2010年华南师范大学第九届数学建模竞赛题目
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。
请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。
进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据地平线 图1 储油罐正面示意图油位探针油位探针地平线 图2 储油罐纵向倾斜变位后示意图(b) 小椭圆油罐截面示意图水平线1.2m(a) 小椭圆油罐正面示意图图3 储油罐截面示意图(b )横向偏转倾斜后正截面图地平线地平线垂直线油位探针(a )无偏转倾斜的正截面图油位探针2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题2010年上海世博会影响力的定量评估2010年上海世博会是首次在中国举办的世界博览会。
2010年华南师范大学第九届数学建模竞赛题目(请先阅读“华南师范大学数学建模竞赛论文格式规范”)A题疾走食肉恐龙问题有一种疾走食肉恐龙(Velociraptor mongoliensis)生活在距今约7500万年前的白垩纪晚期。
古生物学家认为它是顽强的捕猎者,可能成群地、并且一对一对地进行捕猎。
可惜不可能像观察现代的食肉哺乳动物那样观察疾走食肉恐龙在野外的捕猎行为。
古生物学家请你们队帮助对疾走食肉恐龙的捕猎行为进行建模。
古生物学家希望将你们的结果与研究狮子、老虎以及类似的食肉动物的生物学家所报告的野外调查数据进行比较。
成年的疾走食肉恐龙一般身长3米,髋高0.5米,重约45公斤,据估计奔跑非常快,以每小时60公里的速度可持续奔跑约15秒钟,但是在以这样的速度冲刺之后,它需要停下来,通过在肌肉里增加乳酸使得体力恢复。
假定疾走食肉恐龙捕食与自己体型几乎相同的一种双足食草恐龙(Thescelosaurus neglectus)。
对化石的生命力学分析揭示双足食草恐龙能以每小时50公里的速度长时间奔跑。
第一问:假设疾走食肉恐龙是孤单的捕猎者,建立数学模型,描述一只疾走食肉恐龙潜随和追猎一只双足食草恐龙的捕猎策略,以及被捕食者的逃避策略。
假设双足食草恐龙在相距15米之内一定能觉察到疾走食肉恐龙,依赖于环境和气候条件可以在更大的范围内(一直到50米)觉察到。
另外,由于身体结构和力量的缘故,疾走食肉恐龙在全速奔跑时的转弯半径是有限的,据估计,该半径是髋高的三倍。
而双足食草恐龙却极其灵活,转弯半径仅为0.5米。
第二问:更符合实际地假设疾走食肉恐龙成对地去捕猎,建立新的模型,描述两只疾走食肉恐龙潜随和追猎一只双足食草恐龙的捕猎策略,以及被捕食者的逃避策略。
继续使用第一问给出的其他假设。
组委会对A题的说明:本题来自美国数学建模竞赛,在书刊、网络可以找到一些优秀论文或解法介绍,请同学们引用这些资料时务必给出参考文献标注,否则会被评委认定为抄袭而失去评奖资格。
\A 题 储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。
请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。
进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据油油浮子出油管油位探测装置注油口 检查口地平线 2m6m1m1m3 m油位高度图1 储油罐正面示意图油位探针油位探针α地平线 图2 储油罐纵向倾斜变位后示意图油油浮子出油管油位探测装置注油口 检查口水平线(b) 小椭圆油罐截面示意图α油油浮子出油管油位探针注油口水平线2.05mcm 0.4m1.2m1.2m1.78m(a) 小椭圆油罐正面示意图图4 小椭圆型油罐形状及尺寸示意图图3 储油罐截面示意图(b )横向偏转倾斜后正截面图地平线β地平线垂直线油位探针(a )无偏转倾斜的正截面图油位探针油位探测装置地平线油3m油B题2010年上海世博会影响力的定量评估2010年上海世博会是首次在中国举办的世界博览会。
2010年数学建模竞赛答案输油管道的铺设设计 符号约定m 炼油厂A 到铁路线L 的距离 n 炼油厂B 到铁路线L 的距离 b 炼油厂A 、B 间水平距离 F 输送管道的总费用 f 铺设管道的附加费用 W 铺设费用的权重系数1k A 厂铺设非共用管线每千米的费用 2k B 厂铺设非共用管线每千米的费用 3k 共用管线每千米的费用问题一分析与模型建立 最短路径的存在性论证如图4.1,假设C 点为在铁路线上设计增建的车站,由费尔马问题的结论,在ABC ∆中,存在费尔马点P ,使点P 与ABC ∆三个顶点距离之和小于三角形二边之和,即有PA+PB+PC<AC+BC图4.1且0120ACB ∠<时,费尔马点P 在ABC ∆内部 而当0120>∠ACB 时,费尔马点P 与C 点重合。
为此有如下结论:①当0120<∠ACB 时,铺设公用管道PC 的输送费用比不铺设公用管道费用低;②当0120>∠ACB 时,不需要铺设公用管道,即公用管道PC =0。
问题一分析与模型建立如图4.1,以炼油厂A 、B 间铁路线所在直线为x 轴,以过炼油厂A 且垂直于铁路线L 直线为y 轴,建立平面直角坐标系。
设 A(0,m), B(b,n),P(r,t),并设非公用管道的费用为每千米1个单位,公用管道的费用为每千米k 个单位(下同),根据实际意义易知21<≤k 。
根据参考文献[1],点P 不可能在A 的上方,故m t ≤≤0。
易得,A 点关于过点P 平行于x 轴的直线1L 的对称点'A (0,2t-m )。
由费尔马点的应用及平面几何对称性有111F PB PA k PC BA k PC '=⨯+⨯+⨯>⨯+⨯ 为此,得到铺设管道的最优模型min 1F BA k PC '=⨯+⨯ 4-1 问题一模型求解对模型分两种管道费用相同与不同两种情形研究,并根据点A 、B 的坐标不同的取值,进行A 、B 不同位置时管道铺设设计。
E题全面二孩政策对中国人口的影响
2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策。
从2016年1月1日起,施行开始实施全面两孩政策。
二孩政策,是中国实行的一种计划生育政策,规定符合条件的夫妇允许生育“二胎”。
因为是二孩政策,故第一胎为多孩时,不可生第二胎。
引发社会的诸多讨论主要集中以下几个方面:全面二孩政策与生育率的关系,是否会出现生育高峰;是否会减慢社会老龄化程度的速度,甚至出现扭转的局面;能否增加劳动人口,能否缓解若干年后劳动力的供需平衡,以及缓解家庭压力(减轻“421”家庭养老,减少失独家庭比例等)其他问题。
希望你们建立数学模型,就“二孩政策”对中国人口的影响进行研究,为有关政策和科学决策提供定量依据,为此请你们尝试解决以下问题:
1.请选取合适的评价指标体系,量化全面二孩政策对中国人口的影响,建立中国人口的数学模型。
2.应用你们建立的人口模型进行预测,定量比较实施二孩政策前后一定时间段里对中国人口问题的影响。
3.根据你们的研究结果,从政府决策的角度,提出你们关于全面二孩政策配套实施手段的合理化建议,使得人口发展更加符合社会的进步,提高生育率,降低社会老龄化程度,增加劳动人口,以及促进其他医疗卫生的同步发展。
2010年全国大学生数学竞赛决赛答 tian27546这是献给博士论坛一个礼物 转载时请勿注明是博士论坛一、(20分)计算下列各题:1.求极限 211sin )1(lim n k n k n k n π∑-=→∞+解法1因211sin )1(n k n k n k π∑-=+211222sin sin 21(2sin 21n n k n k nn k πππ∑-=+=) )22cos 22(cos 1(2sin 2122112n k n k n k nn k πππππ+--+=∑-=) )22cos 22(cos 1(22112nk n k n k n n k πππππ+--+≈∑-=) 2112211222cos 1(22cos 1(n k nk n n k n k n n k n k ππππππ++--+=∑∑-=-=)) 222211222cos 11(22cos 1(n k n k n n k n k n nk n k ππππππ--+--+=∑∑=-=))2122222222cos 12)12(cos 11(2cos )11(n k n n n n n n n n n n n k πππππππ-+--+-+=∑-=) 21222222)12(cos 2)12(cos 12(2cos )11(nk n n n n n n n n n k ππππππ-+---+=∑-=)(*) 而2122)12(cos n k n k π-∑-=212222sin 2)12(cos22sin 21n n k nn k πππ∑-=-=])1(sin [sin2sin2121222n k n k nn k πππ--=∑-= 2222sin 2sin )1(sinn n n n πππ--=222sin2)2(sin 2cos n n n n πππ-=(**) 将(**)代入(*),然后取极限,得原式]2sin2)2(sin2cos2)12(cos 12(2cos )11([lim 222222n n n nn n n n n n n n n ππππππππ-+---+=→∞)]2)2(sin 2cos 2)8)12(1(12()11([lim 22342222n n n n n n n n n n n ππππππ-+----+=∞→) ]2)2(sin 2cos 2)21(12()11([lim 2232222n n n n n n n n n n ππππππ-+---+=∞→) )]48)2(2)2()(81(2)21(12()11([lim 633222232222nn n n n n n n n n n n πππππππ----+---+=∞→))]482)(81(2)21(12()11([lim 33222232222n n n n n n n n n n n ππππππππ---+---+=∞→) 65π=上式中含2n 的项的系数为0121=+-πππ,含n 的项的系数为0)2(111=-++πππ,常数项系数为656824ππππππ=-=--解法2 Step 1因∑-=112sin n k n k π211222sinsin 22sin 21n nk nn k πππ∑-==)22cos 22(cos2sin2122112n k n k nn k πππππ+--=∑-=)2)12(cos2(cos2sin21222n n n n πππ--=故)2)12(cos 2(cos 2sin 21lim sinlim 222112n n n nn k n n k n ππππ--=→∞-=→∞∑)2)12(cos2(cos1lim222n n n n n πππ--=→∞nn n n n 2sin 2)1(sin2lim22πππ-=→∞n n n n n 22)1(2lim22πππ-=∞→2π= Step 2因222)12(cosn k nk π-∑=22222sin 2)12(cos22sin21n n k nnk πππ∑=-=])1(sin [sin2sin212222nk n k nnk πππ--=∑= 2222sin 2sinsin n n n n πππ-=2222sin 2)1(sin 2)1(cos nn n n n πππ-+=因此∑-=112sin n k n k nk π211222sin sin 22sin 21n n k n k n n k πππ∑-== ]2)12(cos 2)12(cos [2sin 212112112n k n k n k n k nn k n k πππ+--=∑∑-=-= ]2)12(cos 12)12(cos [2sin 21222112n k n k n k n k nnk n k πππ----=∑∑=-=⎥⎦⎤⎢⎣⎡-+---=∑-=2122222)12(cos 12)12(cos 12cos 12sin 21n k n n n n n n n nn k ππππ ⎥⎦⎤⎢⎣⎡-+--=∑=222222)12(cos 12)12(cos 2cos 12sin 21n k n n n n nnnk ππππ(*) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++--=2222222sin 2)1(sin 2)1(cos 2)12(cos 2cos 12sin 21nn n n n n n n n n n ππππππ 于是∑-=→∞112sin lim n k n n k nk π⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++--=→∞2222222sin 2)1(sin 2)1(cos 2)12(cos 2cos 12sin 21lim nn n n n n n n n n n n ππππππ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---=→∞n n n n n n n n n n 22)1(sin2)1(cos 8)12(11lim 224222πππππ)( ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---+-++-=∞→n n n n n n n n n n n 2)48)1(2)1()(8)1(1211lim 6332422222ππππππ(⎥⎦⎤⎢⎣⎡----++-=∞→)24)1(1)(81211lim 52322222n n n n n n n n n ππππ( ⎥⎦⎤⎢⎣⎡---++-=∞→)241()(81211lim 2222222n n n n n n n n ππππ( ⎥⎦⎤⎢⎣⎡---++-=∞→)2411)(81211lim 2222222n n n n n n n ππππ( )(222222282411211lim n n n n n n n ππππ---++-=→∞ )(22222228242lim n n n n n ππππ--=∞→62ππ-=3π=原式6532πππ=+=2.计算⎰⎰∑++++2222)(zy x dxdya z axdydz ,其中 ∑为下半球面222y x a z ---= 的上侧, 0>a .解 记1∑为平面 222,0a y x z ≤+= 的上侧,2∑为下半球面 222y x a z ---= 的下侧,Ω是由1∑和2∑所围成的立体,则422222211)(adxdy a dxdy a dxdy a z axdydz ay x ⎰⎰⎰⎰⎰⎰≤+∑∑===++π,设,sin ,cos θθr y r x ==则⎰⎰∑+∑++212)(dxdy a z axdydz ⎰⎰⎰Ω+++=dxdydz a z a )220(⎰⎰⎰Ω+=dxdydz a z )32(⎰⎰⎰≤+---+=2222220)32(a y x y x a dz a z dxdy⎰⎰≤+---+=22222202]3[a y x y x a dxdy az z⎰⎰≤+--+++-=222)3(222222a y x dxdy y x a a y x a ⎰⎰≤≤≤≤-++-=πθθ2002222d d )3(ar r r r a a r a⎰-++-=a r r r a a r a 02222d )3(2π ⎰-++-=ar r a a r a 022222)d()3(π⎰-++-=22122d ))(3(a u u a a u a π223222)(42a u a a uu a ⎥⎦⎤⎢⎣⎡--+-=π274a π=⎰⎰∑++++2222)(zy x dxdya z axdydz⎰⎰⎰⎰∑∑+∑+++++-=12122)(1)(1dxdy a z axdydz a dxdy a z axdydz a 227333a a a πππ-=+-=3.现 设计一个容积为V 的圆柱体容器. 已知上下两底的材料费为单位面积a元,而侧面的材料费为单位面积b 元. 试给出最节省的设计方案;即高与的上下底直径之比为何值时所需费用最少?解 设圆柱体的底半径为r ,高为h ,则h r V 2π=,2rVh π=总造价为222r a rh b P ππ+=222r a rbVπ+=, 则2322242r r a bV r a r bV P ππ--=+-=',由0='P 知,解得312⎪⎭⎫⎝⎛=πa bV r ,312⎪⎭⎫ ⎝⎛=ππa bV V h , 因为是惟一的驻点,所以当3122323131222222:2⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=Vab a bV V a bV a bV V h r ππππππ 时,所需费用最少.4.已知 x x x f 33cos sin 1)(+=',)21,41(∈x ,求)(x f 解 因x x x f 33cos sin 1)(+=',)21,41(∈x ,故 ⎰+=x xx x f d cos sin 1)(33⎰+-+=x x x x x x x d )cos )(sin cos sin cos (sin 122⎰+-=x x x x x d )cos )(sin cos sin 1(1⎰+-=x x x d )4sin()2sin 211(21π⎰+⎪⎭⎫ ⎝⎛++=x x x d )4sin()22cos(211121ππ⎰+⎪⎭⎫ ⎝⎛++=x x x d )4sin()4(2cos 211121ππ 令)4(21π+=x t ,则⎰+=t tt x f d 2sin )4cos 211(2)(⎰+=t tt t d cos sin )4cos 2(2⎰-+=t t t t t d cos sin )2sin 2cos 2(222⎰+=t t t t t d cos sin )2sin 2cos 3(222 ⎰+-=t tt t t t t d cos sin )cos sin 4)sin (cos 3(222222⎰-++=t t t t t t t t t d cos sin )cos sin 2sin 3cos 3()cos (sin 22244222 ⎰-+++=t t t t t t t tt t t d cos sin )cos sin 2sin 3cos 3(cos sin 2sin cos 222442244⎰-+++=t t t t tt tan d tan )tan 2tan 33(tan 2tan 122424 令t u tan =,2u v =,则⎰-+++=u u u u u u x f d )233(212)(2424⎰-+++=224224d )233(2122u u u u u u ⎰-+++=v v v v v v d )233(212222⎰+-++=v v v v v v d )323(122222 令)()323(1222v R vAv v v v v +=+-++,则31=A ,)323(332336331)323(12)(22222+--+-++=-+-++=v v v v v v v v v v v v v v R )323(382+-=v v 因此⎰⎰+-+=323d 324d 62)(2v v vv v x f ⎰+-+=323d 324ln 622v v vv ⎰+-+=98)31(d 924ln 622v v v C v v +-+=32231arctan 3221924ln 62C v v +-+=2213arctan 32ln 62 C t t +-+=221tan 3arctan 32tan ln 6222C t t +-+=221tan 3arctan 32tan ln 6222C x x +-+++=221)82(tan 3arctan 32)82(tan ln 6222ππ 二、(10分)求下列极限1.⎪⎭⎫ ⎝⎛-+∞→e n n n n )11(lim解 设xx x f 1)1()(+=, 则))1ln()1(1()1()(21xx x x x x f x+-++=')1()1ln()1()(2x x x x x x f +++-= 原式=)(lim )1(lim010x f x e x x xx '=-+→→)()(lim )(lim 00x f x f x f x x '=→→)1()1ln()1(lim)(lim 20x x x x x x f x x +++-=→→20)1ln()1(limx x x x e x ++-=→22)1ln(lim 0e x x e x -=+-=→2.nnn n n c b a ⎪⎪⎪⎭⎫⎝⎛++∞→3lim 111,其中0>a ,0>b ,0>c 解 因300ln 3ln ln ln 3ln ln ln lim 33lim abc c b a c c b b a a x c b a x x x x x x x x =++=++=-++→→ 故 原式=333lim)13(1lim 10003lim abc ee c b a x c b a c b axxxx x x x x x x xx xx ===⎪⎪⎭⎫⎝⎛++-++-++→→→三、(10分)设)(x f 在1=x 处可导,0)1(=f ,2)1(='f ,求xx x x x f x tan )cos (sin lim 220++→ 解 设)(x f 在1=x 处可导,0)1(=f ,2)1(='f ,则xx x f x x f x x x x x f x x tan )1()cos (sin lim tan )cos (sin lim 220220+-+=++→→ 1cos sin )1()cos (sin lim 1cos sin lim tan lim 220220220-+-+-++=→→→x x f x x f x x x x x x x x x x 1cos sin )1()cos (sin lim 2sin cos sin 2lim cos 111lim220020-+-+-+=→→→x x f x x f x x x x xx x x 1cos sin )1()cos (sin lim 2sin cos sin 2lim 212200-+-+-=→→x x f x x f x x x x x x 1cos sin )1()cos (sin lim 21cos 2lim sin lim 2122000-+-+-=→→→x x f x x f x x x x x x1cos sin )1()cos (sin lim 41220-+-+=→x x f x x f x 1)1()(lim 411--=→t f t f t )1(41f '=21= 四、(10分)设)(x f 在),0[+∞上连续,⎰+∞0d )(x x f 收敛,求⎰+∞→yy x x xf y 0d )(1lim.解 令⎰=xt t f x G 0d )()(,则因⎰+∞0d )(x x f 收敛,故)(lim y G y +∞→,不妨设R A y G y ∈=+∞→)(lim ,则[]}d )()(1{lim )(d 1lim d )(1lim0000⎰⎰⎰-==+∞→+∞→+∞→y yy y y y y x x G x xG yx G x y x x xf y)d )(1)((lim 0⎰-=+∞→yy x x G yy G ⎰+∞→-=yy x x G y A 0d )(1lim 0)(lim =-=-=+∞→A A y G A y五、(12分)设函数)(x f 在]1,0[上连续,在)1,0(内可微,且0)1()0(==f f ,1)21(=f ,证明:(1)存在⎪⎭⎫⎝⎛∈1,21ξ使得ξξ=)(f ;(2)存在()ξη,0∈使得1)()(+-='ηηηf f .证 (1)记x x f x F -=)()(,则函数)(x F 在]1,21[上连续,且1)1(-=F ,21)21(=F ,故由零点存在性定理知存在⎪⎭⎫⎝⎛∈1,21ξ使得0)(=ξF ,即ξξ=)(f . (2)因x x x f x f e x d )1)()((⎰+-'--x e x xe x x f e x x f e x x x x d d d )(d )(⎰⎰⎰⎰----+-'-= x e e x x f e x x f e x x x x d d )(d d )(⎰⎰⎰⎰----++-=x x xe x f e --+-=)(故令x e x x f x F --=))(()(, 则函数)(x F 在],0[ξ上连续,在()ξ,0内可微,0)0(=F ,0)(=ξF ,x x e x x f e x f x F -----'='))(()1)(()(, 故由罗尔定理知,存在()ξη,0∈使得0)(='ηF , 1)()(+-='ηηηf f .六、设)(x f 在),(+∞-∞上有定义,在0=x 的某邻域内有一阶连续导数,且0)(lim 0>=→a x x f x ,证明级数∑∞=-1)1()1(n n n f 条件收敛. 证 因 0)(lim>=→a xx f x ,故存在一个正数δ,使得当δ<-<00x 时,有 2)(aa x x f <-因此x x f a )(2<(δ<-<00x ),于是,当δ1>n 时, δ<-<010n ,nn f a 1)1(2<,n a n f 2)1(>,这表明级数∑∞=1)1(n n f 发散,即级数∑∞=-1)1()1(n n n f 发散.下证原级数收敛:由0)(lim0>=→a xx f x 知,0)(lim lim )(lim )0(000====→→→a x x f x x f f x x x ,0)(lim )0()(lim )0(00>==-='→→a xx f x f x f f x x由)(x f 在0=x 的某邻域内有一阶连续导数知,)(lim )0(0x f f a x '='=→,因此存在一个正数η,使得当η<-0x 时,有2)(aa x f <-' 因此)(20x f a '<<(),(ηη-∈x ). 特别地,)(x f 在),0(η上单调增,于是当η1>n 时,)1()11(n f n f <+,且0)0()1(lim ==∞→f nf .最后由Leibniz 判别法知,原级数收敛.综上可知,原级数条件收敛.六、(14分)设1>n 为整数,⎰⎪⎪⎭⎫ ⎝⎛++++=-x n tt n t t t e x F 02d !!2!11)( ,证明:方程 2)(n x F =在⎪⎭⎫⎝⎛n n ,2内至少有一个根. 证 记!!2!11)(2n t t t t p nn ++++= ,)!!2!11()(2n t t t e t r ntn ++++-= ,则)()(t r e t p n t n -=,且当0>t 时,0)(>t p n , 0)(>t r n ,0)(>-t r e n t .记2)()(n x F x -=ψ,则⎰--=n n t t t r e nx 0d )(2)(ψ,因⎰⎪⎪⎭⎫⎝⎛++++=-x n tt n t t t e x F 02d !!2!11)( ,故函数)(x ψ在],2[n n 上连续,在⎪⎭⎫⎝⎛n n ,2内可微,且2)2()2(n n F n -=ψ⎰⎰<-=--=--20200d )(2d ))(1(nn t n n tt t r e n t t r e ,2d )()(0nt t p e n nn t -=⎰-ψ⎰⎰⎰⎰----+-=+--=202220d )(d )(d )(2d ))(1(n nn n t n t n n n t n n t tt p e t t r e tt p e nt t r e⎰⎰++-=---20202d )2(d )(n n n n t n tt n t p et t r e⎰⎰+++-=---20202d )2(d )!1(1nnn nt t t n t p e t e e n ξ ⎰⎰+-++-=+---202022d ))2((d )!1(1nnn nt nt t t n t r e e t e e n ξ ⎰⎰+---+-+-=202022d )!1(1d )!1(121nnnnt t t e e n t e e n n ξξ ⎰⎰--+-+-=2020d )!1(1d )!1(121n nt t t e e n t e e n n ξξ ⎰-+->202d )!1(22n nt t e e n n []202)!1(22nt ne e n n -++= )1()!1(222-+-=ne n n )!1(2)!1(222+++-=n n e n n )!1(22)!1(2222+-=+->n en n e n n n012>->n(若2>n ,则左边的两个不等式都成立) ()()⎰⎰-+-=-+=-=--101021d 121d 121)1()1(t te t t t e F ψ()[]⎰-++-=--101021d 1t e e t t t 032321)1(2111>-=--+-=--ee e 031)2(>->eψ01223!4223)3(1223144144314923232333>-=->⇒>⇒>>>e e e e ψ 01232452!522)4(2>->->->e e e ψ,0122212e e 12)(>->++->n n n n n e n n ψ 故由零点存在性定理知, 存在),2(n n ∈ξ使得0)(=ξψ, 即2)(nF =ξ.七、(12分)是否存在R 中的可微函数)(x f 使得53421))((x x x x x f f --++=? 若存在,请给出一个例子;若不存在,请给出证明.解 不存在假如存在R 中的可微函数)(x f 使得54321))((x x x x x f f -+-+=,则4325432)))((x x x x x f x f f -+-=''(, 若1)1(=f ,则025432)1))1(()]1[2<-=-+-=''='((f f f f 矛盾。
2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 储油罐的变位识别与罐容表标定通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。
请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学的罐地平线 图1 储油罐正面示意图 油位探针2010高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”)B 题 2010年上海世博会影响力的定量评估 20101851年伦互联网数据,定量评估2010年上海世博会的影响力。
2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)C 题 输油管的布置某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。
2010年华南师范大学第九届数学建模竞赛题目(请先阅读“华南师范大学数学建模竞赛论文格式规范”)
A题疾走食肉恐龙问题
有一种疾走食肉恐龙(Velociraptor mongoliensis)生活在距今约7500万年前的白垩纪晚期。
古生物学家认为它是顽强的捕猎者,可能成群地、并且一对一对地进行捕猎。
可惜不可能像观察现代的食肉哺乳动物那样观察疾走食肉恐龙在野外的捕猎行为。
古生物学家请你们队帮助对疾走食肉恐龙的捕猎行为进行建模。
古生物学家希望将你们的结果与研究狮子、老虎以及类似的食肉动物的生物学家所报告的野外调查数据进行比较。
成年的疾走食肉恐龙一般身长3米,髋高0.5米,重约45公斤,据估计奔跑非常快,以每小时60公里的速度可持续奔跑约15秒钟,但是在以这样的速度冲刺之后,它需要停下来,通过在肌肉里增加乳酸使得体力恢复。
假定疾走食肉恐龙捕食与自己体型几乎相同的一种双足食草恐
龙(Thescelosaurus neglectus)。
对化石的生命力学分析揭示双足食草恐龙能以每小时50公里的速度长时间奔跑。
第一问:假设疾走食肉恐龙是孤单的捕猎者,建立数学模型,描述一只疾走食肉恐龙潜随和追猎一只双足食草恐龙的捕猎策略,以及被捕食者的逃避策略。
假设双足食草恐龙在相距15米之内一定能觉察到疾走食肉恐龙,依赖于环境和气候条件可以在更大的范围内(一
直到50米)觉察到。
另外,由于身体结构和力量的缘故,疾走食肉恐龙在全速奔跑时的转弯半径是有限的,据估计,该半径是髋高的三倍。
而双足食草恐龙却极其灵活,转弯半径仅为0.5米。
第二问:更符合实际地假设疾走食肉恐龙成对地去捕猎,建立新的模型,描述两只疾走食肉恐龙潜随和追猎一只双足食草恐龙的捕猎策略,以及被捕食者的逃避策略。
继续使用第一问给出的其他假设。
组委会对A题的说明:本题来自美国数学建模竞赛,在书刊、网络可以找到一些优秀论文或解法介绍,请同学们引用这些资料时务必给出参考文献标注,否则会被评委认定为抄袭而失去评奖资格。
评奖的依据是:(1)模型假设的合理性;(2)模型建立、解答、分析和检验的正确性、完整性和创新性;(3)论文写作(包括摘要)的规范性和清晰程度。