性质解决有关问题;3.能够使用勾股定理求解直角三角形的边长;4.学会求解没有给定高的三角形面积。
二、教学重点和难点1.三角形的定义和性质;2.勾股定理的概念和应用;3.如何求解没有给定高的三角形面积。
三、教学内容1.三角形的定义和性质1.三角形定义:由三条线段所围成的图形叫做三角形。
2.三角形性质:–三条边的长度不同;–三个角的大小不同;–任意一边的长度都小于另外两边的长度之和;–任意两角的大小之和小于第三个角的大小。
2.三角形的分类1.根据边长分类:–等边三角形:三条边的长度都相等;–等腰三角形:两条边的长度相等;–普通三角形:三条边的长度都不相等。
2.根据角度分类:–钝角三角形:一个角大于90度;–直角三角形:一个角等于90度;–锐角三角形:所有角都小于90度。
3.三角形的面积1.公式:$S=\\frac{1}{2}bh$,其中b为底边长度,ℎ为高的长度。
2.如果没有给出高的长度,则需要根据给出的条件,利用三角形的性质进行运算:–已知两边和它们夹角的正弦、余弦、正切值,可用计算公式求其第三边长;–已知两边和它们夹角的正弦、余弦、正切值,可用计算公式求角度大小;–已知两边和夹角的正弦、余弦、正切值,可用计算公式求出面积。
4.勾股定理1.定义:在直角三角形中,斜边的平方等于两直角边的平方之和,即a2+b2=c2,其中c为斜边,a和b为两直角边。
2.判断一个三角形是否为直角三角形:a2+b2=c2成立时,为直角三角形。
3.利用勾股定理求解三角形的问题。
四、教学流程1.引入:教师演示一张三角形的图片,问学生如何定义三角形,引出三角形的定义。
2.讲解:讲解三角形的性质、分类以及面积计算公式。
3.练习:设计练习题让学生巩固所学知识并检验其掌握情况。
4.教案总结:谈论重点和难点,让学生回顾整个教学过程。
七年级20至20学年度第学期第周教师电机中学中数组西安市教育委员会监制西安安电机中学七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注一、创设情境,导入新课。
(1)复习三角形的有关知识:一个三角形共有______个顶点________个角______条边(2)已知△ABC ,它的顶点是______它的角是_______它的边是_______(3)两个图形完全重合指的是它们的形状________大小________(4)完全重合的两条线段______(填“相等”或“不相等”)(5)完全重合的两个角_________(填“相等”或“不相等”)二、直观感知,理解识别图形。
1.做一做:找出图画中全等的图形:(课件展示)从而引出全等三角形的定义及性质全等三角形的定义及有关概念和性质定义:全等三角形是能够完全重合的两个三角形或形状相同、大小相等的两个三角形.反例:举出不全等的三角形的例子,利用教师和学生手中的含30°角的三角板说明只满足形状相同的两个图形不是全等形,强调定义的条件2.说一说:请同学们观察周围有没有能完全重合的两个平面图形?学生在生活中找图形。
对应元素及性质:教师结合手中的教具说明对应元素(顶点、边、角)的含义,并引导学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等教师启发学生根据“完全重合”来说明道理七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注三、实践探究,明确强化。
3.议一议:全等三角形的符号表示及读法和写法:解释“≌”的含义和读法,并强调对应顶点写在对应位置上举例说明:如图,∵△ABC ≌DFE (已知)∴AB=DF ,AC=DE ,BC=FE ,(全等三角形的对应边相等)∴∠A=∠D ,∠B=∠F ,∠C=∠E .(全等三角形的对应角相等)小结:在书写全等三角形时,如果将对应顶点写在对应位置上,那么,将两个三角形的顶点同时按1→2→3→1的顺序轮换,可写出所有对应边和对应角相等的式子,而不会找错,并节省观察图形的时间4.试一试:总结寻找全等三角形对应元素的方法:(1)全等用符号_________表示。
读作__________。
(2)三角形ABC 全等于三角形DEF ,用式子表示为_______(3)已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′∠C=∠C′;AB=A′B′,BC=B′C′,AC=A′C′则△ABC_______△A′B′C′。
(4)如右图△ABC ≌△BCD ,∠A 的对应角是∠D ,∠B 的对应角∠E ,则∠C 与____是对应角AB 与_____是对应边BC 与_____是对应边AC 与____是对应边。
七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注四、巩固练习,归纳小结。
5.讲一讲:例1已知:△ABC ≌△DFE ,∠A=96°,∠B=25°,DF=10cm求∠E 的度数及AB 的长例2如图,已知CD ⊥AB 于D ,BE ⊥AC 于E ,△ABE ≌△ACD ,∠C=20°,AB=10,AD=4,G 为AB 延长线上一点求∠EBG 的度数和CE 的长.分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG (2)全等三角形对应角相等及外角或邻补角知识,得∠EBG等于160°(3)利用全等三角形对应边相等及等量减等量差相等的关系可得:CE=CA-AE=BA-AD=6五、小结1.在自己动手实际操作中,得到了全等三角形的哪些知识?2.在运用全等三角形的定义和性质时应注意什么问题?3.了解全等变换的思想,更好地识别全等三角形及对应元素六、作业:课本P155技能1. 2.问题 1. 2.补充资料:七年级20至20学年度第学期第周教师电机中学中数组西安市教育委员会监制西安安电机中学七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注一、创设情境,导入新课。
1、全等三角形的2、图1已知△AOC ≌△BOD 则对应角有∠A=∠B ,∠C=,=∠2,对应边有AC=,=OB ,=OD 。
3、图2已知△AOC ≌△DOB ,则对应角有∠A=∠D ,∠C=,=∠2,对应边有AC=,OC=,AO=4、图3已知∠B=∠D ,∠1=∠2,∠3=∠4,AB=CD ,AD=CB ,AC=CA 则△≌△5、判定两个三角形全等,依定义必须满足()(A )三边对应相等(B )三角对应相等(C )三边对应相等和三角对应相等(D )不能确定二、直观感知,理解识别图形。
1.做一做:画出一个三角形,使它的三个内角分别为40°,60°,80°,把你画的三角形与小组内画的进行比较,它们一定全等吗?结论:画出一个三角形,使它的三边长分别为3cm 4cm 7cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?结论:2.说一说:上面三角形全等的是七年级20至20学年度第学期第周教师电机中学中数组西安市教育委员会监制西安安电机中学七年级20至20学年度第学期第周教师电机中学中数组西安市教育委员会监制西安安电机中学七年级20至20学年度第学期第周教师电机中学中数组西安市教育委员会监制西安安电机中学七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注一、创设情境,导入新课。
1、三边对应相等的两个三角形全等,简写为或2、在△ABC 中,AB =AC ,AD 是BC 边上的中线,AD 能平分∠BAC 吗?你能说明理由吗?解:AD 平分∠BAC 。
∵AD 是BC 边上的中线(已知)∴=在中⎪⎪⎪⎩⎪⎪⎪⎨⎧∴≌)∴∠BAD =∠CAD (∴AD 平分∠BAC ()3、(1)∵AC ∥BD (已知)∴∠(2)∵AD ∥BC (已知)∴∠4、∵EA ⊥AD ,FD ⊥AD (已知)∴∠=∠=90°(二、直观感知,理解识别图形。
1.做一做:1、如果“两角及一边”条件中的边是两角所夹的边三角形的两个内角分别是60°和80°,它们所夹的边为2cm ,你能画出这个三角形吗?你画的三角形与同伴画的一定全等吗?结论:2、如果“两角及一边”条件中的边是其中一角的对边三角形两个内角分别是60°和45°,一条边长为3cm 。
你画的三角形与同伴画的一定全等吗?结论:A BCD24ABCDEFABCD七年级20至20学年度第学期第周教师电机中学中数组西安市教育委员会监制西安安电机中学七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注四、巩固练习,归纳小结。
5.练一练:1.在△ABC 中,BE ⊥AD 于E ,CF ⊥AD 于F ,且BE =CF ,那么BD 与DC 相等吗?你能说明理由吗?2.已知AB =CD ,∠B =∠C ,你能说明△ABO ≌△DCO 吗?五、小结两角和它们的夹边对应相等的两个三角形全等,简写两角和其中一角的对边对应相等的两个三角形全等,简写六、作业:课本P164技能 1. 2. 3.问题 1.补充资料:AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DCF 的度数。
2、如图,在Rt △ACB 中,∠C =90°,BE 是角平分线,ED ⊥AB 于D ,且BD =AD ,试确定∠A 的度数。
A BCDABCD EACEABC DE七年级20至20学年度第学期第周教师电机中学中数组西安市教育委员会监制西安安电机中学七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注一、创设情境,导入新课。
按上述条件画图并实验:1、读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm ③连结BC,得△ABC.④按上述画法再画一个△A'B'C'2、把△A 'B 'C '剪下来放到△ABC 上观察△A'B'C'与△ABC是否能够完全重合?二、直观感知,理解识别图形。
1.做一做:1、已知AD ∥BC ,AD =CB ,证明:△ABC ≌△CDA 【分析】需要三个条件,现已具有两个条件:AD =CB(已知)“S ”;()=()(公用角)“S ”;根据已有条件AD ∥BC 还可一个条件:“A ”()=()。
(这个条件你可以正确地找到吗?)2、已知AB =AC ,AD =AE ,∠1=∠2,证明:△ABD ≌ACE 【分析】需要三个条件,已知两个条件:()=(),()=()根据已有条件∠1=∠2它是要找的条件?“A ”()=()。
(这个条件你可以正确地找到吗?)七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注2.说一说:有两边和它们的夹角对应相等的两个三角形全等“SAS ”三、实践探究,明确强化。
3.议一议:例1已知:AD ∥BC ,AD =CB ,AE =CF求证:△ADC ≌△CBA【分析】若把图3中的△ADC 沿着CA 方向平移到△ADF 的位置怎样证明△ADF ≌△CEB ?例2已知:AB =AC 、AD =AE 、∠1=∠2求证:△ABD ≌△ACE【分析】对于“边”可以应用(等式性质),那么“角”可以吗?七年级20至20学年度第学期第周教师西安市教育委员会监制西安安电机中学电机中学中数组新课教学过程(讲授程序及内容)备注4.试一试:已知:AB =AC ,F 、E 分别是AB 、AC 的中点求证:△ABE ≌△ACF四、巩固练习,归纳小结。
5.练一练:课本P166随堂练习1.2.五、小结1.根据边角边公理判定全等,找出、找对“对应相等的三个条件”2.利用已知条件(包括图形中的隐含条件)——公共边、公共角等)3.证明的书写格式:(1)先把题设中的间接条件转化成为可以直接判定全等的条件;(2)再按边角边的顺序写出可以直接判定全等条件;(3)最后写出结论:两个三角形全等六、作业:课本P167技能 1.理解 1.问题 1.补充资料:。