高三模拟数学试题
- 格式:docx
- 大小:1.17 MB
- 文档页数:9
高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高三数学模拟考试卷(附答案解析)一、单选题(本大题共4小题,共20分。
在每小题列出的选项中,选出符合题目的一项)1.已知p:sinx=siny,q:x=y,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则此双曲线的渐近线方程为()A. y=±3xB. y=±2xC. y=±2xD. y=±x3.函数y=f(x)是定义域为R的奇函数,且对于任意的x1≠x2,都有f(x1)−f(x2)x1−x2<1成立.如果f(m)>m,则实数m的取值集合是()A. {0}B. {m|m>0}C. {m|m<0}D. R4.已知数列{an}满足a1+a2+⋯+an=n(n+3),n∈N*,则an=()A. 2nB. 2n+2C. n+3D. 3n+1二、填空题(本大题共12小题,共54分)5.不等式|2x+1|+|x−1|<2的解集为______.6.函数f(x)=x+9x(x>0)的值域为______.7.函数f(x)=sinx+cosx(x∈R)的最小正周期为______.8.若an为(1+x)n的二项展开式中x2项的系数,则n→+∞lim ann2=______.9.在所有由1,2,3,4,5这五个数字组成的无重复数字的五位数中,任取一个数,则取出的数是奇数的概率为______.10.若实数x,y满足x+y≤4y≤3xy≥0,则2x+3y的取值范围是______.11.已知向量a,b满足|a|=2,|b|=1,|a+b|=3,则|a−b|=______.12.已知椭圆C:x29+y2b2=1(b>0)的左、右两个焦点分别为F1、F2,过F2的直线交椭圆C于A,B两点.若△F1AB是等边三角形,则b的值等于______.13.已知等比数列{an}的前n项和为Sn,公比q>1,且a2+1为a1与a3的等差中项,S3=14.若数列{bn}满足bn=log2an,其前n项和为Tn,则Tn=______.14.已知A,B,C是△ABC的内角,若(sinA+i⋅cosA)(sinB+i⋅cosB)=12+32i,其中i为虚数单位,则C 等于______.15.设a∈R,k∈R,三条直线l1:ax−y−2a+5=0,l2:x+ay−3a−4=0,l3:y=kx,则l1与l2的交点M到l3的距离的最大值为.16.设函数f(x)=x2−1,x≥a|x−a−1|+a,x<a,若函数f(x)存在最小值,则a的取值范围为______.三、解答题(本大题共5小题,共76分。
2024年高考第三次模拟考试
高三数学(广东专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
2168πcm
C.3
部选对的得6分,部分选对的得部分分,有选错的得0分)
⎫
对称
⎪
⎭
单调递减
与平面ABP夹角的余弦值.
2 21
y
b
+=的焦距为2,1F 的周长为8.。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求2023-2024学年江苏省盐城中学高三年级模拟考试数学试题的。
1.若集合,,则( )A. B.C.D.2.若是关于x 的 实系数方程的一个虚数根,则( )A. , B. ,C. ,D. ,3.若,则( )A. B.C.D.4.已知,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若函数在R 上无极值,则实数a 的取值范围( )A. B.C.D. 6.设,是双曲线的两个焦点,O 为坐标原点,P 是C 的左支上一点,且,则的面积为( )A.B.C. 8D.7.数列中,,,使对任意的为正整数恒成立的最大整数k 的值为( )A. 1209B. 1211C. 1213D. 12158.对于一个古典概型的样本空间和事件A ,B ,C ,D ,其中,,,,,,,,则( )A. A 与B 不互斥B. A 与D 互斥但不对立C. C 与D 互斥D. A 与C相互独立二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知,则( )A. B.C. D.10.已知函数的一条对称轴为,则( )A. 的最小正周期为B.C. 在上单调递增D.11.平行六面体中,各棱长均为2,设,则( )A. 当时,B. 的取值范围为C. 变大时,平行六面体的体积也越来越大D. 变化时,和BD总垂直12.已知曲线C是平面内到定点和定直线的距离之和等于4的点的轨迹,若在曲线C上,则下列结论正确的是( )A.曲线C关于x轴对称B. 曲线C关于y轴对称 C. D.三、填空题:本题共4小题,每小题5分,共20分。
13.某产品有5件正品和3件次品混在了一起产品外观上看不出有任何区别,现从这8件产品中随机抽取3件,则取出的3件产品中恰有1件是次品的概率为__________.14.已知单位向量,,满足,则的值为__________.15.在数字通信中,信号是由数字“0”和“1”组成的序列,“0,1数列”是每一项均为0或1的数列,设C是一个“0,1数列”,定义数列为数列C中每个0都变为“1,0,1”,每个1都变为“0,1,0”所得到的新数列.例如数列,1,则数列,0,1,0,1,已知数列,1,0,1,0,记数列,,2,3,,则数列的所有项之和为__________;数列的所有项之和为__________.16.在中,,P为内部一动点含边界,在空间中,若到点P的距离不超过1的点的轨迹为L,则几何体L的体积等于__________.四、解答题:本题共6小题,共70分。
高三数学模拟试题及答案一、选择题1. 已知集合A={x | x² - 1 = 0},则A的元素个数为()A. 1B. 2C. 3D. 4答案:B2. 若a > 0,b < 0,则a与b的和的符号为()A. 正B. 负C. 零D. 无法确定答案:D3. 设函数f(x) = √(x²-2x+1),则f(3)的值为()A. 0B. 1C. 2D. 3答案:B4. 在△ABC中,角A = 60°,边AC = 5cm,边BC = 4cm,则边AB 的长度为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm答案:C5. 某商店对现金支付的商品提供10%的折扣,小明购买了一件原价500元的商品,他需要支付多少元?()A. 45元B. 50元C. 450元D. 500元答案:C二、计算题1. 已知函数f(x) = |x - 3| + 2,求f(5)的值。
解:当x = 5时,f(x) = |5 - 3| + 2 = 4答案:42. 解方程:3x + 5 = 2(x - 1) + 7解:展开得:3x + 5 = 2x - 2 + 7移项得:3x + 5 = 2x + 5化简得:x = 0答案:03. 已知函数f(x) = x² - 4x + 5,求f(3)的值。
解:当x = 3时,f(x) = 3² - 4 × 3 + 5 = 9 - 12 + 5 = 2答案:24. 某商品在经过两次10%的折扣后,售价为270元,求其原价。
解:设原价为x元,则经过第一次折扣后为0.9x元,经过第二次折扣后为0.9 × 0.9x元。
根据题意,0.9 × 0.9x = 270,解方程得:x = 300答案:300三、应用题1. 一辆自行车上午以每小时20公里的速度向南骑行,下午以每小时15公里的速度向北骑行。
如果来回共耗时8小时,求行程的总长度。
高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
河南省濮阳市2024届高三下学期数学模拟试题(三)一、单选题1.已知复数z 满足()132z i i +=+,则复数z 的虚部为 A .12i -B .12iC .12D .12-2.抛物线24y x =的焦点到准线的距离为( ) A .2B .1C .14D .183.某圆锥的侧面展开图是面积为3π,圆心角为2π3的扇形,则该圆锥的轴截面的面积为( ) A.92B .C .D .24.已知向量2a =r ,b r 在a r方向上的投影向量为3a -r ,则a b ⋅=r r ( )A .12B .12-C .6D .6-5.某班派遣,,,,A B C D E 五位同学到甲、乙、丙三个街道打扫卫生.每个街道至少有一位同学去,至多有两位同学去,且,A B 两位同学去同一个街道,则不同的派遣方法有( ) A .18B .24C .36D .486.如图,将绘有函数()()πsin 0,0π3f x M x M ϕϕ⎛⎫=+><< ⎪⎝⎭部分图像的纸片沿x 轴折成直二面角,此时,A B ϕ=( )A .π6B .π3C .2π3D .5π67.若函数()221e e x xf x x ax a +=+-有三个不同的零点,则实数a 的取值范围是( )A .211,0e ⎛⎫-- ⎪⎝⎭B .310,e e ⎛⎫ ⎪-⎝⎭C .31,0e e ⎛⎫⎪-⎝⎭ D .210,1e ⎛⎫+ ⎪⎝⎭8.点M 是椭圆()222210+=>>x y a b a b上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于,P Q 两点,若PQM V 是锐角三角形,则椭圆离心率的取值范围是( )A .()2 B .⎫⎪⎪⎝⎭C .⎫⎪⎪⎝⎭D .⎝⎭二、多选题9.对于下列概率统计相关知识,说法正确的是( ) A .数据1,2,3,4,5,6,8,9,11的第75百分位数是6B .若事件,M N 的概率满足()()()()0,1,0,1P M P N ∈∈,则()()||1P N M P N M +=C .由两个分类变量,X Y 的成对样本数据计算得到211.612χ=,依据0.001α=的独立性检验()0.00110.828x =,可判断,X Y 独立D .若一组样本数据()(),1,2,,i i x y i n =⋅⋅⋅的对应样本点都在直线47y x =-+上,则这组样本数据的相关系数为1-10.如图,正方体1111ABCD A B C D -的棱长为4,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是( )A .存在点,P M ,使得二面角--M DC P 大小为5π6B .存在点,P M ,使得平面11B D M 与平面PBD 平行C .当P 为棱1CC 的中点且PM =MD .当M 为1A D 的中点时,四棱锥M ABCD -外接球的表面积为32π311.已知()f x 是定义在R 上的不恒为零的函数,对于任意,x y ∈R 都满足()()()2f x f x y f y -=+-,且()1f x +为偶函数,则下列说法正确的是( )A .()02f =B .()f x 为奇函数C .()f x 是周期函数D .()24148n f n ==∑三、填空题12.若{}{}2|01|20x x x x x m -+>=∅I ≤≤,则实数m 的取值范围为.13.已知数列{}n a 的通项公式为{}12,n n n a n b -=+的通项公式为13n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =,n S 的最小值为.14.设00a b >>,,记M 为13b a a b+,,三个数中最大的数,则M 的最小值.四、解答题15.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,设,,a b c 满足条件222b c bc a +-=和12c b = (1)求角A 和tan B ; (2)求()cos 2A B +.16.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,(1)求证:1AA ⊥平面11BCC B ;(2)求直线AB 和平面1ACB 所成角的正弦值.17.黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数()1e 1s x x f x -=-(0,1,x s s >>为常数)密切相关,请解决下列问题:(1)当2s =时,求()f x 在点()()1,1f 处的切线方程; (2)当2s >时,证明()f x 有唯一极值点.18.已知双曲线()221222:10,0,,x y C a b F F a b-=>>分别是C 的左、右焦点.若C 的离心率2e =,且点()4,6在C 上. (1)求C 的方程;(2)若过点2F 的直线l 与C 的左、右两支分别交于,A B 两点,与抛物线216y x =交于,P Q 两点,试问是否存在常数λ,使得1AB PQλ-为定值?若存在,求出常数λ的值;若不存在,请说明理由.19.现有一种不断分裂的X 细胞,每个时间周期T 内分裂一次,一个X 细胞每次分裂能生成一个或两个新的X 细胞,每次分裂后原X 细胞消失.设每次分裂成一个新X 细胞的概率为p ,分裂成两个新X 细胞的概率为1p -;新细胞在下一个周期T 内可以继续分裂,每个细胞间相互独立.设有一个初始的X 细胞,在第一个周期T 中开始分裂,其中1,12p ⎛⎫∈ ⎪⎝⎭.(1)设2T 结束后,X 细胞的数量为ξ,求ξ的分布列和数学期望; (2)设()*N nT n ∈结束后,X 细胞数量为m 的概率为()m P n .(ⅰ)求()2P n ; (ⅱ)证明:()36481P n <.。
数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.注意事项:1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将XX、XX号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:球的表面积为: 2S4R,其中R为球的半径.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i是虚数单位,复数2i1i的实部为A.2B.2C.1D.12.设全集UR,集合 2Mx|ylg(x1),Nx|0x2,则N(e U M)A.x|2x1B.x|0x1C.x|1x1D.x|x13.下列函数中周期为且为偶函数的是A.ysin(2x)B.ycos(2x)C.ysin(x)D.ycos(x)22224.设S n是等差数列a n的前n项和,a12,a53a3,则S9A.90B.54C.54D.725.已知m、n为两条不同的直线,、为两个不同的平面,则下列命题中正确的是A.若lm,ln,且m,n,则lB.若平面内有不共线的三点到平面的距离相等,则//正视图左视图-1-俯视图C.若m,mn,则n//D.若m//n,n,则m6.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是A.16B.14C.12D. 87.已知抛物线错误!未找到引用源。
的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,错误!未找到引用源。
山东高三模拟考试(理)数学试卷-附带答案解析班级:___________姓名:___________考号:___________一、单选题1.若集合{}2324x A x -=> {}5B x x =≤,则A B =( ).A .752x x ⎧⎫<≤⎨⎬⎩⎭B .552x x ⎧⎫<≤⎨⎬⎩⎭C .52x x ⎧⎫<⎨⎬⎩⎭D .{}5x x ≤2.当a<0时,则关于x 的不等式22430x ax a -+<的解集是()12,x x ,则1212ab x x x x =++取得最值的充分条件是( )A .有最大值 1b ≤-B .有最小值b ≥-C .有最大值 5b ≤-D .有最小值b ≤3.已知扇形的半径为2 圆心角为45,则扇形的弧长是( ) A .45B .π4C .2π D .904.在极坐标中点2,3π⎛⎫⎪⎝⎭到圆4cos ρθ=的圆心的距离为( )A .3πBC .2D5.设0.33a = 30.3b = 0.3log 3c =,则a b c 的大小关系为( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<6.设2012(12)n n n x a a x a x a x +=++++ 若78a a =,则n =( )A .8B .9C .10D .117.已知直线y =双曲线()2222:10,0x y C a b a b-=>>相交于不同的两点A 和B F 为双曲线C 的左焦点且满足AF BF ⊥,则双曲线C 的离心率为( )AB .2 C1 D8.已知函数||||12e sin 432e 2x x x f x ++⎛⎫+= ⎪+⎝⎭,则122022202320232023f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .404 B .4044 C .2022D .2024二、多选题9.已知复数0z 、z 其中02i 3z =-,则下列结论正确的是( ) A .0z 的虚部为2iB .0z 的共轭复数02i 3z =--C .0z 是关于x 的方程26130x x ++=的一个根D .若03z z -=,则z 在复平面内对应的点的集合是以()3,2-为圆心 3为半径的圆 10.已知函数31()423f x x x =-+ 下列说法中正确的有( ) A .函数()f x 的极大值为223 极小值为103- B .当[]3,4x ∈时,则函数()f x 的最大值为223 最小值为103- C .函数()f x 的单调减区间为[]22-,D .曲线()y f x =在点(0,2)处的切线方程为42y x =-+11.已知线段BC 的长度为4 线段AB 的长度为m 点D ,G 满足AD DC = 0DG AC ⋅= 且G 点在直线AB 上 若以BC 所在直线为x 轴 BC 的中垂线为y 轴建立平面直角坐标系,则( ) A .当4m =时,则点G 的轨迹为圆B .当68m ≤≤时,则点G 的轨迹为椭圆 且椭圆的离心率取值范围为12,23⎡⎤⎢⎥⎣⎦C .当2m =时,则点G 的轨迹为双曲线 且该双曲线的渐近线方程为y =D .当5m =时,则BCG 面积的最大值为312.我国有着丰富悠久的“印章文化” 古时候的印章一般用贵重的金属或玉石制成 本是官员或私人签署文件时代表身份的信物 后因其独特的文化内涵 也被作为装饰物来使用.图1是明清时期的一个金属印章摆件 除去顶部的环可以看作是一个正四棱柱和一个正四棱锥组成的几何体;如图2 已知正四棱柱和正四棱锥的高相等 且底面边长均为2 若该几何体的所有顶点都在球O 的表面上,则( )A .正四棱柱和正四棱锥的高均为12B .正四棱柱和正四棱锥组成的几何体的表面积为12+C .球O 的表面积为9πD .正四棱锥的侧面、侧棱与其底面所成的角分别为α、π2βα⎛⎫< ⎪⎝⎭,则αβ<三、填空题 13.若tan 2α=,则2sin cos cos sin cos ααααα++-=__________.14.设{}n a 是等差数列 且13a = 2414a a += 若37m a =,则m =___________.15.一批电池(一节)用于无线麦克风时,则其寿命服从均值为34.3小时,则标准差为4.3小时的正态分布 随机从这批电池中任意抽取一节,则这节电池可持续使用不少于30小时的概率为______.(参考数据:()0.6827P X μσμσ-<≤+= ()220.9545P X μσμσ-<≤+=)16.已知函数()()e 1xf x x =+ ()()1lng x x x =+ 若()()()121f x g x m m ==>,则112ln x x x m+的最小值为______.四、解答题17.如图 在ABC 中2BC = AC =π4A = 点M 、N 是边AB 上的两点 π6MCN ∠=.(1)求ABC 的面积;(2)当BN =求MN 的长.18.已知正项等比数列{}n a 前n 项和为12,n S a = 且324,2,a S a 成等差数列. (1)求数列{}n a 的通项公式;(2)记2log n n b a = 其前n 项和为n T 求数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和n H .19.盲盒 是指消费者不能提前得知具体产品款式的玩具盒子 具有随机性.因其独有的新鲜性 刺激性及社交属性而深受各个年龄段人们的喜爱.已知M 系列盲盒共有12个款式 为调查M 系列盲盒更受哪个年龄段的喜爱 向00前、00后人群各随机发放了50份问卷 并全部收回.经统计 有45%的人未购买该系列育盒 在这些未购买者当中00后占23.(1)请根据以上信息填表 并分析是否有99%的把握认为购买该系列盲盒与年龄有关?(2)一批盲盒中每个盲盒随机装有一个款式 甲同学已经买到3个不同款 乙、丙同学分别已经买到m 个不同款 已知三个同学各自新购买一个盲盒 且相互之间无影响 他们同时买到各自的不同款的概率为13.①求m ;②设X 表示三个同学中各买到自己不同款的总人数 求X 的分布列和数学期望.20.已知直线,a b 平面,αβ 且a α⊂ b β⊂ //αβ.判断直线,a b 的位置关系 并说明理由. 21.已知,,a b c 分别为ABC 三个内角,,A B C 的对边 222cos cos 1cos A C B +=+且1b = (1)求B ; (2)若12AB AC ⋅<求11a c +的取值范围.22.已知函数32()1f x x ax bx =+++在点(1,(1))P f 处的切线方程为420x y --=. (1)求函数()f x 的单调区间(2)若函数()()g x f x m =-有三个零点 求实数m 的取值范围.参考答案与解析1.B【分析】解指数不等式求得集合A 根据集合的交集运算可得答案. 【详解】解不等式2324x -> 即232522232,2,x x x ->->∴>∴ 故{}235242x A x x x -⎧⎫=>=>⎨⎬⎩⎭ 故552A B x x ⎧⎫⋂=<≤⎨⎬⎩⎭故选:B 2.C【解析】计算得到124x x a += 2123x x a =计算b ≤根据充分条件的定义得到答案.【详解】不等式22430x ax a -+<的解集是()12,x x 故124x x a += 2123x x a =.1212114433a b x x a a x x a a ⎛⎫=++=+=--+≤-= ⎪-⎝⎭当143a a -=-即a =时等号成立 根据充分条件的定义知C 满足. 故选:C .【点睛】本题考查了充分条件 不等式的解 均值不等式 意在考查学生的计算能力和综合应用能力. 3.C【分析】由弧长公式求解即可.【详解】因为圆心角的弧度数为π4 所以扇形的弧长是ππ242⨯=.故选:C 4.C【分析】先把点的坐标和圆的方程都化成直角坐标方程 再求点到圆心的距离得解.【详解】由题得ππ2cos 1,2sin 33x y =⨯==⨯=所以点的坐标为因为4cos ρθ= 所以24cos ρρθ= 所以2240x y x +-= 即22(2)4x y -+= 所以圆心的坐标为(2,0)2=故选:C. 5.C【分析】根据对数函数、指数函数的单调性进行判断即可. 【详解】因为0.30331>= 300.3100.3<=< 0.30.3log 3log 10<= 所以c b a << 故选:C 6.D【分析】根据二项展开式分别求出78,a a 的表达式 解方程即可求得结果.【详解】由题可知 ()77777777C 122C n n n a x x x -=⨯⨯= 所以7772C n a =; 同理可得8882C n a =;由78a a =可得77882C 2C n n = 即78C 2C n n =所以(1)(2)(6)(1)(2)(7)212371238n n n n n n n n --⋅⋅⋅---⋅⋅⋅-=⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯ 即7218n -⨯= 解得11n =. 故选:D 7.C【分析】由题意设A B 的坐标 代入直线和双曲线的方程可得A B 的坐标 再由AF BF ⊥ 可得数量积0FA FB →→⋅= 可得a c 的关系 进而求出离心率. 【详解】设()()0000,,,,(,0)A x y B x y F c ---则2200221x y a b-=① 因为AF BF ⊥ 所以0FA FB →→⋅=即()()0000,,0x c y x c y +⋅-+-=可得22200c x y -=②因为AB 在直线y 上 所以0y x = 由①②③得42840e e -+=解得24e =+所以1e 故选:C【点睛】本题考查双曲线的性质 及直线的垂直用数量积为0表示 属于中档题. 8.B【分析】利用倒序相加法求得正确答案. 【详解】||||||12e sin 4sin 322e 2e 2x x x x x f x ++⎛⎫+==+ ⎪++⎝⎭ ()||||sin 1sin 3222e 2e 2x x x x f x --⎛⎫-+=+=- ⎪++⎝⎭所以1133422f x f x ⎛⎫⎛⎫++-+= ⎪ ⎪⎝⎭⎝⎭以12x -替换3x 得()()1111142222f x fx f x f x ⎛⎫⎛⎫-++-+=-+= ⎪ ⎪⎝⎭⎝⎭令122022202320232023f f f S ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=则202220211202320232023f f S f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=两式相加得220224,4044S S =⨯=. 故选:B 9.BCD【分析】利用复数的概念可判断A 选项的正误;利用共轭复数的定义可判断B 选项的正误;解方程26130x x ++=可判断C 选项的正误;利用复数的几何意义可判断D 选项的正误.【详解】对于A 选项 复数0z 的虚部为2- A 错; 对于B 选项 02i 3z =-- B 对;对于C 选项 解方程26130x x ++= 即()()22342i x +=-=± 可得32i x +=± 解得32i x =-± C 对;对于D 选项 设()i ,z x y x y R =+∈,则()()032i z z x y -=++-所以 03z z -== 即()()22329x y ++-=故z 在复平面内对应的点的集合是以()3,2-为圆心 3为半径的圆 D 对. 故选:BCD. 10.ACD【分析】利用导数研究函数()f x 的极值、最值、单调性 利用导数的几何意义可求得曲线()y f x =在点(0,2)处的切线方程 根据计算结果可得答案. 【详解】因为31()423f x x x =-+ 所以2()4f x x =-'由()0f x '> 得<2x -或2x > 由()0f x '< 得22x -<<所以函数()f x 在(,2)-∞-上递增 在[]22-,上递减 在(2,)+∞上递增 故选项C 正确 所以当2x =-时,则()f x 取得极大值3122(2)(2)4(2)233f -=⨯--⨯-+=在2x =时,则()f x 取得极小值3110(2)242233f =⨯-⨯+=- 故选项A 正确当[]3,4x ∈时,则()f x 为单调递增函数 所以当3x =时,则()f x 取得最小值31(3)343213f =⨯-⨯+=-当4x =时,则()f x 取得最大值3122(4)444233f =⨯-⨯+= 故选项B 不正确因为(0)4f '=- 所以曲线()y f x =在点(0,2)处的切线方程为24(0)y x -=-- 即42y x =-+ 故选项D 正确.故选:ACD.【点睛】本题考查了利用导数求函数的极值、最值、单调区间 考查了导数的几何意义 属于基础题.11.BCD【分析】根据题意可知:点A 的轨迹为以B 为圆心 半径为m 的圆B 点D 为线段AB 的中点 点G 为线段AC 的中垂线与直线AB 的交点,则GA GC = 利用图形结合圆锥曲线定义理解分析.【详解】根据题意可知:点A 的轨迹为以B 为圆心 半径为m 的圆B 点D 为线段AB 的中点 点G 为线段AC 的中垂线与直线AB 的交点,则GA GC =当4m =时,则线段AC 为圆B 的弦,则AC 的中垂线过圆心B 点G 即点B A 错误; 当68m ≤≤时,则如图1 点G 在线段AB 上 连接GC 则GC GB GA GB AB m +=+==∴点G 的轨迹为以B C 为焦点 长轴长为m 的椭圆 即,22m a c则椭圆的离心率412,23c eamB 正确; 当G 为椭圆短轴顶点时,则BCG 面积的最大 若5m =时,则则2253,2,22ac b a c 最大面积为3bc = D 正确; 当2m =时,则过点C 作圆B 的切线 切点为,M N若点A 在劣弧MN (不包括端点,M N )上 如图2 点G 在BA 的延长线上 连接GC 则2GB GC GB GA AB -=-==∴点G 的轨迹为以B C 为焦点 长轴长为m 的双曲线的左半支若点A 在优弧MN (不包括端点,M N )上 如图3 点G 在AB 的延长线上 连接GC 则2GC GB GA GB AB -=-==∴点G 的轨迹为以B C 为焦点 长轴长为m 的双曲线的右半支 则点G 的轨迹为双曲线∴1,2,a c b ===渐近线方程为by x a=±= C 正确; 故选:BCD .12.BC【分析】根据正四棱柱和正四棱锥的几何的性质结合球的对称性、球的表面积公式、线面角、二面角的定义逐一判断即可.【详解】设正四棱柱和正四棱锥的高为h球O的半径为r根据正四棱柱和球的对称性可知:该几何体的外接球的球心为正四棱柱的中心球的直径2r 即为正四棱柱的体对角线 且正四棱柱的体心到正四棱锥的顶点的距离32h r = 根据正四棱柱的体对角线公式得2222224348(22292)r h r r r ⇒=+⇒+==+ 因此1h = 所求球的表面积为294π4π9π4r =⋅= 故选项A 不正确 C 正确; 在直角三角形EFG中EG ==所以正四棱柱和正四棱锥组成的几何体的表面积为:14222421122⨯⨯⨯+⨯⨯=+所以选项B 正确 如图所示:1tan tan 11EGFα1tan tan 12FHE β=∠==显然有tan tan αβαβ>⇒>所以选项D 不正确 故选:BC13.【详解】222221tan 2,sin 2cos ,sin 4cos 1cos 4cos cos 5αααααααα=∴=∴=⇒-=⇒= 2sin cos 116cos 3sin cos 55ααααα++=+=- 14.18【分析】根据等差数列的通项公式 结合代入法进行求解即可.【详解】设该等差数列的公差为d 因为13a =所以由2414333142a a d d d +=⇒+++=⇒=由373(1)23718m a m m =⇒+-⋅=⇒=故答案为:1815.0.84135【分析】由题知()2~34.3,4.3X N 故()()30P X P X μσ≥=≥- 再结合正态分布3σ原则求解即可得答案.【详解】解:由题意知 ()2~34.3,4.3X N所以()()()3034.3 4.3P X P X P X μσ≥=≥-=≥-故()()1110.68270.841352P X μσ≥-=--=. 所以这节电池可持续使用不少于30小时的概率为0.84135.故答案为:0.8413516.e【分析】利用函数同构及函数单调性得到12ln x x = 问题转化为求()ln x h x x =(1x >)的最小值 利用导函数 研究其单调性 求出最小值.【详解】()()()()ln 1ln e 1ln ln x g x x x x f x =+=+=,则 ()()()12ln 1f x f x m m ==> 因为()()111e 11x f x x =+> 故1>0x 又当0x >时,则()()1e 10x f x x '=++>恒成立 即()()e 1x f x x =+单调递增 所以12ln x x =,则112l l n n x x x m m m=+ 令()ln x h x x =(1x >) ()()2ln 1ln x h x x -'= 当()1,e x ∈时,则()0h x '< 当()e,+x ∈∞时,则()0h x '> 所以()h x 在e x =处取得最小值 ()e e e ln e h == 112ln x x x m +的最小值为e .故答案为:e17.【分析】(1)利用正弦定理sin sin BC AC A B = 可求得1π6B = 根据()sin sinC A B =+结合面积公式求解;(2)在BCN △中利用余弦定理求1CN = 在直角CMN 中根据tan MN MCN CN=∠求解.【详解】(1)在ABC 中BC AC >,则A B >由正弦定理得:sin sin BC AC A B = 2sin 4π=,则1sin 2B = 因为(0,π)B ∈,则1π6B =或5π6B =(不合题意 舍去)则()sin sin sin cos cos sin C A B A B A B =+=+=ABC 的面积为1sin 2ABC S CB CA C =⋅⋅⋅=△(2)在BCN △中2BC = BN =π6B =由余弦定理可得1CN == 则有222BC BN CN =+ 所以CN AB ⊥在直角CMN 中1CN = π6MCN ∠=πtan 6MN CN ==MN =18.(1)2n n a =; (2)21n n +.【分析】(1)设{}n a 的公比为q 列方程求得q 后可得通项公式;(2)由题可得n b n T 然后利用裂项相消法即得.【详解】(1)设{}n a 的公比为q (0q >)因为12a = 且324,2,a S a 成等差数列所以()3421244a a S a a +==+所以23224(22)q q q +=+ 即()214(1)q q q +=+ 又0q > 所以2q所以2n n a =;(2)由题可知2log n n b a n ==所以n T ()1122n n n +=+++=()1211211⎛⎫==- ⎪++⎝⎭n T n n n n 所以11111122121223111n n H n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭. 19.(1)有99%的把握认为购买该系列盲盒与年龄有关(2)① 4;②见解析【分析】(1)列出列联表 计算出2K 然后判断.(2)①利用概率的乘法公式计算;②分析X 的取值后 由概率的加法公式和乘法公式计算 得到分布列 然后计算期望.【详解】(1)由题意可得则()22100353015201009.091 6.6355050455511K ⨯-⨯==≈>⨯⨯⨯ 所以有99%的把握认为购买该系列盲盒与年龄有关. (2)①由题意三个同学同时买到各自的不同款的概率为9121211212123m m 解得20m =或4 因为012m <≤ 所以4m =.②由题X 的所有可能取值为0 1 2 33441012121236P X; 94438471212121212121236P X; 9843884221212121212129P X ; ()133P X == 其分布列为所以数学期望()174125012336369312E X =⨯+⨯+⨯+⨯=. 20.它们是平行直线或异面直线;答案见解析.【分析】利用反证法 根据两条直线交点的个数 可判断其位置关系;【详解】直线,a b 的位置关系是平行直线或异面直线;理由如下:由//αβ 直线,a b 分别在平面α β内可知直线,a b 没有公共点.因为若,a b 有公共点 那么这个点也是平面α β的公共点这与是平面α β平行矛盾.因此直线,a b 不相交 它们是平行直线或异面直线.21.(1)π2(2)()+∞【分析】(1)利用三角函数的基本关系式与正弦定理可得;(2)由12AB AC ⋅<推得0c << 再由221a c +=设πsin ,cos ,0,4c a θθθ⎛⎫==∈ ⎪⎝⎭ 将11a c +转化为sin cossin cos θθθθ+ 再引入(sin cos ,t t θθ=+∈ 得(2112,1t t a c t +=∈- 最后利用复合函数的单调性即可求解. 【详解】(1)因为222cos cos 1cos A C B +=+,则2221sin 1sin 11sin A C B -+-=+-所以222sin sin sin A C B +=,则222a c b += 所以ABC 为直角三角形所以π2B =(2)221cos 2AB AC AB AC A AB c ⋅=⋅⋅==< 所以0c < 而221a c += 所以设πsin ,cos ,0,4c a θθθ⎛⎫==∈ ⎪⎝⎭所以1111sin cos sin cos sin cos a c θθθθθθ++=+=令(πsin cos ,4t t θθθ⎛⎫=+=+∈ ⎪⎝⎭又因为22(sin cos )12sin cos t θθθθ=+=+ 所以21sin cos 2t θθ-=所以(2112,1t t a c t +=∈-令(222,11t y t t t t ==∈-- 因为1t t -在(t ∈上单调递增 所以21y t t =-在(t ∈上单调递减所以21y >=所以11a c +的取值范围为()+∞. 22.(1)单调递减区间是11,3⎛⎫- ⎪⎝⎭ 单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭ (2)22,227⎛⎫ ⎪⎝⎭【分析】(1)根据题意 列出方程组求得()321f x x x x =+-+ 得到()2321f x x x '=+- 进而求得函数的单调区间;(2)由题意得到()321g x x x x m =+-+- 结合条件列出不等式组 即得.(1)由题可得2()32f x x ax b '=++由题意得(1)22(1)324f a b f a b =++=⎧⎨=++='⎩ 解得1,1a b ==-所以322()1,()321f x x x x f x x x =+-+=+-'由()0f x '>得1x <-或13x > 由()0f x '<得113x -<< 所以()f x 的单调递减区间是11,3⎛⎫- ⎪⎝⎭ 单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭; (2)因为322()()1,()()321g x f x m x x x m g x f x x x =-=+-+='-=+-'由(1)可知 ()g x 在=1x -处取得极大值 在13x =处取得极小值()g x 的单调递减区间是11,3⎛⎫- ⎪⎝⎭ 单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭ 依题意 要使()g x 有三个零点,则(1)0103g g ->⎧⎪⎨⎛⎫< ⎪⎪⎝⎭⎩ 即()1201220327g m g m ⎧-=->⎪⎨⎛⎫=-< ⎪⎪⎝⎭⎩ 解得22227m << 经检验 (2)10,(2)110g m g m -=-<=+> 根据零点存在定理 可以确定函数有三个零点所以m 的取值范围为22,227⎛⎫ ⎪⎝⎭.。
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若f(x)在区间[1,2]上的最大值为f(1),则f(x)在区间[1,2]上的单调性为()A. 单调递增B. 单调递减C. 先增后减D. 先减后增2. 若等差数列{an}的前n项和为Sn,且S3 = 12,S6 = 36,则该数列的公差d为()A. 2B. 3C. 4D. 63. 下列各式中,正确的是()A. sin(α + β) = sinαcosβ + cosαsinβB. cos(α + β) = cosαcosβ - sinαsinβC. tan(α + β) = tanαtanβD. cot(α + β) = cotαcotβ4. 已知函数g(x) = 2x^3 - 3x^2 + 4,若g'(x) > 0,则g(x)的增区间为()A. (-∞, 1)和(1, +∞)B. (-∞, 1)和(1, 2)C. (-∞, 2)和(2, +∞)D. (-∞, 2)和(2, 1)5. 已知直线l的方程为2x + 3y - 6 = 0,若直线l与圆x^2 + y^2 = 9相切,则圆心到直线l的距离d为()A. 3B. 2C. √5D. √26. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,则数列{an + 1}的通项公式为()A. an + 1 = 2nB. an + 1 = 2n - 1C. an + 1 = 2n + 1D. an + 1 = 2n - 27. 若复数z = a + bi(a,b∈R),且|z| = 1,则z的共轭复数z的实部为()A. aB. -aC. bD. -b8. 已知函数f(x) = log2(x + 1),则f(x)的值域为()A. (0, +∞)B. (1, +∞)C. (-∞, +∞)D. (-∞, 0)9. 若函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1, 3),则a,b,c的值分别为()A. a = 1,b = -2,c = 3B. a = 1,b = 2,c = 3C. a = -1,b = -2,c = 3D. a = -1,b = 2,c = 310. 已知数列{an}的前n项和为Sn,且S4 = 24,S5 = 36,则数列{an}的通项公式an为()A. an = 6B. an = 6nC. an = 6n - 1D. an = 6n + 1二、填空题(每题5分,共50分)11. 若函数f(x) = x^2 - 4x + 4在区间[1,3]上的最大值为3,则f(x)在区间[1,3]上的最小值为______。
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^2 - 2ax + 1,若f(x)的图像关于x = a对称,则a的值为()A. 0B. 1C. 2D. 无法确定2. 下列函数中,在定义域内单调递增的是()A. y = x^3B. y = x^2C. y = -x^2D. y = x^3 + 3x^23. 若等差数列{an}的公差为d,首项为a1,则第n项an等于()A. a1 + (n - 1)dB. a1 - (n - 1)dC. a1 + ndD. a1 - nd4. 在△ABC中,若a=3,b=4,c=5,则sinA的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若log2x + log2y = 1,则x和y的取值范围是()A. x > 0, y > 0B. x > 0, y ≤ 0C. x ≤ 0, y > 0D. x ≤ 0, y ≤ 06. 已知函数f(x) = x^3 - 3x + 2,若f(x)在区间(-∞, +∞)上单调递增,则a 的取值范围是()A. a < 0B. a > 0C. a = 0D. a ≠ 07. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点Q的坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)8. 若复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹是()A. 实轴B. 虚轴C. 圆心在原点,半径为1的圆D. 直线y = x9. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第n项an等于()A. 2 3^(n-1)B. 2 3^nC. 2^n 3D. 2^n / 310. 若函数f(x) = ax^2 + bx + c在x = 1时取得最小值,则a,b,c之间的关系是()A. a > 0, b = 0, c < 0B. a > 0, b ≠ 0, c < 0C. a < 0, b = 0, c >0 D. a < 0, b ≠ 0, c > 0二、填空题(本大题共10小题,每小题5分,共50分)11. 若等差数列{an}的前n项和为Sn,且S5 = 25,S9 = 45,则S13 = _______。
2023届高三新高考数学原创模拟试卷(word版)一、单选题(★) 1. 若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为()A.5B.4C.3D.2(★★) 2. 若向量与不共线,,且,则向量与的夹角为A.B.C.D.(★) 3. 在财务审计中,我们可以用本福特定律来检验数据是否造假.本福特定律指出,在一组没有人为编造的自然生成的数据(均为正实数)中,首位非零数字是1,2,,9这九个事件并不是等可能的.具体来说,假设随机变量是一组没有人为编造的数据的首位非零数字,则,.根据本福特定律,首位非零数字是1的概率与首位非零数字是8的概率之比约为()(参考数据:,)A.4B.5C.6D.7(★★★) 4. 十一世纪,波斯(今伊朗)诗人奥马尔·海亚姆(约1048-1131)发现了三次方程的几何求解方法,如图是他的手稿,目前存放在伊朗的德黑兰大学.奥马尔采用了圆锥曲线的工具,画出图像后,可通过测量的方式求出三次方程的数值解.在平面直角坐标系上,画抛物线,在轴上取点,以为直径画圆,交抛物线于点.过作轴的垂线,交轴于点.下面几个值中,哪个是方程的解?()A.B.C.D.(★★) 5. 若,则()A.B.C.0D.2(★★★) 6. 函数y=ax 2+ bx与y= (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是()A.B.C.D.(★) 7. 以表示标准正态总体在区间内取值的概率,若随机变量服从正态分布,则概率等于A.B.C.D.(★★) 8. 若干个能确定一个立体图形的体积的量称为该立体图形的“基本量”.已知长方体,下列四组量中,一定能成为该长方体的“基本量”的是()A.,,的长度B.,,的长度C.,,的长度D.,BD,的长度二、多选题(★★★) 9. 在正四面体中,,,分别是,,的中点,则()A.//平面B.C.平面平面D.平面平面(★★★) 10. 设是数列的前项和.下面几个条件中,能推出是等差数列的为()A.当时,B.当时,C.当时,D.当时,(★★★) 11. 投掷一枚均匀的骰子8次,记录每次骰子出现的点数.根据统计结果,可以判断一定出现点数6的是()A.第25百分位数为2,极差为4B.平均数为,第75百分位数为C.平均数为3,方差为3D.众数为4,平均数为(★★★) 12. 设,函数的定义域为.记.两个集合,不交指的是.则()A.若,则是定义在上的偶函数B.若,则在处取到最大值C.若,则可表示成4个两两不交的开区间的并D.若,则可表示成6个两两不交的开区间的并三、双空题(★★★) 13. 设是虚数单位,已知是关于的方程的一个根,则________ , ________ .四、填空题(★★★) 14. 设曲线:.已知曲线满足如下性质:曲线是双曲线,且其渐近线分别为直线与轴.根据以上信息,可得位于第一象限的焦点坐标为 ________ .(★★) 15. 等腰三角形两腰所在直线的方程分别为与,原点在等腰三角形的底边上,则底边所在直线的斜率为 ______ .五、双空题(★★★★) 16. 正方形位于平面直角坐标系上,其中,,,.考虑对这个正方形执行下面三种变换:(1):逆时针旋转.(2):顺时针旋转.(3):关于原点对称.上述三种操作可以把正方形变换为自身,但是,,,四个点所在的位置会发生变化.例如,对原正方形作变换之后,顶点从移动到,然后再作一次变换之后,移动到.对原来的正方形按,,,的顺序作次变换记为,其中,.如果经过次变换之后,顶点的位置恢复为原来的样子,那么我们称这样的变换是-恒等变换.例如,是一个3-恒等变换.则3-恒等变换共 ________ 种;对于正整数,-恒等变换共 ________ 种.六、解答题(★★★) 17. 如图,在四棱锥中,底面为直角梯形,,,底面,且,,分别为,的中点.(1)证明:.(2)求与平面所成角的正弦值.(★★★) 18. 十字测天仪广泛应用于欧洲中世纪晩期的航海领域,主要用于测量太阳等星体的方位,便于船员确定位置.如图1所示,十字测天仪由杆和横档构成,并且是的中点,横档与杆垂直并且可在杆上滑动.十字测天仪的使用方法如下:如图2,手持十字测天仪,使得眼睛可以从点观察.滑动横档使得,在同一水平面上,并且眼睛恰好能观察到太阳,此时视线恰好经过点,的影子恰好是.然后,通过测量的长度,可计算出视线和水平面的夹角(称为太阳高度角),最后通过查阅地图来确定船员所在的位置.(1)在某次测量中,,横档的长度为20,求太阳高度角的正弦值.(2)在杆上有两点,满足.当横档的中点位于时,记太阳高度角为,其中,都是锐角.证明:.(★★★) 19. 设正项数列满足,,.数列满足,其中,.已知如下结论:当时,.(1)求的通项公式.(2)证明:.(★★★★) 20. 椭圆:的右焦点为,为坐标原点.过点的直线交椭圆于,两点.(1)若直线与轴垂直,并且,求的值.(2)若直线绕点任意转动,当,,不共线时,都满足恒为钝角,求的取值范围.(★★★★) 21. 某校20名学生的数学成绩和知识竞赛成绩如下表:学生编1号数学成100绩知识竞赛成绩290学生编11号数学成75绩知识竞赛成绩45计算可得数学成绩的平均值是,知识竞赛成绩的平均值是,并且,,.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到).(2)设,变量和变量的一组样本数据为,其中两两不相同,两两不相同.记在中的排名是第位,在中的排名是第位,.定义变量和变量的“斯皮尔曼相关系数”(记为)为变量的排名和变量的排名的样本相关系数.(i)记,.证明:.(ii)用(i)的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到).(3)比较(1)和(2)(ii)的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.;;.(★★★★★) 22. 设函数,是的导函数.(1)求的所有极值点.(2)下面三个问题的满分分值分别为(i)4分;(ii)7分;(iii)9分.请在下面三个问题中选一个进行解答.若选择了多于一个问题分别解答,则按照序号较小的解答计分.(i)若在区间中有极值点,求的取值范围.(ii)若在区间中有且只有个极值点,求的取值范围.(iii)若在区间中有且只有个极值点,求的取值范围.。
一、选择题(本大题共10小题,每小题5分,共50分)1. 函数f(x) = 2x^3 - 3x^2 + 4x + 1在区间[1, 2]上的零点个数为:A. 0B. 1C. 2D. 32. 若复数z满足|z-1| = |z+1|,则复数z在复平面内的几何意义是:A. 实部为0B. 虚部为0C. 到原点的距离为2D. 到x轴的距离为23. 下列各式中,正确的是:A. sin^2x + cos^2x = 1B. tan^2x + 1 = sec^2xC. cot^2x + 1 = csc^2xD. sin^2x + cot^2x = 14. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S5 = 21,则首项a1为:A. 2B. 3C. 4D. 55. 已知函数f(x) = ax^2 + bx + c(a≠0)的图象开口向上,且与x轴的两个交点分别为(-1, 0)和(3, 0),则a、b、c的关系是:A. a + b + c = 0B. a - b + c = 0C. -a + b + c = 0D. -a - b + c = 06. 若平面α上的直线l与平面β所成的角为θ,平面α与平面β所成的角为β,则下列关系式中正确的是:A. θ = βB. θ + β = 90°C. θ = 90° - βD. θ = 90° + β7. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则下列关系式中正确的是:A. a^2 = b^2 + c^2 - 2bccosAB. b^2 = a^2 + c^2 - 2accosBC. c^2 = a^2 + b^2 - 2abcosCD. a^2 = b^2 + c^2 + 2bccosA8. 下列函数中,在区间(0, +∞)上单调递减的是:A. y = 2^xB. y = log2xC. y = x^2D. y = x^39. 已知向量a = (2, -1),向量b = (-3, 2),则向量a·b的值为:A. 5B. -5C. 0D. 710. 下列不等式中,正确的是:A. log2(3) > log2(2)B. log3(3) < log3(2)C. log2(2) < log2(3)D. log3(2) < log2(3)二、填空题(本大题共5小题,每小题10分,共50分)11. 若函数f(x) = x^3 - 3x^2 + 2x + 1的导数f'(x) = 0的解为x1、x2,则f(x)的极值点为______。
浙江省温州2024届高三第一次模拟考试数学学科(答案在最后)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则复数1i1i +-的虚部为()A.i - B.iC.0D.1【答案】D 【解析】【分析】利用复数的除法运算,得到复数的代数形式,由此求得复数的虚部.【详解】因为()()21i (1i)2ii 1i 1i 1i 2++===-+-,所以虚部为1.故选:D .2.某校高一年级18个班参加艺术节合唱比赛,通过简单随机抽样,获得了10个班的比赛得分如下:91,89,90,92,94,87,93,96,91,85,则这组数据的80%分位数为()A.93B.93.5C.94D.94.5【答案】B 【解析】【分析】利用百分位数的定义即可得解.【详解】将比赛得分从小到大重新排列:85,87,89,90,91,91,92,93,94,96,因为1080%8⨯=,所以这组数据的80%分位数第8个数与第9个数的平均值,即939493.52+=.故选:B.3.已知直线:2l y x b =+与圆()()22:235C x y ++-=有公共点,则b 的取值范围为()A.[]2,12 B.(][),212,∞∞-⋃+C.[]4,6- D.(][),46,-∞-+∞ 【答案】A 【解析】【分析】由圆心到直线距离小于等于半径,得到不等式,求出答案.【详解】由题意得,圆心()2,3-到直线:2l y x b =+的距离≤,解得212b ≤≤,故b 的取值范围是[]2,12.故选:A4.三棱锥-P ABC 中,PA ⊥平面ABC ,ABC 为等边三角形,且3AB =,2PA =,则该三棱锥外接球的表面积为()A.8πB.16πC.32π3D.12π【答案】B 【解析】【分析】首先作图构造外接球的球心,再根据几何关系求外接球的半径,最后代入三棱锥外接球的表面积公式.【详解】如图,点H 为ABC 外接圆的圆心,过点H 作平面ABC 的垂线,点D 为PA 的中点,过点D 作线段PA 的垂线,所作两条垂线交于点O ,则点O 为三棱锥外接球的球心,因为PA ⊥平面ABC ,且ABC 为等边三角形,2,3PA AB ==,所以四边形AHOD 为矩形,3AH AB ==112OH PA ==,所以2OA ==,即三棱锥外接球的半径2R =,则该三棱锥外接球的表面积为24π16πR =.故选:B5.已知等比数列{}n a 的首项11a >,公比为q ,记12n n T a a a =⋅⋅⋅(*n ∈N ),则“01q <<”是“数列{}n T 为递减数列”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据等比数列的通项公式,结合等差数列的前n 项和公式、充分性和必要性的定义进行判断即可.【详解】由题意,()()1123(1)1121211110n n n nn n n n a a q a q aT qa qa a a a --+++-=⋅=⋅⋅=⋅⋅⋅>= ,(1)12111(1)21n n n nn n n n nT a q a q T a q +++-⋅==⋅⋅,当11,01a q ><<时,11na q ⋅<对于N n *∈不一定恒成立,例如122,3a q ==;当{}n T 为递减数列时,0q >且11na q ⋅<对于N n *∈恒成立,又因为11a >,所以得01q <<,因此“01q <<”是“数列{}n T 为递减数列”的必要不充分条件,故选:C.6.已知函数()π4f x x ω⎛⎫=- ⎪⎝⎭,其中0ω>.若()f x 在区间π3π,34⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围是()A.10,3⎛⎤ ⎥⎝⎦B.35,43⎡⎤⎢⎥⎣⎦C.50,3⎛⎤ ⎥⎝⎦D.(]0,1【答案】A 【解析】【分析】利用余弦函数的单调性求出()π4f x x ω⎛⎫=- ⎪⎝⎭单调递增区间,可得3π2ππ4,3π2π3π4,4k k ωω⎧-+⎪≤⎪⎪⎨⎪+⎪≥⎪⎩,解不等式即可得出答案.【详解】由题意得,函数()f x 的增区间为()ππ2π2π4k x k k ω-+≤-≤∈Z ,且0ω>,解得()3ππ2π2π44k k x k ωω-++≤≤∈Z .由题意可知:()3ππ2π2ππ3π44,,34k k k ωω⎛⎫-++ ⎪⎛⎫⊆∈⎪ ⎪⎝⎭ ⎪⎝⎭Z .于是3π2ππ43π2π3π44k k ωω⎧-+⎪≤⎪⎪⎨⎪+⎪≥⎪⎩,解得()9186433k k k ω-+≤≤+∈Z .又0ω>,于是103ω<≤.故选:A .7.在直角梯形ABCD ,AB AD ⊥,//DC AB ,1AD DC ==,=2AB ,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示),若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是()A.⎡⎤⎣⎦B.⎡⎣C.11,22⎡⎤-⎢⎥⎣⎦D.,22⎡-⎢⎣⎦【答案】A 【解析】【分析】结合题意建立直角坐标系,得到各点的坐标,再由AP ED AF λμ=+ 得到3cos 2αλμ=-+,1sin 2αλμ=+,从而得到2π4αλμ⎛⎫=-- ⎪⎝⎭,由此可求得2λμ-的取值范围.【详解】结合题意建立直角坐标,如图所示:.则()0,0A ,()1,0E ,()0,1D ,()1,1C ,()2,0B ,()ππcos ,sin 22P ααα⎛⎫-≤≤ ⎪⎝⎭,则31,22F ⎛⎫ ⎪⎝⎭,()cos ,sin AP αα=,()1,1ED =- ,31,22AF ⎛⎫= ⎪⎝⎭ ,∵AP ED AF λμ=+ ,∴()()3131cos ,sin 1,1,,2222ααλμλμλμ⎛⎫⎛⎫=-+=-++ ⎪⎪⎝⎭⎝⎭,∴3cos 2αλμ=-+,1sin 2αλμ=+,∴()13sin cos 4λαα=-,()1cos sin 2μαα=+,∴()()11π23sin cos cos sin sin cos 224λμααααααα⎛⎫-=--+=-=- ⎪⎝⎭,∵ππ22α-≤≤,∴3πππ444α-≤-≤,∴π1sin 42α⎛⎫-≤-≤ ⎪⎝⎭,∴π14α⎛⎫≤-≤ ⎪⎝⎭,故21λμ≤-≤,即()2λμ⎡⎤⎣⎦-∈.故选:A.8.已知lg4lg5lg610,9,8a b c ===,则,,a b c 的大小关系为()A.a b c >>B.a c b>> C.b c a>> D.c b a>>【答案】D 【解析】【分析】根据题意可得lg lg4lg10,lg lg5lg9,lg lg6lg8a b c =⋅=⋅=⋅,构建函数()()lg lg 14,46f x x x x =⋅-≤≤,利用导数分析可知()f x 在[]4,6上单调递增,进而结合对数函数单调性分析判断.【详解】因为lg4lg5lg610,9,8a b c ===,两边取对数得:lg lg4lg10,lg lg5lg9,lg lg6lg8a b c =⋅=⋅=⋅,令()()lg lg 14,46f x x x x =⋅-≤≤,则()()()()()()lg 1414lg 14lg lg 1ln1014ln10ln1014x x x x x x f x x x x x ⎡⎤----⋅=-=⎢⎥-⋅-⎢⎥⎣⎦',令()lg g x x x =⋅,则()()()()1lg lg lg 0,1,ln10g x x x x x x x '=⋅+⋅=+>∈''+∞,可知()g x 在()1,+∞上单调递增,因为46x ≤≤,则81410x ≤-≤,可知14x x ->恒成立,则()()14g x g x ->,即()()140g x g x -->,可得()0f x ¢>,则()()lg lg 14f x x x =⋅-在[]4,6上单调递增,可得()()()456f f f <<,可得lg4lg10lg5lg9lg6lg8⋅<⋅<⋅,即lg lg lg a b c <<,又因为lg y x =在()0,∞+上单调递增,所以a b c <<.故选:D.【点睛】关键点睛:对题中式子整理观察形式,构建函数()()lg lg 14,46f x x x x =⋅-≤≤,利用导数判断其单调性.二、多选题:本大题共4小题,在每小题给出的四个选项中,有多项符合题目要求.9.下列选项中,与“11x>”互为充要条件的是()A.1x <B.20.50.5log log x x >C.233x x< D.()()11x x x x -=-【答案】BC 【解析】【分析】求解各不等式判断即可.【详解】对A ,11x>则110x ->,即10xx ->,()10x x -<,解得01x <<,故A 错误;对B ,20.50.5log log x x >则20x x <<,故()10x x -<,解得01x <<,故B 正确;对C ,233x x <则2x x <,解得01x <<,故C 正确;对D ,()()11x x x x -=-,则()10x x -≤,解得01x ≤≤,故D 错误.故选:BC10.设A ,B 是一次随机试验中的两个事件,且1(3P A =,1()4P B =,7()12P AB AB +=,则()A.A ,B 相互独立B.5()6P A B +=C.()13P B A =D.()()P A B P B A≠【答案】ABD【解析】【分析】利用独立事件、对立事件、互斥事件的定义与概率公式可判定A 、B ,利用条件概率的定义与公式可判定C 、D .【详解】由题意可知()()()23()1,134P A P A P B P B =-==-=,事件,AB AB 互斥,且()()()()()(),P AB P AB P A P AB P AB P B +=+=,所以()()()()()7()212P AB AB P AB P AB P A P B P AB +=+=+-=,即()()()()2171234126P AB P AB P A P B +-=⇒==,故A 正确;则()()()()()()()()P A B P A P B P AB P A P B P A P B+=+-=+-⋅1313534346=+-⨯=,故B 正确;由条件概率公式可知:()()()11162433P AB P B A P A ===≠,故C 错误;()()()()()()11146134P AB P B P AB P A B P B P B --====,()()()()()()21336243P BA P A P AB P B A P A P A --====即()()P A B P B A ≠,故D 正确.故选:ABD11.在三棱锥-P ABC 中,ACBC ⊥,4AC BC ==,D 是棱AC 的中点,E 是棱AB 上一点,2PD PE ==,AC ⊥平面PDE ,则()A.//DE 平面PBCB.平面PAC ⊥平面PDEC.点P 到底面ABC 的距离为2D.二面角D PB E --的正弦值为7【答案】ABD 【解析】【分析】根据线面平行的判定定理可判断A ;根据面面垂直的判定定理可判断B ;取DE 的中点O ,过点O 作OF DE ⊥交BC 于点F ,利用线面垂直的判定定理可得PO ⊥平面ABC ,求出PO 可判断C ;以{},,OE OF OP为正交基底建立空间直角坐标系,求出平面PBD 、平面PBD 的一个法向量,由线面角的向量求法可判断D .【详解】对于A ,因为AC ⊥平面PDE ,DE ⊂平面PDE ,所以AC DE ⊥.因为AC BC ⊥,且直线,,AC BC DE ⊂平面ABC ,所以//DE BC .因为DE ⊄平面PBC ,BC ⊂平面PBC ,所以//DE 平面PBC ,A 正确;对于B ,AC ⊥平面PDE ,AC ⊂平面PAC ,所以平面PDE ⊥平面PAC ,B 正确;对于C ,取DE 的中点O ,连接PO ,过点O 作OF DE ⊥交BC 于点F ,因为PD PE =,所以PO DE ⊥.因为AC ⊥平面PDE ,PO ⊂平面PDE ,所以AC PO ⊥,因为DE AC D ⋂=,DE ,AC ⊂平面ABC ,所以PO ⊥平面ABC,PO =,C 错误;对于D ,如图,以{},,OE OF OP为正交基底建立空间直角坐标系,因为D 是AC 的中点,4AC BC ==,所以()()()()0,0,0,3,2,0,1,0,0,1,0,0O B E D -,因为2PD PE ==,所以PO =,即(P ,所以()((()4,2,0,1,0,,1,0,,2,2,0DB DP EP EB ===-=,设平面PBD 的一个法向量()111,,m x y z =,则00m DB m DP ⎧⋅=⎪⎨⋅=⎪⎩,即11114200x y x +=⎧⎪⎨+=⎪⎩,令1x =111y z =-=-,所以平面PBD的一个法向量)1m =--,设平面PBE 的一个法向量()222,,n x y z = ,则0n EB n EP ⎧⋅=⎪⎨⋅=⎪⎩,即22222200x y x +=⎧⎪⎨-+=⎪⎩,令2x =,得221y z ==,所以平面PBE的一个法向量)n =,所以1cos ,7m nm n m n-⨯-⋅== ,设二面角D PB E--为[],0,πθθ∈,所以21sin 7θ==,所以二面角D PB E --的正弦值为7,故D 正确.故选:ABD .【点睛】方法点睛:二面角的通常求法,1、由定义作出二面角的平面角;2、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;3、利用向量法求二面角的平面.12.设F 为抛物线2:4C y x =的焦点,直线():2200l x ay b a -+=≠与C 的准线1l ,交于点A .已知l 与C 相切,切点为B ,直线BF 与C 的一个交点为D ,则()A.点(),a b 在C 上B.BAF AFB∠<∠C.以BF 为直径的圆与1l 相离 D.直线AD 与C 相切【答案】BCD 【解析】【分析】A 选项,联立直线l 与抛物线方程,根据根的判别式得到点(),b a 在C 上;B 选项,作出辅助线,结合抛物线定义得到相等关系,再由大边对大角作出判断;C 选项,证明出以BF 为直径的圆与y 轴相切,得到C 正确;D 选项,设出直线BD 方程,与抛物线方程联立求出D 点坐标,从而求出直线AD 方程,联立抛物线,根据根的判别式得到答案.【详解】对于A ,联立直线l 与C 的方程,消去x 得2240y ay b -+=,因为l 与C 相切,所以2Δ4160a b =-=,即24a b =,所以点(),b a 在C 上,A 错误.对于B ,过点B 作BM 垂直于C 的准线,垂足为M ,由抛物线定义知BF BM =,因为0a ≠,所以AB BM >,所以在ABF △中,AB BF >,由大边对大角得BAFAFB ∠<∠,B 正确.对于C ,()1,0F ,由A 选项l 与C 相切,切点为B ,可得(),B b a ,其中24a b =,则BF 的中点坐标为1,22b a +⎛⎫⎪⎝⎭,且()221BF b a =-+()()22211412b a b bb -+-++==,由于半径等于以BF 为直径的圆的圆心横坐标,故以BF 为直径的圆与y 轴相切,所以与1l 相离,C 正确;对于D ,设直线BD 方程为11b x y a -=+,与C 联立得()24140b y y a ---=,所以4D a y ⋅=-,解得4D y a=-,则21144111D D b b x y a a a a b --⎛⎫=+=⋅-+== ⎪⎝⎭,因为221,b A a -⎛⎫- ⎪⎝⎭,所以直线AD 方程为22b y x a a=--,联立直线AD 与曲线C 的方程得2240by ay ++=,因为2Δ4160a b '=-=,所以直线AD 与C 相切,D 正确.故选:BCD .【点睛】抛物线的相关结论,22y px =中,过焦点F 的直线与抛物线交于,A B 两点,则以,AF BF 为直径的圆与y 轴相切,以AB 为直径的圆与准线相切;22x py =中,过焦点F 的直线与抛物线交于,A B 两点,则以,AF BF 为直径的圆与x 轴相切,以AB 为直径的圆与准线相切.三、填空题:本大题共4小题13.已知:31p x -≤≤,:q x a £(a 为实数).若q 的一个充分不必要条件是p ,则实数a 的取值范围是________.【答案】[)1,+∞【解析】【分析】利用小范围是大范围的充分不必要条件转换成集合的包含关系求解.【详解】因为q 的一个充分不必要条件是p ,所以[3,1]-是(],a -∞的一个真子集,则1a ≥,即实数a 的取值范围是[)1,+∞.故答案为:[)1,+∞.14.已知正项数列{}n a 满足121n n n a a n +=+,则106a a =_______.【答案】485【解析】【分析】由递推公式可得121n n a n a n +=+,再由累乘法即可求得结果.【详解】由121n n n a a n +=+可得121n na n a n +=+,由累乘可得9101879870662928272648918171615a a a a a a a a a a ⨯⨯⨯⨯=⋅⋅⋅=⨯⨯⨯=++++.故答案为:48515.直三棱柱111ABC A B C -的底面是直角三角形,AC BC ⊥,6AC =,8BC =,14AA =.若平面α将该直三棱柱111ABC A B C -截成两部分,将两部分几何体组成一个平行六面体,且该平行六面体内接于球,则此外接球表面积的最大值为______.【答案】104π【解析】【分析】α可能是AC 的中垂面,BC 的中垂面,1AA 的中垂面.截下的部分与剩余的部分组合成为长方体,用公式求出外接球直径进而求解.【详解】平行六面体内接于球,则平行六面体为直四棱柱,如图α有如下三种可能.截下的部分与剩余的部分组合成为长方体,则222238489R =++=或222264468R =++=或2222682104R =++=,所以2max 4π104πS R ==.故答案为:104π16.对任意(1,)x ∈+∞,函数()ln ln(1)0(1)x f x a a a x a =--≥>恒成立,则a 的取值范围为___________.【答案】1e e ,⎡⎫+∞⎪⎢⎣⎭【解析】【分析】变形为()()11ln 1ln 1x x aa x x --≥--,构造()ln ,0F t t t t =>,求导得到单调性进而11x a ->恒成立,故()10x F a->,分当(]10,1x -∈和11x ->两种情况,结合()ln u g u u =单调性和最值,得到1e e a ≥,得到答案.【详解】由题意得1ln ln(1)x a a x -≥-,因为(1,)x ∈+∞,所以()()()11ln 1ln 1x x aa x x --≥--,即()()11ln 1ln 1x x a a x x --≥--,令()ln ,0F t t t t =>,则()()11x F aF x -≥-恒成立,因为()1ln F t t ='+,令()0F t '>得,1e t ->,()ln F t t t =单调递增,令()0F t '<得,10e t -<<,()ln F t t t =单调递减,且当01t <≤时,()0F t ≤恒成立,当1t >时,()0F t >恒成立,因为1,1a x >>,所以11x a ->恒成立,故()10x F a ->,当(]10,1x -∈时,()10F x -≤,此时满足()()11x F a F x -≥-恒成立,当11x ->,即2x >时,由于()ln F t t t =在()1e ,t ∞-∈+上单调递增,由()()11x F a F x -≥-得()1ln 11ln 1x x a x a x --≥-⇒≥-,令11u x =->,()ln u g u u =,则()21ln u g u u -'=,当()1,e u ∈时,()0g u '>,()ln u g u u =单调递增,当()e,+u ∞∈时,()0g u '<,()ln u g u u =单调递减,故()ln u g u u =在e u =处取得极大值,也是最大值,()ln e 1e e eg ==,故1ln e a ≥,即1e e a ≥,所以,a 的取值范围是1e e ,∞⎡⎫+⎪⎢⎣⎭.故答案为:1e e ,∞⎡⎫+⎪⎢⎣⎭【点睛】导函数求解参数取值范围,当函数中同时出现指数函数与对数函数,通常使用同构来进行求解,本题难点是1ln ln(1)x a a x -≥-两边同时乘以1x -,变形得到()()11ln 1ln 1x x a a x x --≥--,从而构造()ln ,0F t t t t =>进行求解.四、解答题:木大题共6小题,解答应写出文字说明,证明过程或演算步骤.17.在ABC 中,内角,,A B C 的对边分别为a ,b ,c ,且222a c b ac +-=,a =cos 3A =.(1)求角B 及边b 的值;(2)求sin(2)A B -的值.【答案】(1)π3B =,94b =(2【解析】【分析】(1)由余弦定理得到π3B =,求出2sin 3A =,由正弦定理得到94b =;(2)由二倍角公式求出sin 2,cos 2A A ,由差角公式求出答案.【小问1详解】因为222a cb ac +-=,由余弦定理得2221cos 222a c b ac B ac ac +-===,因为()0,πB ∈,所以π3B =,因为()0,πA ∈,cos 3A =,所以2sin 3A ==,由正弦定理得sin sin a b A B =,即232=94b =;【小问2详解】由(1)得2sin 22sin cos 2339A A A ==⨯⨯=,2251cos 22cos 12139A A ⎛=-=⨯-= ⎝⎭,8sin(2)sin 2cos cos 2s 11929i 1n 2A B A B A B -=-=⨯-⨯=.18.已知数列{}n a 的前n 项和为n S ,且2n n S a n =-.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n n a b a a ++=,其前n 项和为n T ,求使得20232024n T >成立的n 的最小值.【答案】(1)21n n a =-;(2)10.【解析】【分析】(1)根据,n n a S 关系及递推式可得112(1)n n a a -+=+,结合等比数列定义写出通项公式,即可得结果;(2)应用裂项相消法求n T ,由不等式能成立及指数函数性质求得10n ≥,即可得结果.【小问1详解】当2n ≥时,111(2)(21)2()1n n n n n n n a S S a n a n a a ---=-=---+=--,所以121n n a a -=+,则112(1)n n a a -+=+,而1111211a S a a ==-⇒=,所以112a +=,故{1}n a +是首项、公比都为2的等比数列,所以12nn a +=⇒21n n a =-.【小问2详解】由1111211(21)(21)2121n n n n n n n n n a b a a ++++===-----,所以111111111111337715212121n n n n T ++=-+-+-++-=---- ,要使1202324112102n n T +>=--,即111202520211422n n ++>-<⇒,由1011220252<<且*N n ∈,则11110n n +≥⇒≥.所以使得20232024n T >成立的n 的最小值为10.19.如图,正三棱锥O ABC -的三条侧棱OA 、OB 、OC 两两垂直,且长度均为2.E 、F 分别是AB 、AC 的中点,H 是EF 的中点,过EF 作平面与侧棱OA 、OB 、OC 或其延长线分别相交于1A 、1B 、1C ,已知132OA =.(1)求证:11B C ⊥平面OAH ;(2)求二面角111O A B C --的大小.【答案】(1)证明见解析;(2)【解析】【分析】(1)利用三角形中位线定理结线面平行的判定可得EF ∥平面OBC ,再由线面平行的性质可得EF ∥11B C ,由等腰三角形的性质可得AH ⊥EF ,从而可得AH ⊥11B C ,再由已知可得OA ⊥平面OBC ,则OA ⊥11B C ,然后利用线面垂直的判定定理可证得结论;(2)作ON ⊥11A B 于N ,连1C N ,则由已知条件可证得11A B ⊥平面1OC N ,从而可得1ONC ∠就是二面角111O A B C --的平面角,过E 作EM ⊥1OB 于M ,则可得EM ∥OA ,设1OB x =,然后利用平行线分线段成比例定理结合已知条件可求得x ,在11R t OA B 中可求出11A B 的长,从而可求得ON ,进而可直角三角形1OC N 中可求得结果.【详解】(1)证明:因为E 、F 分别是AB 、AC 的中点,所以EF 是ABC 的中位线,所以EF ∥BC ,因为EF ⊄平面OBC ,BC ⊂平面OBC ,所以EF ∥平面OBC ,因为EF ⊂平面111A B C ,平面111A B C Ç平面11OBC B C =,所以EF ∥11B C .因为E 、F 分别是AB 、AC 的中点,所以11,22AE AB AF AC ==,因为AB AC =,所以AE AF =,因为H 是EF 的中点,所以AH ⊥EF ,所以AH ⊥11B C .因为OA ⊥OB ,OA ⊥OC ,OB OC O = ,所以OA ⊥平面OBC ,因为11B C ⊂平面OBC ,所以OA ⊥11B C ,因为OA AH A= 因此11B C ⊥面OAH .(2)作ON ⊥11A B 于N ,连1C N .因为111111,,OC OA OC OB OA OB O ⊥⊥= ,因为1OC ⊥平面11OA B ,因为11A B ⊂平面11OA B ,所以111OC A B ⊥,因为1ON OC O = ,所以11A B ⊥平面1OC N ,因为1C N ⊂平面1OC N ,所以1C N ⊥11A B,所以1ONC ∠就是二面角111O A B C --的平面角.过E 作EM ⊥1OB 于M ,则EM ∥OA ,则M 是OB 的中点,则111,122EM OA OM OB ====.设1OB x =,由111OB OA MB EM =得,312x x =-,解得3x =,则13OC =,在11R t OA B中,11A B ==则1111OA OB ON A B ⋅==.所以在1R t ONC中,11tan OC ONC ON ∠==故二面角111O A B C --为20.甲、乙、丙为完全相同的三个不透明盒子,盒内均装有除颜色外完全相同的球.甲盒装有4个白球,8个黑球,乙盒装有1个白球,5个黑球,丙盒装有3个白球,3个黑球.(1)随机抽取一个盒子,再从该盒子中随机摸出1个球,求摸出的球是黑球的概率;(2)已知(1)中摸出的球是黑球,求此球属于乙箱子的概率.【答案】(1)23(2)512【解析】【分析】(1)设出事件,运用全概率公式求解即可.(2)利用条件概率公式求解即可.【小问1详解】记取到甲盒子为事件1A ,取到乙盒子为事件2A ,取到丙盒子为事件3A ,取到黑球为事件B :由全概率公式得1122331815132()()(|)()(|)()(|)31236363P B P A P B A P A P B A P A P B A =++=⨯+⨯+⨯=,故摸出的球是黑球的概率是23.【小问2详解】由条件概率公式得2215()536(|)2()123P A B P A B P B ⨯===,故此球属于乙箱子的概率是51221.设椭圆(222:109x y C b b +=<<,P 是C 上一个动点,点()1,0A ,PA长的最小值为2.(1)求b 的值:(2)设过点A 且斜率不为0的直线l 交C 于,B D 两点,,E F 分别为C 的左、右顶点,直线BE 和直线DF 的斜率分别为12,k k ,求证:12k k 为定值.【答案】(1;(2)证明见解析.【解析】【分析】(1)设出点P 坐标,并求出PA 长,再结合二次函数探求最小值即得解.(2)设出直线l 的方程,与椭圆方程联立,设出点,B D 的坐标,利用斜率坐标公式,结合韦达定理计算即得.【小问1详解】依题意,椭圆C 的焦点在x 轴上,设焦距为2(0)c c >,设00(,)P x y ,则222000||(1),[3,3]PA x y x =-+∈-,而22200(19x y b =-,则222200||(1)219b PA x x b =--++=222222*********()199c c x x b x b c c -++=-++-,而0b <<,则2(9(3,9))b -∈,即2(3,9)c ∈,因此29(1,3)c∈,由0[3,3]x ∈-,得当029x c =时,222min 295||1(22PA b c =+-==,即229392b b -=-,化简得42221450b b -+=,又0b <<,解得23b =,所以b=【小问2详解】由(1)知,椭圆C 的方程为22193x y +=,点(3,0),(3,0)E F -,设()()1122,,,B x y D x y ,则121212,33y y k k x x ==+-,即12k k =121212213(3)3(3)y x y x x y y x --⋅=++,斜率不为0的直线l 过点(1,0)A ,设方程为1x my =+,则112121221122(13)2(13)4k y my my y y k y my my y y +--==+++,由22139x my x y =+⎧⎨+=⎩消去x 并整理得22(3)280m y my ++-=,显然0∆>,则12122228,33m y y y y m m --+==++,即有2211)4(my y y y =+,因此()()121112112212212212422241444482y y y k my y y y y k my y y y y y y y +--+====++++,所以12k k为定值.【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.已知()3ln (1)f x x k x =--.(1)若过点(2,2)作曲线()y f x =的切线,切线的斜率为2,求k 的值;(2)当[1,3]x ∈时,讨论函数2π()()cos π2g x f x x =-的零点个数.【答案】(1)1(2)答案见解析【解析】【分析】(1)求导,设切点坐标为()()000,3ln 1x x k x --,结合导数的几何意义列式求解即可;(2)求导,可得()g x '在[1,3]内单调递减,分类讨论判断()g x 在[1,3]内的单调性,进而结合零点存在性定理分析判断.【小问1详解】由题意可得:3()f x k x'=-,设切点坐标为()()000,3ln 1x x k x --,则切线斜率为003()2k f x k x '==-=,即032k x =-,可得切线方程为()()0003ln 12y x k x x x ---=-⎡⎤⎣⎦,将(2,2),032k x =-代入可得()()0000323ln 2122x x x x ⎡⎤⎛⎫----=-⎢⎥ ⎪⎝⎭⎣⎦,整理得001ln 10x x -+=,因为1ln ,y x y x ==-在()0,∞+内单调递增,则1ln 1y x x=-+在定义域()0,∞+内单调递增,且当1x =时,0y =,可知关于0x 的方程001ln 10x x -+=的根为1,即01x =,所以0321k x =-=.【小问2详解】因为2π2π()()cos 3ln (1)cos π2π2g x f x x x k x =-=---,则3π()sin 2g x k x x '=-+,可知3y x=在[1,3]内单调递减,且[1,3]x ∈,则ππ3π,222x ⎡⎤∈⎢⎥⎣⎦,且sin y x =在π3π,22⎡⎤⎢⎥⎣⎦内单调递减,可知πsin 2y x =在[1,3]内单调递减,所以()g x '在[1,3]内单调递减,且(1)4,(3)g k g k ''=-=-,(i )若0k -≥,即0k ≤时,则()()30g x g ''≥≥在[1,3]内恒成立,可知()g x 在[1,3]内单调递增,则()()10g x g ≥=,当且仅当1x =时,等号成立,所以()g x 在[1,3]内有且仅有1个零点;(ⅱ)若40k -≤,即4k ≥时,则()()10g x g ''≤≤在[1,3]内恒成立,可知()g x 在[1,3]内单调递减,则()()10g x g ≤=,当且仅当1x =时,等号成立,所以()g x 在[1,3]内有且仅有1个零点;(ⅲ)若400k k ->⎧⎨-<⎩,即04k <<时,则()g x '在()1,3内存在唯一零点()1,3m ∈,可知当1x m ≤<时,()0g x '>;当3m x <≤时,()0g x '<;则()g x 在[)1,m 内单调递增,在(],3m 内单调递减,且()10g =,可知()()10g m g >=,可知()g x 在[)1,m 内有且仅有1个零点,且()33ln 32g k =-,①当()33ln 320g k =-≤,即3ln 342k ≤<时,则()g x 在(],3m 内有且仅有1个零点;②当()33ln 320g k =->,即30ln 32k <<时,则()g x 在(],3m 内没有零点;综上所述:若[)3,ln 34,2k ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()g x 在[1,3]内有且仅有1个零点;若3ln3,42k⎡⎫∈⎪⎢⎣⎭时,()g x在[1,3]内有且仅有2个零点.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = x^3 - 3x在区间[-2, 2]上的图像为:A. 上升-下降-上升B. 下降-上升-下降C. 上升-下降-上升D. 下降-上升-下降答案:C2. 已知等差数列{an}的前n项和为Sn,若S5 = 35,S9 = 81,则数列的公差d为:A. 2B. 3C. 4D. 5答案:B3. 在极坐标系中,点P(2, π/3)的直角坐标为:A. (1, √3)B. (1, -√3)C. (-1, √3)D. (-1, -√3)答案:C4. 函数y = log2(3x - 1)的定义域为:A. (1/3, +∞)B. (1, +∞)C. (1/3, 1)D. (1, 1/3)答案:A5. 若复数z满足|z - 1| = |z + 1|,则z的取值范围为:A. z = 0B. z = 1C. z = -1D. z = 2答案:A6. 已知函数f(x) = x^2 + ax + b,若f(1) = 0,f(-1) = 0,则f(0)的值为:A. 0B. 1C. -1D. 2答案:A7. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则sinA的值为:A. 3/5B. 4/5C. 5/4D. 4/3答案:B8. 若等比数列{an}的首项a1 = 2,公比q = 1/2,则第10项a10为:A. 1/2B. 1/4C. 1/8D. 1/16答案:D9. 函数y = x^3 - 6x^2 + 9x的图像与x轴的交点个数为:A. 1B. 2C. 3D. 4答案:B10. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S6 = 36,则数列的首项a1为:A. 1B. 2C. 3D. 4答案:A二、填空题(本大题共5小题,每小题10分,共50分。
高三数学模拟考试题一、选择题(每题4分,共40分)1. 函数f(x) = 2x^3 - 3x^2 + 5x - 7的导数是:A. 6x^2 - 6x + 5B. 6x^2 + 3x - 7C. 3x^2 - 3x + 5D. 6x^2 - 6x + 12. 若圆心在原点,半径为1的圆的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. (x-1)^2 + y^2 = 1D. (x+1)^2 + y^2 = 13. 已知集合A={1,2},B={2,3},则A∪B的元素个数是:A. 1B. 2C. 3D. 44. 若直线y=2x+b与曲线y=x^2-3x+2相切,则b的值为:A. 2B. 3C. 4D. 55. 已知等差数列的前三项分别为3, 5, 7,则该数列的通项公式为:A. an = 3 + 2(n-1)B. an = 2 + 3(n-1)C. an = 4 + 2(n-1)D. an = 5 + 2(n-1)6. 若复数z满足|z-1-i|=1,则z的轨迹表示的图形是:A. 圆B. 椭圆C. 双曲线D. 抛物线7. 函数y=|x-1|+|x-2|的最小值是:A. 1B. 2C. 3D. 48. 抛物线y^2=4x的焦点坐标是:A. (1,0)B. (2,0)C. (0,1)D. (0,-1)9. 已知向量a=(2,3),b=(-1,2),则a·b的值为:A. -1B. 1C. 3D. 510. 若方程x^2-2x+1=0有实根,则实根的个数是:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,当x=______时,函数取得最小值。
12. 若方程x^2+2x+1=0的根为x1和x2,则x1+x2=______。
13. 已知数列{an}的前n项和为S_n=n^2,那么数列的通项公式an=______。