湖南省常德市2016届高三3月模拟考试文科数学试题及答案
- 格式:doc
- 大小:1.03 MB
- 文档页数:9
2016年常德市高三年级模拟考试数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,时量120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{|0}M x x =<,2{|20}N x x x =--<,则M N =A .{|10}x x -<<B .{|20}x x -<<C .{|2}x x <D .{|1}x x < 【考点】集合的运算【试题解析】,则。
故答案为:A 【答案】A2.复数z 满足i i z 2)1)(1(=+-,则=||z A .1 B .2C .5D .5【考点】复数乘除和乘方 【试题解析】因为,所以所以故答案为:C 【答案】C3.若:,p a b R +∈;22:2q a b ab +≥,则A .p 是q 充要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 【考点】充分条件与必要条件 【试题解析】因为对都成立,所以p 是q 的充分不必要条件。
故答案为:B 【答案】B4.已知平面向量b a ,为单位向量,||1a b +=,则向量b a ,的夹角为A .6π B .65π C .3π D .32π 【考点】数量积的应用 【试题解析】因为,所以故答案为:D【答案】D5.函数22,0,()|log |,0,x x f x x x ⎧=⎨>⎩≤则函数1()2y f x =-的零点个数为A .3B .2C .1D .0 【考点】零点与方程分段函数,抽象函数与复合函数【试题解析】时,令符合题意;时,令或符合题意。
所以函数的零点个数为3.故答案为:A 【答案】A6.设y x ,满足约束条件1,20,20,x x y y ⎧⎪-⎨⎪-⎩≥≤≤则23z x y =+-的最大值为A .8B .5C .2D .1 【考点】线性规划【试题解析】作可行域:A(1,2),B(,C(4,2).所以则的最大值为5. 故答案为:B 【答案】B7.现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为A .13B .12C .23D . 1136【考点】古典概型【试题解析】一枚子先后抛掷两次的基本事件有36种, 其中两次出现的点数之和大于点数之积的事件有:(1,1),(1,2)1,3)(1,4),(1,5),(1,6), (2,1)(3,1),(4,1),(5,1),(6,1)共11种, 所以两次出现的点数之和大于点数之积的概率为:。
2016年湖南省高考数学模拟试卷(文科)(三)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1 B.0 C.1 D.22.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4) B.(﹣3,4)C.(0,3) D.(3,4)3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5 B.91,92 C.91.5,91.5 D.91.5,925.设等差数列{a n}的前n项和为S n,已知a1=﹣9,a2+a8=﹣2,当S n取得最小值时,n=()A.5 B.6 C.7 D.86.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.7.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或 B.C.D.8.执行如图所示的程序框图,输出S的值为时,k是()A.5 B.3 C.4 D.29.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为()A.(x+1)2+y2=4 B.(x﹣3)2+y2=4 C.(x﹣1)2+y2=4 D.(x+3)2+y2=410.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36π B.64π C.144πD.256π11.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.212.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.14.若变量x,y满足约束条件,则z=2x+3y的最大值为.15.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.16.已知函数f(x)=x3﹣3ax(a∈R),若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则a的取值范围为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积.(Ⅰ)求sinA与cosA的值;(Ⅱ)设,若tanC=2,求λ的值.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.19.如图,设四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(Ⅰ)证明:平面EAB⊥平面ABCD;(Ⅱ)求四棱锥E﹣ABCD的体积.20.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.21.已知椭圆C1: +x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.(Ⅰ)证明:CD是圆O的切线;(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB 的大小.[选修4-4坐标系与参数方程]23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m.(1)解关于x的不等式f(x)+a﹣1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.2016年湖南省高考数学模拟试卷(文科)(三)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a为实数且(2+ai)(a﹣2i)=8,则a=()A.﹣1 B.0 C.1 D.2【考点】复数代数形式的乘除运算.【专题】计算题;方程思想;数学模型法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算化简,由复数相等的条件列式求得a值.【解答】解:由(2+ai)(a﹣2i)=8,得4a+(a2﹣4)i=8,∴,解得a=2.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础题.2.已知集合A={x|﹣3<x<3},B={x|x(x﹣4)<0},则A∪B=()A.(0,4) B.(﹣3,4)C.(0,3) D.(3,4)【考点】并集及其运算.【专题】集合.【分析】利用并集的性质求解.【解答】解:∵集合A={x|﹣3<x<3},B={x|x(x﹣4)<0}={x|0<x<4},∴A∪B={x|﹣3<x<4}=(﹣3,4).故选:B.【点评】本题考查并集的求法,是基础题,解题时要认真审题.3.“﹣1<x<2”是“|x﹣2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题;综合法;不等式的解法及应用;简易逻辑.【分析】由|x﹣2|<1,解得1<x<3,即可判断出结论.【解答】解:由|x﹣2|<1,解得1<x<3,∴“﹣1<x<2”是“|x﹣2|<1”的既不充分也不必要条件.故选:D.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是()A.91,91.5 B.91,92 C.91.5,91.5 D.91.5,92【考点】茎叶图.【专题】计算题;概率与统计.【分析】根据茎叶图中的数据,计算这组数据的中位数与平均数即可.【解答】解:把茎叶图中的数据按大小顺序排列,如下;87、88、90、91、92、93、94、97;∴这组数据的中位数为=91.5,平均数是(87+88+90+91+92+93+94+97)=91.5.故选:C.【点评】本题考查了利用茎叶图中的数据求中位数与平均数的应用问题,是基础题目.5.设等差数列{a n}的前n项和为S n,已知a1=﹣9,a2+a8=﹣2,当S n取得最小值时,n=()A.5 B.6 C.7 D.8【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】利用等差数列的通项公式,可求得公差d=2,从而可得其前n项和为S n的表达式,配方即可求得答案.【解答】解:等差数列{a n}中,a1=﹣9,a2+a8=2a1+8d=﹣18+8d=﹣2,解得d=2,所以,S n=﹣9n+=n2﹣10n=(n﹣5)2﹣25,故当n=5时,S n取得最小值,故选:A.【点评】本题考查等差数列的性质,考查其通项公式与求和公式的应用,考查运算求解能力,属于基础题.6.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.【考点】数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】由题意可得的坐标,进而由垂直关系可得k的方程,解方程可得.【解答】解:∵ =(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴•=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.7.函数y=sin(2x+φ),的部分图象如图,则φ的值为()A.或 B.C.D.【考点】y=Asin(ωx+φ)中参数的物理意义;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;三角函数的图像与性质.【分析】由已知中函数的图象,通过坐标(,0)代入解析式,结合φ求出φ值,得到答案.【解答】解:由已知中函数y=sin(2x+φ)(φ)的图象过(,0)点代入解析式,结合五点法作图,sin(+φ)=0, +φ=π+2kπ,k∈Z,∵φ,∴k=0,∴φ=,故选:B.【点评】本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,特殊点是解答本题的关键.8.执行如图所示的程序框图,输出S的值为时,k是()A.5 B.3 C.4 D.2【考点】循环结构.【专题】计算题;图表型;试验法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环k的值,当k=5时,大于4,计算输出S的值为,从而得解.【解答】解:模拟执行程序,可得每次循环的结果依次为:k=2,k=3,k=4,k=5,大于4,可得S=sin=,输出S的值为.故选:A.【点评】本题主要考查了循环结果的程序框图,模拟执行程序正确得到k的值是解题的关键,属于基础题.9.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被该圆所截得的弦长为,则圆C的标准方程为()A.(x+1)2+y2=4 B.(x﹣3)2+y2=4 C.(x﹣1)2+y2=4 D.(x+3)2+y2=4【考点】直线与圆相交的性质.【专题】直线与圆.【分析】设圆心C的坐标为(a,0),a>0,求得圆心到直线l:y=x﹣1的距离d的值,再根据半径r=|a﹣1|=,解得 a的值,可得圆心坐标和半径,从而求得圆C的标准方程.【解答】解:设圆心C的坐标为(a,0),a>0,则圆心到直线l:y=x﹣1的距离为 d==.由于半径r=|a﹣1|=,解得 a=3,或 a=﹣1(舍去),故圆C的圆心为(3,0),半径为3﹣1=2,故圆C的标准方程为(x﹣3)2+y2=4,故选B.【点评】本题主要考查直线和圆相交的性质,点到直线的距离公式、弦长公式的应用,属于中档题.10.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O的表面积为()A.36π B.64π C.144πD.256π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.已知A、B为双曲线E的左右顶点,点M在E上,AB=BM,三角形ABM有一个角为120°,则E的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【专题】计算题;方程思想;数形结合法;圆锥曲线的定义、性质与方程.【分析】由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M 坐标,代入双曲线方程可得a与b的关系,结合隐含条件求得双曲线的离心率.【解答】解:设双曲线方程为(a>0,b>0),如图所示,|AB|=|BM|,∠AMB=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,∵BM=AB=2a,∠MBN=60°,∴|BN|=a,,故点M的坐标为M(2a,),代入双曲线方程得a2=b2,即c2=2a2,∴.故选:B.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.12.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60 名学生.【考点】分层抽样方法.【专题】概率与统计.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.【点评】本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.14.若变量x,y满足约束条件,则z=2x+3y的最大值为 1 .【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出可行域,变形目标函数,平移直线y=﹣x数形结合可得结论.【解答】解:作出约束条件所对应的可行域(如图阴影),变形目标函数可得y=﹣x+z,平移直线y=﹣x可知,当直线经过点A(4,﹣1)时,目标函数取最大值,代值计算可得z的最大值为:2×4﹣3=1,故答案为:1.【点评】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.15.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】根据几何体的三视图,得出该几何体是圆柱与两个圆锥的组合体,结合图中数据求出它的体积.【解答】解:根据几何体的三视图,得;该几何体是底面相同的圆柱与两个圆锥的组合体,且圆柱底面圆的半径为1,高为2,圆锥底面圆的半径为1,高为1;∴该几何体的体积为V几何体=2×π•12×1+π•12•2=π.故答案为:π.【点评】本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.16.已知函数f(x)=x3﹣3ax(a∈R),若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则a的取值范围为.【考点】函数与方程的综合运用.【专题】计算题.【分析】首先分析对任意的m直线x+y+m=0都不是曲线y=f(x)的切线的含义,即可求出函数f(x)=x3﹣3ax(a∈R)的导函数,使直线与其不相交即可.【解答】解:f(x)=x3﹣3ax(a∈R),则f′(x)=3x2﹣3a若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为﹣1,f(x)′=3x2﹣3a与直线x+y+m=0没有交点,又抛物线开口向上则必在直线上面,即最小值大于直线斜率,则当x=0时取最小值,﹣3a>﹣1,则a的取值范围为即答案为.【点评】此题考查了函数与方程的综合应用,以及函数导函数的计算,属于综合性问题,计算量小但有一定的难度,属于中等题.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知△ABC的面积.(Ⅰ)求sinA与cosA的值;(Ⅱ)设,若tanC=2,求λ的值.【考点】余弦定理;两角和与差的余弦函数.【专题】计算题;转化思想;分析法;解三角形.【分析】(Ⅰ)由三角形面积公式及余弦定理化简已知等式可得,解得:sinA+2cosA=2,又sin2A+cos2A=1,从而解方程组即可得解.(Ⅱ)由tanC=2,可得sinC,cosC的值,可得,从而由正弦定理即可解得.【解答】(本题满分为14分)解:(Ⅰ)由题意可得:,…所以解得:sinA+2cosA=2,又因为sin2A+cos2A=1,解方程组可得.…(Ⅱ)∵tanC=2,C为三角形的内角,∴易得,…∴…∴.…【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形内角和定理,同角三角函数关系式的应用,考查了三角函数恒等变换的应用,属于中档题.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【考点】频率分布直方图.【专题】概率与统计.【分析】(1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80的即为90和100,的求出频率,估计概率;(3)求出评分在[40,60]的受访职工和评分都在[40,50]的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答.【解答】解:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.【点评】本题考查了频率分布直方图的认识以及利用图中信息求参数以及由频率估计概率,考查了利用列举法求满足条件的事件,并求概率.19.如图,设四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(Ⅰ)证明:平面EAB⊥平面ABCD;(Ⅱ)求四棱锥E﹣ABCD的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】空间位置关系与距离.【分析】(I)取AB的中点O,连结EO、CO,由已知得△ABC是等边三角形,由此能证明平面EAB⊥平面ABCD.(II)V E﹣ABCD=,由此能求出四棱锥E﹣ABCD的体积.【解答】(I)证明:取AB的中点O,连结EO、CO.由AE=BE=,知△AEB为等腰直角三角形.故EO⊥AB,EO=1,又AB=BC,∠ABC=60°,则△AB C是等边三角形,从而CO=.又因为EC=2,所以EC2=EO2+CO2,所以EO⊥CO.又EO⊥AB,CO∩AB=O,因此EO⊥平面ABCD.又EO⊂平面EAB,故平面EAB⊥平面ABCD.…(II)解:V E﹣ABCD===.…【点评】本题考查平面与平面垂直的证明,考查四棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.20.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.【考点】利用导数研究函数的单调性;函数单调性的性质.【专题】导数的综合应用.【分析】(I)利用导数的运算法则可得f′(x),对a分类讨论即可得出其单调性;(II)通过对a分类讨论,得到当a=2,满足条件且lnx≤x﹣1(当且仅当x=1时取“=”).利用此结论即可证明.【解答】解:(Ⅰ)求导得f′(x)=,x>0.若a≤0,f′(x)>0,f(x)在(0,+∞)上递增;若a>0,当x∈(0,)时,f′(x)>0,f(x)单调递增;当x∈(,+∞)时,f′(x)<0,f(x)单调递减.(Ⅱ)由(Ⅰ)知,若a≤0,f(x)在(0,+∞)上递增,又f(1)=0,故f(x)≤0不恒成立.若a>2,当x∈(,1)时,f(x)递减,f(x)>f(1)=0,不合题意.若0<a<2,当x∈(1,)时,f(x)递增,f(x)>f(1)=0,不合题意.若a=2,f(x)在(0,1)上递增,在(1,+∞)上递减,f(x)≤f(1)=0,合题意.故a=2,且lnx≤x﹣1(当且仅当x=1时取“=”).当0<x1<x2时,f(x2)﹣f(x1)=2ln﹣2(x2﹣x1)<2(﹣1)﹣2(x2﹣x1)=2(﹣1)(x2﹣x1),∴<2(﹣1).【点评】熟练掌握利用导数研究函数的单调性、极值、等价转化、分类讨论的思想方法等是解题的关键.21.已知椭圆C1: +x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出抛物线的F1(0,1),利用椭圆的离心率,求出a、b即可求解椭圆方程.(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,联立方程组,利用相切求出k,然后利用直线的平行,设直线l的方程为y=x+m联立方程组,通过弦长公式点到直线的距离求解三角形的面积,然后得到所求直线l的方程.【解答】解:(Ⅰ)∵抛物线x2=4y的焦点为F1(0,1),∴c=1,又b2=1,∴∴椭圆方程为: +x2=1.…(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,设直线l1:y=kx﹣1由消去y并化简得x2﹣4kx+4=0∵直线l1与抛物线C2相切于点A.∴△=(﹣4k)2﹣4×4=0,得k=±1.…∵切点A在第一象限.∴k=1…∵l∥l1∴设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图,AB为圆O的直径,CB是圆O的切线,弦AD∥OC.(Ⅰ)证明:CD是圆O的切线;(Ⅱ)AD与BC的延长线相交于点E,若DE=3OA,求∠AEB 的大小.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【专题】选作题;推理和证明.【分析】(Ⅰ)连接OD,由弦AD∥OC,易证得∠COB=∠COD,继而证得△COB≌△COD(SAS),即可得∠ODC=∠OBC,然后由BC与⊙O相切于点B,可得∠ODC=90°,即可证得CD是⊙O的切线.(Ⅱ)利用射影定理,求出AD,即可求∠AEB 的大小.【解答】(Ⅰ)证明:连接OD∵AD∥OC,∴∠A=∠COB,∠ADO=∠COD,∵OA=OD,∴∠A=∠ADO,∴∠COB=∠COD,在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,∴△COB≌△COD(SAS),∴∠ODC=∠OBC,∵BC与⊙O相切于点B,∴OB⊥BC,∴∠OBC=90°,∴∠ODC=90°,即OD⊥CD,∴CD是⊙O的切线;(Ⅱ)解:设OA=1,AD=x,则AB=2,AE=x+3,由AB2=AD•AE得x(x+3)=4,∴x=1,∴∠OAD=60°,∠AEB=30°.【点评】此题考查了切线的判定与性质、全等三角形的判定与性质以及射影定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.[选修4-4坐标系与参数方程]23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.【点评】本题考查了参数方程化为普通方程、点到直线的距离公式公式、三角函数的单调性、椭圆与圆的参数与标准方程,考查了推理能力与计算能力,属于中档题.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m.(1)解关于x的不等式f(x)+a﹣1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【专题】计算题;压轴题.【分析】(1)不等式转化为|x﹣2|+|a﹣1>0,对参数a进行分类讨论,分类解不等式;(2)函数f(x)的图象恒在函数g(x)图象的上方,可转化为不等式|x﹣2|+|x+3|>m恒成立,利用不等式的性质求出|x﹣2|+|x+3|的最小值,就可以求出m的范围.【解答】解:(Ⅰ)不等式f(x)+a﹣1>0即为|x﹣2|+a﹣1>0,当a=1时,解集为x≠2,即(﹣∞,2)∪(2,+∞);当a>1时,解集为全体实数R;当a<1时,解集为(﹣∞,a+1)∪(3﹣a,+∞).(Ⅱ)f(x)的图象恒在函数g(x)图象的上方,即为|x﹣2|>﹣|x+3|+m对任意实数x恒成立,即|x﹣2|+|x+3|>m恒成立,又由不等式的性质,对任意实数x恒有|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,于是得m <5,故m的取值范围是(﹣∞,5).【点评】本题考查绝对值不等式的解法,分类讨论的方法,以及不等式的性质,涉及面较广,知识性较强.。
1221ni ii n i i x y nx yb xnx==-=-∑∑2016年全国卷高考文科数学模拟试题(3)本试卷共4页,共23小题, 满分150分. 考试用时120分钟.参考公式:线性回归方程系数:,a y bx =-.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 若集合A ={1,2 , 3},若集合B A ⊆,则满足条件的集合B 有( )个A .3B .7C.8D.92.函数2()log (2)f x x =-的定义域是( )A.(2,)+∞B. (2,3)(3,)⋃+∞C. [3,)+∞D. (3,)+∞3. 设)(x f 是定义在R 上的奇函数,且当0x >时,2()3f x x x =-,则=-)2(f ( )A .2-B .0C .2D .104.等差数列{}n a 中,若58215a a a -=+,则5a 等于( ) A .3 B .4 C .5 D .6(12)a =,,(4)b x =,,若向量a b //,则x =( )A .2B . 2-C . 8D .8-6. 过点)1,0(P 与圆03222=--+x y x 相交的所有直线中,被圆截得的弦最长时的直线方程是( )A .0=xB .1=y C .01=-+y x D .01=+-y x7.已知向量(cos ,2),(sin ,1),//tan()4a b a b πααα=-=-且,则 =( )A .3B. 3-C.31 D .31- 8.直线02:=--+a y ax l 在x 轴和y 轴上的截距相等,则a 的值是A .1B .1-C .2- 或1-D .2-或19. 设变量,x y 满足约束条件20701x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则y x 的最大值为( )A .95B .3C .4D .610. “22ab >”是 “22log log a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.若一个底面边长为的正六棱柱的所有顶点都在一个球的面上,则此球的体积为( )A .B .C .D .12. 设S 是至少含有两个元素的集合. 在S 上定义了一个二元运算“*”(即对任意的a,b ∈S,对于有序元素对(a,b),在S 中有唯一确定的元素a*b 与之对应)。
(分值:150分 时量:120分)一、选择题(每小题5分,共60分)1.已知集合{}{}{}0,,ln ,2,P Q 0P x Q x === ,则P Q 为( )A .{}0,2B .{}0,1,2C .{}12,D . {}0,12.命题:“2,20x R x mx ∃∈++≤”则命题为命题的是12m -<的( )A .充分不必要条件B .必要非充分条件C .充要条件D .都不是3.非零向量,a b ,原命题:若夹角为锐角则a b a b +>- ,则原命题与逆命题的真假为( )A .真真B .假假C .真假D .假真4.一个几何体的正视图,侧视图为边长为2的正方形,其全面积为( )A .8 B.C. D.8+5.数列{}n a 中,()*2152,5n n n a a a n N a +++=∈=,则有( )A .4625a a =B .4625a a ≤C .4625a a >D .4625a a <6.若实数,x y 满足+3100x y y x y ≤⎧⎪-+≤⎨⎪≥⎩,则22x y +的最大最小值之和( )A .5B .16C .17D .187.已知()sin 5πα-=,则44sin cos αα-为( ) A .35 B .35- C .45D .45- 8.P 为ABC ∆内一点,OP xOA yOB =+ ,则(),x y 有可能是( )A.12⎛ ⎝⎭B .()1,1C .1255⎛⎫ ⎪⎝⎭,D .11,22⎛⎫-- ⎪⎝⎭ 9.()21ln 2f x x ax a x =-+有两个极值点,则a 的范围是( ) A .0a < B .4a > C .4a >或 0a < D .以上都不对 10.奇函数()f x 在[)0+∞,单调递增,则()()2230f f x x -≤-≤整数解有( )个A .1B .2C .3D .411.x 为第三象限角,则21cos 24sin sin 2x x x++ 的最小值是 A .2 B. C. D .412.已知()()11f x f x -=-,且()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则11n n a a +⎧⎫⎨⎬⎩⎭前100项之和为( )A .1B .12C .9950D .10051二、填空题:(每小题5分,共20分)13.()1xf x x e =- 的零点个数为_________个; 14.()()sin 20y x ϕϕπ=+<<为偶函数,则其单调递减区间为____________;15.用一个长宽为4,高为6的长方体原件,加工成一个最大的球,则利用率(球体积与原件体积之比)为_______________;16.在10与100之间插入n 个数,使着n+2个数构成一个递增的等比数列,设n +2个数之积n n n T a T ,=lg ,,则{}n a 前n 项之和为________;三、解答题:17.(10分)()()22f x x a a b =-+-+,(1)若()0f x >的解集为()-1,2,求,a b ;(2)对任意的实数a ,()10f <恒成立,求b 取值范围.18.(12分)四棱锥P ABCD -中,底面ABCD 为菱形,=3DAB π∠,PD ⊥ 底面ABCD ,AB PD a ==,P B C D 、、、,四点能否在一个球面上(不要证明);(2)求异面直线PA 与CD 成角的余弦值;(3)求三棱锥ABCP 的体积.19.(12分) ABC ∆中,cos 214sin sin ,B A C =- (1)若b c =,求cos B ;(2)若sin 2sin A C=,判断ABC ∆形状.20.(12分)已知向量,,,a b c d 及实数,x y 满足()213a b c a x b ===+- ,,,d ya xb a b c d =-+⊥⊥ ,,且c ≤ (1)将y 表示成x 的函数()y f x =并求定义域;(2)(x ∈时,不等式()16f x mx ≥-恒成立,求m 的范围.21.(12分)已知数列{}{},n n a b ,其中{}n a 为等差数列,11=2b a =,且3a 为2a 与51a -的等比中项,(1)求n a ;(2)对*1,3n n n n n N b b a +∈-= ,求n b (用n 表示).22.(12分)已知函数()ln 1f x a x x =-+在()()1,1f 处的切线方程为0y =.(1)求a 及()f x 的单调区间;(2)()2,1xf x x k Z k x +∈<-对任意1x >恒成立,求k 的最大值;(3){}n a 中11+2n na =,求证:12n a a a e < .。
2016届高三第二次模拟考试 数学(文科)参考答案一、选择题: 1—5ACBCD 6—10CDABD 11—12DC 二、填空题: 本大题共4小题,每小题5分。
(13) 10 (14)2π3 (15) ①②④ (16)[-1,1]三,解答题:解答应写出文字说明,证明过程和演算步骤17. 解:(1)设等差数列}{n a 的首项为1a ,公差为d , 由52=a ,2684=+a a ,解得2,31==d a .……………2分所以12+=n a n ,n n s n 22+=. ………………6分(2)因为12+=n a n ,所以)1(412+=-n n a n ,因此)111(41)1(41+-=+=n n n n b n .…………………8分故)1(4)111(41)1113121211(4121+=+-=--++-+-=+++=n nn n n b b b T n n , 所以数列}{n b 的前n 项和=n T )1(4+n n.…………………12分18.解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为2536.09=, 再结合频率分布直方图可知n=10010025.025=⨯,∴ a=100××10×=5, b=100××10×=27, 2.0153,9.02018====y x …………………4分 (Ⅱ)因为第2,3,4组回答正确的人数共有54人, 所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:265418=⨯人; 第3组:365427=⨯人;第4组:16549=⨯人 …………………6分 (Ⅲ)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1.设所抽取的人中恰好没有第3组人的事件为A …………………7分则从6人中随机抽取2人的所有可能的结果为:即基本事件空间有Ω={(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)} 共15个基本事件其中恰好没有第3组人的事件A 包含的基本事件有:{ (A 1,A 2), (A 1,C 1),(A 2,C 1) } 共3种…………………9分∴所抽取的人中恰好没有第3组人的概率是:51153)(==A p . 答: 所抽取的人中恰好没有第3组人的概率是:51)(=A p .…………………12分 19.解:(1)21cos cos sin 32=-C C C 12cos 212sin 23=-∴C C ,即sin(2)16C π-=,π<<C 0 ,262C ππ∴-=,解得3π=C …………………6分 (2)n m 与 共线,0sin 2sin =-∴A B 。
2015-2016学年湖南省常德一中高三(上)第四次月考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.己知集合Q={x|2x2﹣5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A.3 B.4 C.7 D.82.已知命题p:“∀x∈R,x+1≥0"的否定是“∀x∈R,x+1<0”;命题q:函数y=x﹣3是幂函数,下列为真命题的是()A.p∧q B.p∨q C.¬p D.p∧(¬q)3.给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④4.向量=(﹣2,﹣1),=(λ,1),若与夹角为钝角,则λ取值范围是()A.(,2)∪(2,+∞)B.(2,+∞)C.(﹣,+∞)D.(﹣∞,﹣)5.以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心,交椭圆于点M、N,若直线MF1(F1为椭圆左焦点)是圆F2的切线,则椭圆的离心率为()A.B.C.﹣1 D.2﹣6.某几何体的三视图如图所示,则这个几何体的表面积为()A.9 B.18+9C.18+3D.9+187.已知0<a<1,则函数y=a|x|﹣|log a x|的零点的个数为()A.1 B.2 C.3 D.48.已知点(a,b)在圆x2+y2=1上,则函数f(x)=acos2x+bsinxcosx﹣﹣1的最小正周期和最小值分别为()A.B.C.D.9.已知实数x,y满足,则目标函数z=2x﹣y的最大值为()A.﹣3 B.C.5 D.610.定义为n个正数p1,p2,…,p n的“均倒数”.若已知数列{a n}的前n项的“均倒数”为,又b n=,则++…+=()A.B.C.D.11.函数f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<)的部分图象如图所示,如果,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.112.定义在R上的偶函数f(x)满足f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,若方程f(x)=m在[﹣2,10]上有6个实根x1,x2,x3,x4,x5,x6,则x1+x2+x3+x4+x5+x6=()A.6 B.12 C.20 D.24二、填空题:本大题共4小题,每小题5分,共20分。
数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若复数()()1,z i bi b R =-∈对应的点在直线y x =上,则实数b 的值为( ) A .0 B .1 C .-1 D .32.若,,,a b c R a b ∈>,则下列不等式成立的是( ) A .1b a < B .22a b > C .2211a bc c >++ D .a c b c > 3. 0002sin 45cos15sin30-的值等于( )A .12B .22C .32D .14.已知某几何体的三视图如图所示,则该几何体的体积为( )A .83 B .8 C .453D .45 5.已知点(),P x y 的可行域是如图阴影部分(含边界),若目标函数()2,0z x ay a =->取得最小值的最优解有无数个,则a 的取值为( )A .1B .2C .6D .86.如图12,F F 是双曲线221:13y C x -=与椭圆2C 的公共焦点,点A 是12,C C 在第一象限的公共点,若121F F F A =,则2C 的离心率是( )A .13 B .23 C .15 D .257.直线()11y k x =-+与椭圆2219x y m+=恒有交点,则m 的取值范围是( ) A .9,8⎛⎫+∞ ⎪⎝⎭ B .()9,99,8⎡⎫+∞⎪⎢⎣⎭U C .()9,99,8⎛⎫+∞ ⎪⎝⎭U D .9,8⎡⎫+∞⎪⎢⎣⎭8.如图,位于A 处的海面观测站获悉,在其正东方向相距40海里的B 处有一艘渔船遇险,并在原地等待营救.在A 处南偏西30°且相距20海里的C 处有一艘救援船,该船接到观测站通告后立即前往B 处求助,则sin ACB ∠=( )A .217 B .2114 C .32114D .2128 9.设命题0:p x R ∃∈,使()20020x x a a R ++=∈,则使得p 为真命题的一个充分不必要条件是( )A .2a >-B .2a <C .1a ≤D . 0a <10.如图,在等腰直角三角形ABO 中,设向量,,1,OA a OB b OA OB C ====u u u v u u u v为边AB 上靠近点A 的四等分点,过点C 作AB 的垂线l ,点P 为垂线l 上任意一点,则()OP b a -=u u u vg ( )A .12-B .12C .32-D .3211.已知正项数列{}n a 满足()110n n n a na ++-=,且11a =,不等式12231n n a a a a a a m ++++≥g g L g 对任意*n N ∈恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦ B .1,2⎛⎫-∞ ⎪⎝⎭C .(],1-∞D .(),1-∞12.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭二、填空题:本大题共4个小题,每小题5分,共20分,将答案填在答题纸上.13.对具有线性相关关系的变量,y x 有一组观测数据()(),1,2,,8i i x y i =L ,其回归直线方程是1ˆˆ3yx a =+,且()1238123828x x x x y y y y ++++=++++=L L ,请估算3x =时,y =____________.14.已知立方体,,F,G,H ABCD A B C D E ''''-分别是棱,.AD BB B C ''',DD '中点,从中任取两点确定的直线中,与平面AB D ''平行的有__________条.15.在数列{}n a 中,若存在一个确定的正整数T ,对任意*n N ∈满足n T n a a +=,则称{}n a 是周期数列,T 叫做它的周期.已知数列{}n x 满足()12211,1,n n n x x a a x x x ++==≤=-,当数列{}n x 的周期为3时,则{}n x 的前2016项的和2016S =___________.16.设函数()322ln f x x ex mx x =-+-,记()()f xg x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是_____________.三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)某中学的高三一班中男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)在(2)中的实验结束后,第一次做实验的同学得到的试验数据为68,70,71,72,74,第二次做实验的同学得到的实验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由. 18.(本题满分12分) 已知向量2cos,1,cos ,3cos 22x x a b x π+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设函数()()f x a b a =-g . (1)若x R ∀∈,求()f x 的单调递增区间;(2)在ABC ∆中,角A B C 、、所对的边分别为,,a b c ,且()4,f A a ==求ABC ∆的面积S 的最大值. 19.(本题满分12分)在如图所示的几何体中,平面ACE ⊥平面ABCD ,四边形ABCD 平行四边形,090,//,1ACB EF BC AC BC AE EC ∠=====.(1)求证:AE ⊥平面BCEF ; (2)求三棱锥D ACF -的体积. 20.(本题满分12分)已知圆()22:116A x y ++=,点()1,0B 是圆A 内一个定点,P 是圆A 上任意一点,线段BP 的垂直平分线l 和半径AP 相交于点Q .(1)当点P 在圆A 上运动时,求点Q 的轨迹曲线C 的方程;(2)若直线12,l l 是过点A 且相互垂直的两条直线,其中直线1l 交曲线C 于,E F 两点,直线2l 与圆A 相交于,M N 两点,求四边形MFNE 面积等于14时直线1l 的方程.21. (本小题满分 12分) 已知()ln x af x x e+=-.(1)若1x =是()f x 的极值点,讨论()f x 的单调性; (2)当2a ≥-时,证明:()f x 在定义域内无零点.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知AB 为圆O 的一条直径,以端点B 为圆心的圆交直线AB 于D C ,两点,交圆O 于,E F 两点,过点D 作垂直于AD 的直线,交直线AF 于H 点. (1)求证:,,,B D H F 四点共圆;(2)若2,22AC AF ==BDF ∆外接圆的半径. 23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线 B 是过点()1,1P -,倾斜角为4π的直线,以直角坐标系xOy 的原点为极点,x 轴正半轴为极轴建立极坐标,曲线A 的极坐标方程是22123sin ρθ=+.(1)求曲线A 的普通方程和曲线B 的一个参数方程; (2)曲线A 与曲线B 相交于,M N 两点,求MP NP g 的值.24. (本小题满分10分)选修4-5:不等式选讲 已知函数()()()2,2f x x g x m x m R =-=-∈. (1)解关于x 的不等式()23f x x ->;(2)若不等式()()f x g x ≥对任意的x R ∈恒成立,求m 的取值范围.参考答案一、选择题1. B 【解析】因为()1z i bi b i =-=+,对应的点为(),1b ,所以1b =,选B . 2. C 【解析】取1,1a b ==-,排除选项A ,取0,1a b ==-,排除选项B ,取0c =,排除选项D ,显然2101c >+,对不等式a b >的两边同时乘211c +成立,故选C . 3. C 【解析】()(000000000000000002sin 45cos15sin 302sin 45cos15sin 45152sin 45cos15sin 45cos15cos 45si sin 45cos15cos 45sin15sin 60-=--=--=+==故选C .4. A 【解析】该几何体是一个四棱锥,其底面是边长为2的等腰三角形,且垂直于底面,由此可得四棱锥的高为2,所以体积83V =,选A . 5. C 【解析】当0a >时,210,0a a >-<,当221641AC k a a -==⇒=-时,目标函数2z x ay =-在线段AC 上的所有点处都取得最小值,∴6a =,选C .6. B 【解析】由题意知,1214F F F A ==,∵122F A F A -=,∴22F A =,∴126F A F A +=,∵12=4F F ,∴2C 的离心率是4263=,选B7. B 【解析】()11y k x =-+恒过点()1,1P ,由点()1,1P 在椭圆内或椭圆上得:1119m+≤得98m ≥且9m ≠,选B . 8. A 【解析】在ABC ∆中,040,20,120AB AC ABC ==∠=.由余弦定理,得22202cos1202800BC AB AC AB AC =+-=g g,所以BC =10. A 【解析】以点O 为原点建立直角坐标系,所以()()311,0,0,1,,44A B C ⎛⎫⎪⎝⎭,不妨设P 取点C ,∴()()31311,1,144442OP b a ⎛⎫-=-=-+=- ⎪⎝⎭u u u v g ,故选A .11. A 【解析】∵()110n n n a na ++-=,∴11n n a n a n +=+,∴1211112n n n a n n n--==-g g L g g . ∴122311111111111111112231122311n n a a a a a a n n n n n ++++=+++=-+-++-=-+++g g L g g g L g L ,∵12231n n a a a a a a m ++++≥gg L g 恒成立,∴11122m ≤-=,故选A . 12. D 【解析】由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111log 31,53log 51a a a a <<⎧⎪⎪>-⇒<<⎨⎪<-⎪⎩,故D 正确.二、填空题 13.76 【解析】由题意知11,2x y ==,故样本中心为11,2⎛⎫⎪⎝⎭,代入回归直线方程1ˆˆ3y x a =+,得1ˆ6a =.所以3x =时,76y =. 14.6【解析】连接,EH,FG EG ,∵//EH FG ,∴EFGH 四点共面,由//,//,,EG AB EH AD EG EH E AB AD A ''''==I I ,可得平面EFGH 与平面AB D ''平行,所以符合条件的共6条.15. 1344 【解析】∵32111x x x a a =-=-=-,∴()2016672111344S a a =⨯++-=. 16. 21,e e ⎛⎤-∞+ ⎥⎝⎦【解析】令()2ln 20xg x x ex m x =-+-=,∴()2ln 20xm x ex x x =-++>, 设()2ln 2x h x x ex x =-++,令()()212ln 2,x f x x ex f x x =-+=,∴()221ln xf x x-'=,发现函数()()12,f x f x 在()0,x e ∈上都是单调递增,在[),x e ∈+∞上都是单调递减,∴函数()2ln 2xh x x ex x =-++在()0,x e ∈上单调递增,在[),x e ∈+∞上单调递减,∴当x e =时,()2max1h x e e =+,∴函数有零点需满足()max m h x ≤,即21m e e≤+.三、解答题17.【解析】(1)由题意可知,抽样比416015==,所以某同学被抽到的概率为115. 课外兴趣小组中男同学454360⨯=(人),女同学1(人)……………………………………………2分(2)把3名男同学和1名女同学分别记为123,,,a a a b ,则选取两名同学的基本事件有()()()()()()()()()()()()121312123231323123,,,,,,,,,,,,,,,,,,,,,,a a a a a b a a a a a b a a a a a b b a b a b a ,,共12个,其中恰有一名女同学的有6个. 所以选出的两名同学中恰有一名女同学的概率为61122P ==…………………………7分 (3)由题意可知两名同学做实验得到的数据的平均数及方差分别为:()()()()()()()()()()1222222212222222687071727471,5697070727471,5687170717171727174714,569717071707172717471 3.25x x s s ++++==++++==-+-+-+-+-==-+-+-+-+-==由于2212s s >,因此,第二位同学的实验更稳定…………………………………………12分18.【解析】(1)()2cossin ,13cos 2cos ,1222x x x f x x ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭g24cos sin 13cos sin cos 3324x x x x x x π⎛⎫=++-=-+=-+ ⎪⎝⎭…………………………………3分22,242k x k k Z πππππ-≤-≤+∈,即322,44k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦…………………………………………6分 (2)因为()344f A A π⎛⎫=-+= ⎪⎝⎭,所以sin 42A π⎛⎫-= ⎪⎝⎭.又因为()0,A π∈,所以3,444A πππ⎛⎫-∈- ⎪⎝⎭,故44A ππ-=, 所以2A π=.........................................................8分于是在ABC ∆中,22210b c a +==,故221152222b c S bc +=≤=g,当且仅当b c == 所以ABC ∆的面积的最大值为52………………………………………………………12分 19.【解析】①∵平面ACE ⊥平面ABCD ,且平面AC E I 平面ABCD AC =,∵,BC AC BC ⊥⊂平面ABCD ,∴BC ⊥平面AEC ……………………………………………………………………………2分AE 平面AEC ,∴BC AE ⊥,……………………………………………3分又2,1AC AE EC ===,∴222AC AE CE =+,∴AE EC ⊥………………………………………………………4分且BC EC C =I ,∴AE ⊥平面BCEF ……………………………………………6分(2)设A C 的中点为G ,连接EG ,∵AE CE =,∴A EG C ⊥………………………………………………7分 ∵平面ACE ⊥平面ABCD ,且平面ACE I 平面ABCD AC =, ∴EG ⊥平面ABCD …………………………………………9分 ∵//,EF BC EF ⊄平面ABCD ,所以点F 到平面ABCD 的距离就等于点E 到平面ABCD 的距离,即点F 到平面ABCD 的距离为EG 的长…………………………………………10分 ∴13D ACF F ACDE ACD ACD V V V S EG ---∆===, ∵111222=12222ACD S AC AD EG AC ∆====g ,,………………………………………11分 ∴12213D ACF V -=⨯=,即三棱锥D ACF -的体积为26…………………………………12分 20.【解析】(1)连接QB ,∵4,AQ QP QP QB +==,∴4AQ QB +=,故点Q 的轨迹是以点,A B 为焦点,24a =为长轴的椭圆,所以22,1,3a c b ===, 点Q 的轨迹曲线C 的方程为:22143x y +=…………………………………………………5分 (2)①当直线1l 的斜率不存在时,则直线1l 的方程为:1x =-,直线2l 的方程为:0y =,故228,3b MN EF a ===,∴183122MFNE S =⨯⨯=,不合题意,故直线1l 的斜率存在...............6分②当直线1l 的斜率存在时,设直线1l 的方程为:()()()11221,,,,y k x E x y F x y =+, ∴142MFNE S EF MN EF =⨯⨯=. 联立()221143y k x x y =+⎧⎪⎨+=⎪⎩, ∴()()22223484120k x k x k +++-=, ∴221212228412,3434k k x x x x k k--+==++,……………………………………………………8分 ∴2211234k EF k +==⨯+, ∴22211448121143434MFNEk S EF k k +⎛⎫==⨯=+= ⎪++⎝⎭…………………………………………10分 ∴243k=,∴k =, 此时,直线1l 的方程为)1y x=+或)1y x =+……………………………………12分21.【解析】(1)∵()1x a f x e x+'=-,由1x =是()f x 的极值点,知()0f x '=, 故110a e +-=,∴1a =-,………………………………………………………………2分① 当01x <<时,1011,1x e e x-><=,则()0f x '>,所以()f x 在()0,1内单调递增; ② 当1x >时,10101,1x e e x -<<>=,则()0f x '<,所以()f x 在()1,+∞内单调递减……………5分(2)因为函数()f x 的定义域为()0,+∞,当2a ≥-时,2x a x e e +-≥,∴()2ln ln x a x f x x e x e +-=-≤-………………………………………6分令()()221ln ,x x g x x e g x e x --'=-=-,令()21x h x e x -=-,∴()2210x h x e x-'=--<, ∴()g x '在()0,+∞上递减,又()1110g e -'=->,()01202g e '=-<,……………………………8分 ∴()g x '在()0,+∞上有唯一的零点0x , ∴02010x e x --=,∴00001ln 2,2x x ex x =-+=-…………………………………………9分 当00x x <<时,则()0g x '>,所以()g x 在()00,x 内单调递增;当0x x >时,则()0g x '<,所以()g x 在()0,x +∞内单调递减.∴()()02000max 01ln 220x g x g x x e x x -==-=-+-<-=…………………………………11分 故当2a ≥-时,()0g x <,故()()0f x g x ≤<,所以当2a ≥-时,()f x 在定义域内无零点…………………………………………………12分22.【解析】(1)因为AB 为圆O 的一条直径,所以BF FH ⊥.又DH BD ⊥,故,,,B D F H 四点在以BH 为直径的圆上.所以,,,,B D F H 四点共圆…………………………………………………………4分(2)由题意得AH 与圆B 相切于点F ,由切割线定理得2AF AC AD =g ,即(22,4AD AD ==g , 所以()11,12BD AD AC BF BD =-===, 又AFD ADH ∆∆:,则DH AD BF AF =,得DH =. 连接BH (图略),由(1)可知,BH 为BDF ∆外接圆的直径.BH =,故BDF ∆………………………………………………………………10分23.【解析】(1)∵22123sin ρθ=+,∴()223sin 12ρθ+=,即曲线A 的普通方程为:22143x y +=, 曲线B的一个参数方程为:11x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).......................................5分(2)设12,PM t PN t ==,∴12MP NP t t =g .把112x y ⎧=-+⎪⎪⎨⎪=+⎪⎩代入方程22143x y +=中,得:2231411222⎛⎫⎛⎫-+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理得:27502t -=,∴12121077t t t t +=-=-,∴12107MP NP t t ==g ......................................................10分 24.【解析】(1)由()223223x f x x x x ≥⎧->⇔⎨-->⎩或2223x x x <⎧⎨-->⎩, ∴x ∈∅或13x <-, 故原不等式的解集为1|3x x ⎧⎫<-⎨⎬⎩⎭..................................................5分 (2)由()()f x g x ≥,得22x m x -≥-对任意的x R ∈恒成立, 当0x =时,不等式22x m x -≥-成立;当0x ≠时,问题等价于22x m x-+≤对任意的非零实数恒成立, ∵22221x x x x++-+≥=, ∴1m ≤,即m 的取值范围是(],1-∞...............................................10分。
湖南省常德市数学高考文数三模考试试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)设复数(i是虚数单位),则()A . iB . -iC . -1+iD . 1+i2. (2分)(2019·龙岩模拟) 已知集合,则()A .B .C .D .3. (2分)若纯虚数z满足(1﹣i)z=1+ai,则实数a等于()A . 0B . ﹣1或1C . -1D . 14. (2分) (2016高二下·日喀则期末) 设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0.则不等式f(x)g(x)<0的解集是()A . (﹣3,0)∪(3,+∞)B . (﹣3,0)∪(0,3)C . (﹣∞,﹣3)∪(3,+∞)D . (﹣∞,﹣3)∪(0,3)5. (2分) (2018高二上·綦江期末) 某四棱锥的三视图如图所示,则该四棱锥的表面积是()A .B .C .D .6. (2分) (2017高二下·河口期末) 已知函数则的值为:()A .B . 4C . 2D .7. (2分) (2016高一下·吉安期末) 已知函数f(x)=x2﹣ax+4满足a∈[﹣1,7],那么对于a,使得f(x)≥0在x∈[1,4]上恒成立的概率为()A .B .C .D .8. (2分) (2018高二下·定远期末) 函数f(x)=ex-3x-1(e为自然对数的底数)的图象大致是()A .B .C .D .9. (2分) (2017高三下·赣州期中) 如图所示的程序框图,若输入x,k,b,p的值分别为1,﹣2,9,3,则输出x的值为()A . ﹣29B . ﹣5C . 7D . 1910. (2分)在△ABC中,2sinA+ cosB=3,2cosA+ sinB=2,则角C=()A .B .C . 或D . 或11. (2分)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于()A . 2B . 9C . 6D . 312. (2分)(2020·晋城模拟) 双曲线的渐近线于圆相切,且该双曲线过点,则该双曲线的虚轴长为()A .B .C .D .二、填空题: (共4题;共4分)13. (1分)计算:tan(﹣2010°)=________14. (1分) (2017高二下·大名期中) 将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=________.15. (1分) (2016高一下·佛山期中) 设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是________.16. (1分)已知双曲线C1、C2的顶点重合,C1的方程为-y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为________ 。
湖南省2016年高三普通高等学校招生全国统一考前演练数学试卷(文科)(一)(解析版)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A={0,1,2,3,4},B={x|0<x<3},则如图中阴影部分所表示的集合为()A.{0,1,2} B.{0,1,} C.{0,3,4} D.{3,4}2.如图在复平面内,复数z1,z2对应的向量分别是,则复数的值是()A.﹣1+2i B.﹣2﹣2i C.1+2i D.1﹣2i3.给出下列四个命题,其中假命题是()A.“∀x∈R,sinx≤1”的否定为“∃x∈R,sinx>1”B.“若a>b,则a﹣5>b﹣5”的逆否命题是“若a﹣5≤b﹣5,则a≤b”C.∃x0∈(0,2),使得sinx=1D.∀x∈R,2x﹣1>04.已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边经过点P(﹣3,m),且sinα=﹣,则tanα等于()A.﹣ B.C.D.﹣5.设函数f(x)=,若f(x)是奇函数,则g(3)的值是()A.1 B.3 C.﹣3 D.﹣16.如果不等式组表示的平面区域是一个直角三角形,则该三角形的面积为()A.B.C.或D.或7.根据程序框图计算,当a=98,b=63时,该程序框图结束的结果是()A.a=7,b=7 B.a=6,b=7 C.a=7,b=6 D.a=8,b=88.将函数f(x)=sin(2x+)的图象向左平移φ(φ>0)个单位,所得图象关于y轴对称,则φ的最小值为()A.π B.π C.π D.π9.已知F1,F2是双曲线=1(a,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为钝角三角形,则该双曲线的离心率e的取值范围是()A.(1,+∞)B.C.D.10.已知三棱锥的三视图如图所示,则此三棱锥外接球的表面积为()A.8πB.8πC.5πD.6π11.已知函数f(x)=2x+x,g(x)=log2x+x,h(x)=x3+x的零点依次为a,b,c,则a,b,c由小到大的顺序是)A.a<b<c B.a<c<b C.b<a<c D.c<b<a12.已知a,b∈(0,1),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分。
湖南省四县(市区)2016届高三3月联考文科数学试题时量 120分钟 总分 150分考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对条形码上的准考证号、姓名、考试科目与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答的答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一:选择题:(本大题共12个小题,每小题5分,满分60分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}{}22,0,2,|20A B x x x =-=--≤,则A B =A .{}0B .{}2C .{}2,0-D .{}02,2.已知向量()()2,1,,6a b x ==- ,若a b ⊥ ,则a b +=A .5B .C .6D .503.已知i 为虚数单位,则21ii-=+A .2 B .52 C .2 D .24.某书法社团有男生30名,女生20名,从中抽取一个5人的样本,恰好抽到了2名男生和3名女生.(1)该抽样一定不是系统抽样;(2)该抽样可能是随机抽样;(3)该抽样不可能是分层抽样;(4)男生被抽到的概率大于女生被抽到的概率.其中说法正确的为 A .(1)(2)(3) B .(2)(3) C .(3)(4) D .(1)(4)5.若圆C 的半径为1,其圆心与点(1,0)关于直线x y =对称,则圆C 的标准方程为 A .22(1)1x y -+= B .22(1)1x y ++= C .22(1)1x y +-= D .22(1)1x y ++=6.如图,正方体1111D C B A ABCD -的棱长为1,F E ,是线段11D B 上的两个动点,且22=EF ,则下列结论中错误的是A .BF AC ⊥;B .三棱锥BEF A -的体积为定值;C .//EF 平面ABCDD .面直线AE 、BF 所成的角为定值。
2016年常德市高三年级模拟考试数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,时量120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{|0}M x x =<,2{|20}N x x x =--<,则M N =A .{|10}x x -<<B .{|20}x x -<<C .{|2}x x <D .{|1}x x < 2.复数z 满足i i z 2)1)(1(=+-,则=||zA .1B .2C .5D .53.若:,p a b R +∈;22:2q a b ab +≥,则 A .p 是q 充要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4.已知平面向量,为单位向量,||1a b +=,则向量,的夹角为A .6π B .65π C .3π D .32π 5.函数22,0,()|log |,0,x x f x x x ⎧=⎨>⎩≤则函数1()2y f x =-的零点个数为A .3B .2C .1D .06.设y x ,满足约束条件1,20,20,x x y y ⎧⎪-⎨⎪-⎩≥≤≤则23z x y =+-的最大值为A .8B .5C .2D .17.现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为A .13B .12C .23D . 11368.右边程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m ,n 分别为495,135,则输出的m = A .0 B .5 C .45 D .909.抛物线x y 82=的焦点F 与双曲线22221x y a b-=(0,a >0)b >右焦点重合,又P 为两曲线的一个公共交点,且5||=PF ,则双曲线的实轴长为A .1B .2C .317-D .610.数列}{n a 满足:1132,51++=-=n n n n a a a a a ,则数列}{1+n n a a 前10项的和为A .1021 B .2021C .919D .181911.某几何体的三视图如图所示,则该几何体外接球的表面积为A .32π B .3π C .6πD .24π12.已知函数2cos sin )(x x x x x f ++=,则不等式1(ln )(ln )2(1)f x f f x+<的解集为A .),(+∞eB .(0,)eC .1(0,)(1,)e eD .),1(e e第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡...中对应题号后的横线上. 13.已知定义在R 上的函数()f x 满足(2)()0f x f x +-=,当(0,2]x ∈时,()2x f x =,则(2016)f = .14.在等比数列{}n a 中,12561,8,02n a a a a a +=+=>,则34a a += .15.已知圆C 的方程为228150x y x +++=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围为 .16.为了测得一铁塔AB 的高度,某人在塔底B 的正东方向C 处测得塔顶A 的仰角为45°,再由C 点沿北偏东30°方向走了20米后到达D 点,又测得塔顶A 的仰角为30°,则铁塔AB 的高度为 米.三、解答题:本大题共70分. 解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数2()cos 2cos (0)f x x x x ωωωω=+>,且()f x 的最小正周期为π.(Ⅰ)求ω的值及()f x 的单调递减区间; (Ⅱ)将函数()f x 的图象向右平移6π个长度单位后得到函数()g x 的图象,求当[0,]2x π∈时()g x 的最大值.18.(本小题满分12分)某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.右图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群” .(Ⅰ)求m ,n 的值,并求这100名学生月消费金额的样本平均数x (同一组中的数据用该组区间的中点值作代表);(Ⅱ)与性别有关?(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)19.(本小题满分12分)如图,四棱锥A BCDE -中,CD ⊥平面ABC ,BE ∥CD ,AB =BC CD =,AB BC ⊥,M 为AD 上一点,EM ⊥平面ACD . (Ⅰ)求证:EM ∥平面ABC .(Ⅱ)若22CD BE ==,求点D 到平面EMC 的距离.20.(本小题满分12分)已知椭圆1C :22221(0)x y a b a b +=>>2C :22(0)x py p =>的焦点F 是椭圆1C 的顶点. (Ⅰ)求1C 与2C 的标准方程;(Ⅱ)若2C 的切线交1C 于P ,Q 两点,且满足0FP FQ ⋅=,求直线PQ 的方程.21.(本小题满分12分)已知函数()ln mxf x x=,曲线()y f x =在点22(,())e f e 处的切线与直线20x y +=垂直(其中e 为自然对数的底数). (Ⅰ)求()f x 的解析式及单调递减区间;(Ⅱ)是否存在常数k ,使得对于定义域内的任意x ,()ln kf x x>+求出k 的值;若不存在,请说明理由.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,已知AB AC =,圆O 是ABC △的外接圆,CD AB ⊥,CE 是圆O 的直径.过点B 作圆O 的切线交AC 的延长线于点F . (Ⅰ)求证:AB CB CD CE ⋅=⋅;(Ⅱ)若BC =BF =ABC ∆的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 的参数方程是2cos sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为(2,)A π、4(2,)3B π. (Ⅰ)求直线AB 的直角坐标方程;(Ⅱ)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||1|f x x x =+--. (Ⅰ)求不等式()2f x <的解集;(Ⅱ)若关于x 的不等式2()2a f x a -≤有解,求a 的取值范围.2016年常德市高三年级模拟考试数学(文史类)参考答案第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1. A2.C3.B4. D5.A6.B7.D8.C9.B 10.A 11.C 12.D第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分. 把答案填在答题卡中对应题号后的横线上.13. 4 14. 2 15. 403k -≤≤ 16. 20三、解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)(Ⅰ)()21cos2f x x x ωω=++=2sin(2)16x πω++∵22T πππω=⇒=,∴1ω= ……………………3分 从而()2sin(2)16f x x π=++,令3222262k x k πππππ+≤+≤+, 得263k x k ππππ+≤≤+,∴()f x 的单调减区间为2[,],63k k k Z ππππ++∈. ……………………6分 (Ⅱ)()2sin[2()]12sin(2)1666g x x x πππ=-++=-+, ……………………9分∵[0,]2x π∈,∴52666x πππ-≤-≤,∴当262x ππ-=,即3x π=时,max ()2113g x =⨯+=. ……………………12分18.(本题满分12分)(Ⅰ)由题意知 100()0.6m n +=且20.0015m n =+解得0.0025,0.0035m n == ……………………3分 所求平均数为:3000.154000.355000.256000.157000.10470x =⨯+⨯+⨯+⨯+⨯=(元) ……6分根据上表数据代入公式可得22100(15403510)1001.332.7062575505075K ⨯⨯-⨯==≈<⨯⨯⨯ 所以没有90%的把握认为“高消费群”与性别有关. ……………………12分19.(本题满分12分) (Ⅰ)证明:取AC 的中点F ,连接BF ,因为BC AB =,所以AC BF ⊥,又因为⊥CD 平面ABC ,所以BF CD ⊥,所以⊥BF 平面ACD ,………………3分因为⊥EM 平面ACD ,所以EM ∥BF ,EM ⊄面ABC ,⊂BF 平面ABC ,所以EM ∥平面ABC ; ………………6分(Ⅱ)因为⊥EM 平面ACD ,EM ⊂面EMC ,所以平面⊥CME 平面ACD ,平面 CME 平面ACD CM =,过点D 作直线DG ⊥CM ,则⊥DG 平面CME ,…… 9分由已知⊥CD 平面ABC ,BE ∥CD ,BE CD BC AB 2===,可得DE AE =,又AD EM ⊥,所以M 为AD 的中点,在ABC Rt ∆中,222==BC AC ,在ADC Rt ∆中,3222=+=AC CD AD ,2222212121=⨯⨯⨯==∆∆ACD CDM S S , 在DCM ∆中,321==AD CM ,由等面积法知221=⨯⨯DG CM ,所以362=DG ,即点D 到平面EMC 的距离为362. …………………12分说明:用三棱锥的等体积方法求三棱锥CEM D -的高.按相应计分标准给分。