空气中氮氧化物日变化曲线
- 格式:doc
- 大小:158.50 KB
- 文档页数:15
环境空气污染物浓度变化关系分析通过对南京市九个国控点4年的监测数据观察,分析环境空气污染物二氧化硫、氮氧化物、一氧化碳、臭氧、PM10和PM2.5的年均值、月均值和小时均值的浓度变化规律。
标签:南京空气污染物浓度分析0引言近年来,随着机动车数量的不断增加,南京的大气污染正从煤烟型向煤烟型与机动车尾气污染共存的复合污染转化。
文章通过对南京市九个国控点2010年-2013年四年的监测数据统计,分析二氧化硫、氮氧化物、CO、O3、PM10和PM2.5的年均值、月均值和小时均值的变化规律,为改善空气质量提供科学的监测依据。
1数据来源数据来源于南京市环境监测站环境质量自动监测(控)系统,收集统计数据的时间是2010年1月1日----2013年12月31日,收集统计数据的监测点位是南京市的9个国控点(瑞金路点、草场门点、中华门点、玄武湖点、山西路点、迈皋桥点、奥体中心点、南京工业大学点和仙林大学城点)。
2环境空气污染物的变化规律分析2.1污染物年均值浓度变化分析采用spearman秩相关系数法检验,在a=0.05的置信水平上,除NO2年均值浓度显著上升外,其它污染物的年均值浓度变化趋势无显著意义。
近年来,南京市加大环境整治力度,环境空气质量得到一定保护。
但从2010年起南京已连续三年以平均19.53万辆的速度递增1,机动车尾气污染逐年加重,机动车尾气排放的氮氧化物90%是一氧化氮2,但一氧化氮不稳定,易被氧化成二氧化氮。
南京的大气污染正从煤烟型向煤烟型与机动车尾气污染共存的复合污染转化。
2.2污染物月均值浓度变化分析南京市主导风向是东北风,但夏季以东南风为主。
而在城区的东北面是金陵石化工业区和大厂工业区,两工业区占地面积87.2平方公里。
二氧化硫、氮氧化物(二氧化氮和一氧化氮)、PM10、PM2.5和一氧化碳浓度的月均值呈现明显的季节变化特征,春冬季高,夏秋季低。
主要是受季节性的主导风向影响呈现明显的季节特征。
实验一空气中氮氧化物的日变化曲线大气中氮氧化物(NO x)主要包括一氧化氮和二氧化氮,主要来自天然过程,如生物源、闪电均可产生NO x。
NO x的人为源绝大部分来自化石燃料的燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气,其中以工业窑炉、氮肥生产和汽车排放的NO x量最多。
城市大气中2/3的NO x来自汽车尾气等的排放,交通干线空气中NO x的浓度与汽车流量密切相关,而汽车流量往往随时间而变化,因此,交通干线空气中NO x的浓度也随时间而变化。
NO x对呼吸道和呼吸器官有刺激作用,是导致支气管哮喘等呼吸道疾病不断增加的原因之一。
二氧化氮、二氧化硫、悬浮颗粒物共存时,对人体健康的危害不仅比单独NO x严重得多,而且大于各污染物的影响之和,即产生协同作用。
大气中的NO x能与有机物发生光化学反应,产生光化学烟雾。
NO x能转化成硝酸和硝酸盐,通过降水对水和土壤环境等造成危害。
一、实验目的1.掌握氮氧化物测定的基本原理和方法;2.绘制城市交通干线空气中氮氧化物的日变化曲线。
二、实验原理在测定NO x时。
先用三氧化铬将一氧化氮等低价氮氧化物氧化成二氧化氮;二氧化氮被吸收在溶液中形成亚硝酸,与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,用比色法测定。
方法的检出限为0.01 /ml(按与吸光度0.01相应得亚硝酸盐含量计)。
线性范围为0.03~1.6/ml。
当采样体积6L时,NO x (以二氧化氮计)的最低检出浓度为0.01mg/m3。
盐酸萘乙二胺盐比色法的有关反应式如下:主要反应方程式为:采集并测定1天内不同时间短交通干线空气中氮氧化物的浓度,可绘制空气中氮氧化物浓度随时间的变化曲线。
三、仪器与试剂1.仪器(1) 大气采样器:流量范围0. 0--1. 0 L/min。
(2) 分光光度计。
(3) 棕色多孔玻板吸收管。
光化学烟雾的日变化曲线光化学烟雾的日变化曲线引言光化学烟雾是指由太阳光照射下,大气中的污染物与大气中的氮氧化合物相互作用产生的一种污染物。
它对人体健康和环境造成了严重的影响,因此对光化学烟雾的研究变得尤为重要。
其中,日变化曲线是一个有力的工具,可以帮助我们更好地了解光化学烟雾的生成和传播规律。
本文将以光化学烟雾的日变化曲线为主题,从简单到复杂,由浅入深地展开探讨。
第一部分:什么是光化学烟雾光化学烟雾是由太阳光、氮氧化合物和其他污染物相互作用产生的一种污染物。
太阳光照射下,大气中的氮氧化合物(如氮氧化物和挥发性有机化合物)会发生光化学反应,产生臭氧和其他有害物质。
这些有害物质对人体健康和环境造成了严重的危害。
第二部分:光化学烟雾的日变化规律光化学烟雾的生成和传播与太阳光的强度以及大气中的污染物浓度有关。
一般来说,光化学烟雾的浓度在一天中的时间分布呈现出明显的日变化曲线。
在清晨和傍晚太阳较低的时候,光化学烟雾的浓度较低。
而在正午太阳最高的时候,光化学烟雾的浓度最高。
这是因为太阳光的强度越高,光化学反应越剧烈,从而产生更多的光化学烟雾。
大气中的污染物浓度也会影响光化学烟雾的浓度。
当大气中的污染物浓度较高时,光化学烟雾的浓度也会相应升高。
第三部分:现有研究与应用光化学烟雾的日变化曲线已经成为研究者们研究和监测光化学烟雾的重要工具。
通过对不同时间点的光化学烟雾浓度进行监测并绘制日变化曲线,可以帮助我们了解光化学烟雾的生成和传播规律,为制定防治措施提供科学依据。
光化学烟雾的日变化曲线也可以用于预测和评估光化学烟雾的危害程度,以及制定合理的个人防护措施。
结论通过对光化学烟雾的日变化曲线的研究,我们可以更全面、深刻和灵活地理解光化学烟雾的生成和传播规律,从而为防治光化学烟雾提供科学依据。
光化学烟雾对人体健康和环境造成了严重的影响,因此我们应该加强光化学烟雾的监测和控制。
我们还需要进一步研究光化学烟雾的形成机制,以及制定更有效的防治策略。
《环境化学实验》报告实验考核标准及得分空气中氮氧化物的日变化曲线一、实验目的与要求1、了解氮氧化物的具体种类及其来源。
2、掌握氮氧化物测定的基本原理以及实验方法。
3.绘制城市交通干线空气中氮氧化物的日变化曲线。
二、实验方案1、实验仪器:大气采样器:流量范围0.2L/min、分光光度计(波长540nm)、多孔吸收玻管、比色管(两个)、移液管、洗耳球、比色皿、烧杯。
装置连接图见图1图1 实验装置图2、实验药品:氮氧化物吸收原液、蒸馏水、亚硝酸钠标准溶液。
3、实验原理:在测定氮氧化物时,先用三氧化铬将一氧化氮等低价氮氧化物氧化成二氧化氮,二氧化氮被吸收在溶液中形成亚硝酸,与对氨苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,用比色法测定。
方法的检出限为0.01mg/L(按与吸光度0.01相应的亚硝酸盐含量计)。
限行范围为0.03-1.6mg/L。
当采样体积为6L时,氮氧化物(一二氧化氮计)的最低检出浓度为0.01ug/m³。
盐酸萘乙二胺盐比色法的有关反应式如下:4、实验步骤:实验步骤简图:(1)氮氧化物的采集:向一支多孔吸收玻管中加入4mL氮氧化物吸收原液和1mL蒸馏水,接上大气采样器,置于椅子上,以每分钟0.2L流量抽取空气30min。
记录采样时间和地点,根据采样时间和流量,算出采样体积。
把一天分成几个时间段进行采样7次,分别为10:00~10:30、11:00~11:30、12:00~12:30、13:00~13:30、14:00~14:30、15:00~15:30、16:00~16:30。
(2)标准曲线的绘制:吸取100mg/L的亚硝酸钠标准溶液5mL定容至100mL,再取7支比色管,按下表配制标准系列。
编 号0123456 NO2-标准溶液/mL0.000.50 1.00 1.50 2.00 2.50 3.00稀释后吸收原液/mL20.0020.0020.0020.0020.0020.0020.00水/mL 5.00 4.50 4.00 3.50 3.00 2.50 2.00 NO2-含量/μg0.00 2.50 5.007.5010.0012.5015.00标准溶液系列表1将各管摇匀,避免阳光直射,放置15 min,以蒸馏水为参比,用1cm比色皿,在540nm波长处测定吸光度。
空气中氮氧化物的日变化曲线XXX(XX大学环境与化学工程学院环境科学专业091班,辽宁大连 116622)1概述1.1研究背景1.1.1氮氧化物的来源大气中氮氧化物(NOx)包括多种化合物,如一氧化氮、二氧化氮、三氧化二氮、四氧化二氮和五氧化二氮,除二氧化氮以外,其他氮氧化物极不稳定,遇光、湿或热变成二氧化氮或一氧化氮,一氧化氮不稳定又变成二氧化氮。
因此大气污染化学中的氮氧化物主要指的是一氧化氮和二氧化氮。
其主要来自天然过程,如生物源、闪电均可产生NOx 。
NOx的人为源绝大部分来自化石燃料的燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气,其中以工业窑炉、氮肥生产和汽车排放的NOx 量最多。
城市大气中2/3的NOx来自汽车尾气等的排放,交通干线空气中NOx的浓度与汽车流量密切相关,而汽车流量往往随时间而变化,因此,交通干线空气中NOx的浓度也随时间而变化。
1.1.2氮氧化物的危害NO的生物化学活性和毒性都不如NO2,同NO2一样,NO也能与血红蛋白结合,并减弱血液的输氧能力。
如果NO2的体积分数为(50—100)×10-6时,吸入时间为几分钟到一小时,就会引起6—8周肺炎; 如果NO2的体积分数为(150—200)×10-6时,就会造成纤维组织变性性细支气管炎,及时治疗,将于3—5不周后死亡。
在实验室,NO2体积分数达到10-6级,植物叶片上就会产生斑点,显示植物组织遭到破坏。
体积分数为10-5级的NO2会引起植物光合作用的可逆衰减。
此外,NOx还是导致大气光化学污染的重要物质。
1.1.3氮氧化物的环境浓度NOx的环境本底值随地理位置不同具有明显的差别,Robinson等人综合有关资料认为:在北纬650和南纬650之间的陆地上空,NO的本底值为2×10-9,NO2的本底值4×10-9;世界其他各地NO约为0.2×10-9,NO2约为0.5×10-9;全球总平均值NO为1.0×10-9,NO2为2.0×10-9。
NOx的城市浓度具有很强的季节变化,冬季浓度最高,夏季最低,我国城市NOx的浓度低于国外报道的城市浓度。
可能是由于我国NOx排放源相对较弱之故。
1.1.4降低氮氧化物的措施在全国范围内,削减氮氧化物的措施主要有:第一,实施多指标综合管理。
就我国目前氮氧化物的污染状况而言,应该尽早形成覆盖二氧化氮、臭氧、细颗粒物以及酸沉降等多项控制指标的综合指标体系,实施氮氧化物的多目标管理,从一次污染物到二次污染物进行全生命周期控制。
第二,开展氮氧化物区域联防联控。
存在严重氮氧化物污染问题的地区,有必要制定区域层面的氮氧化物污染联防联控政策,建立污染源协调和管理机制,从而有效地解决区域整体的环境污染问题。
第三,加强企业排污监管。
结合氮氧化物总量控制目标加强企业监督,督促其严格执行排放标准。
通过环境信息披露制度,在政府、企业与公众之间形成相辅相成的良性互动,达到更好的污染防治效果。
第四,推行经济激励。
在我国氮氧化物的防控工作中引入市场化的经济政策,使命令控制方式和市场化机制互相补充。
在实施氮氧化物排放总量控制时,配套实施相应的减排激励政策,鼓励多减排、早减排、尽快实施氮氧化物排污收税和排污削减量交易等措施。
1.2项目区基本概况本小组监测地点为本校正门外的马路,对面是光伸商城,人流量和车流量较多。
道路旁种植了花草和一些树木,周围基本没有其他居民。
大连大学依山而建,风特别大。
2研究目的本实验主要是了解环境空气污染物氮氧化物是否符合现行环境质量标准的规定,掌握氮氧化物测定的基本原理和方法,绘制空气中氮氧化物的日变化曲线,并分析其对校园环境空气质量的影响。
3监测方案的设计与实施3.1监测方案的设计校园分为6个采样点,按时间序列采集一天6个时段的空气样品,样品采集以每分钟0.3L的流量抽取空气45min,同时记录附近的车流量,并判断氮氧化物的可能来源。
采集好一个时段空气样品立即送回实验室采用盐酸萘乙二胺分光光度法对氮氧化物含量进行分析。
3.2监测方案的实施3.2.1实验原理最后用比色法测定。
该方法的检出限为0.01ug/mL(按与吸光度0.01相应的亚硝酸盐含量计)。
线性范围为0.03~1.6pg/mL。
当采样体积为6L时,NO以二氧化氮计)的X最低检出浓度为0.01mg/m3。
盐酸萘乙二胺盐比色法的有关反应式如下:3.2.2实验仪器与试剂1.仪器(1) KC-6D型大气采样器:流量范围0. 0--1. 0 L/min,采用KYD-100智能孔口流量校准器进行流量校准。
(2) 721W型可见分光光度计。
(3) 棕色多孔玻板吸收管。
(4) 双球玻璃管(装氧化剂)。
(5) 干燥管。
(6) 比色管:10 mL。
(7) 移液管:1 mL。
2.试剂(1) 吸收液:称取5.0 g对氨基苯磺酸于烧杯中,将50 mL冰醋酸与900 mL水的混合液,分数次加人烧杯中,搅拌,溶解,并迅速转人500 mL容量瓶中,待对氨基苯磺酸完全溶解后,加人0.050 g盐酸蔡乙二胺,溶解后,用水定容至刻度。
此为吸收原液,贮于棕色瓶中,低温避光保存。
采样液用吸收由4份吸收原液和1份水混合配制。
(2) 三氧化铬—石英砂氧化管:取约30 g 20-40目的石英砂,用(1:2)盐酸溶液浸泡一夜,用水洗至中性,烘干。
把三氧化铬及石英砂按重量比1:40混合,加少量水调匀,放在红外灯或烘箱里于105℃烘干,烘干过程中应搅拌几次。
制好的三氧化铬—石英砂应是松散的;若粘在一起,可适当增加一些石英砂重新制备。
将此砂装入双球氧化管中,两端用少量脱脂棉塞好,放在干燥器中保存。
使用时氧化管与吸收管之间用一小段乳胶管连接。
(3) 亚硝酸钠标准溶液:准确称取0.0375 g亚硝酸钠(预先在干燥器内放置24 h)溶于水,移入250mL容量瓶中,用水稀释至刻度,即配得100μg/mL 亚硝酸根溶液,将其贮于棕色瓶,在冰箱中保存可稳定3个月。
使用时,吸取上述溶液25.00 mL于500 mL容量瓶中,用水稀释至刻度,即配得5μg/mL亚硝酸根工作液。
所有试剂均需用不含亚硝酸盐的重蒸水或电导水配制。
3.2.3实验步骤①氮氧化物的采集用一个内装5mL采样液用吸收的多孔玻板吸收管,接上氧化管,并使管口微向下倾斜,朝上风向,避免潮湿空气将氧化管弄湿,而污染吸收液,如图1-1所示。
以每分钟0.3L的流量抽取空气45min。
采样高度为1.5m,将采样点设在人行道上,距马路 1.5m。
同时统计汽车流量。
若氮氧化物含量很低,可增加采样量,采样至吸收液呈浅玫瑰红色为止。
图1-1 氮氧化物采样装置的连接图示②氧化氮的采集与氮氧化物的采集装置相似,但在多孔玻板吸收管不使用氧化管。
③记录采样时间和地点,根据采样时间和流量,算出采样体积。
采样地点:大连大学正门的马路旁边把一天分成6个时间段进行采样,如下所示:3.2.4样品的测定(1) 标准曲线的绘制:取7支10 mL比色管,按表1-1配制标准系列。
将各管摇匀,避免阳光直射,放置15 min,以蒸馏水为参比,用1cm比色皿,在540nm波长处测定吸光度。
根据吸光度与浓度的对应关系,用最小二乘法计算标准曲线的回归方程式:y = bx + a式中:y——(A-A0),标准溶液吸光度(A)与试剂空白吸光度(A)之差;x——NO2-含量,μg;a、b——回归方程式的截距和斜率。
ρNOx =76.0)(⨯⨯--VbaAA式中:ρNOx——氮氧化物浓度,mg/m3;A——样品溶液吸光度;A、a、b表示的意义同上;V——标准状态下(25℃,760mmHg)的采样体积,L;0.76——NO2(气)转换成NO2-(液)的转换系数。
表1-1 标准溶液系列编号 0 1 2 3 4 5 6NO2-标准溶液(5μg/mL)/mL 0.00 0.10 0.20 0.30 0.40 0.50 0.60 吸收原液/mL 4.00 4.00 4.00 4.00 4.00 4.00 4.00 水/mL 1.00 0.90 0.80 0.70 0.60 0.50 0.40NO2-含量/μg 0 0.5 1.0 1.5 2.0 2.5 3.0(2) 样品的测定:采样后放置15min,将吸收液直接倒入1cm比色皿中,在540nm处测定吸光度。
、3.3注意事项1.本实验用水为不含亚硝酸盐的重蒸水或电导水。
2.采样时应无雨无雪,风力小于4级(5.5m/s),采样器应距地面不小于1.5m,以减少扬尘的影响。
3.采样过程中,若氮氧化物含量较低,可适当增加样品量,采样至吸收液呈浅玫瑰红色为止。
4.在采样、运送和存放过程中,吸收管要注意避光保存,并及时测定。
5.在采样过程中,如吸收液体积缩小明显,应用水补充到原来的体积(事先做好标线),切勿将吸收液倒吸到仪器里。
6.正确连接吸收管与大气采样器。
7.正确使用可见分光光度计,注意开盖预热,比色皿与仪器配套使用。
4.监测数据结果与讨论4.1监测期背景情况4.1.1采样期间天气情况2011年10月12日,天气多云,西南风,白天气温13—20℃。
4.1.2采样期间车流量情况4.2实验数据处理及分析根据标准曲线回归方程和样品吸光度值,计算出不同时间空气样品中氮氧化物的浓度,绘制氮氧化物浓度随时间变化的曲线,并说明汽车流量对交通干线空气中氮氧化物浓度变化的影响。
(1)标准溶液系列(2)标准曲线实测数据(3)样品测试记录(采样时间45min)据公式:氮氧化物浓度等于[(A-Ao)-a] / (b*V*0.76)其中,由Y=0.1768x+0.002得:b=0.1768,a=0.002V换算为参比状态下(25℃,1.01*105Pa)的采样体积为:13.5L。
分别算出二氧化氮和氮氧化物的浓度,填入上表,进而做出其浓度的日变化曲线,如下所示:实验数据分析:1.测量初期,由于仪器出现问题,导致采样的第一组数据有影响。
2.采样时虽然有保护措施,但是仍然可能有太阳直射,会导致吸收液部分分解,从而我们测得的实验数据会偏小。
3.由于仪器问题导致不能精准地确保采样器两侧的采样流量相等,导致数据有偏差,但是主要看两侧气泡量大小,使其左右流量一致。
4.因为采样时有风,氮氧化物会扩散,从而被稀释,致使氮氧化物的浓度变小。
5.在采样过程中,如吸收液体积缩小明显,应用水补充到原来的体积(事先做好标线),但本次实验人员没有注意,这对实验同样产生误差。
6.由于我们小组所在的采样地点位于学校正门,距离实验室较远,从实验室到采样点的过程中导致吸收液分解。
7.吸光度测量的人员不同也会是数据有偏差。
4.3影响评价4.3.1空气中NOx 浓度的评价空气中的氮氧化物与车流量呈正比关系,但其又受到时间的影响、日照的影响、车的型号的影响,早晨处于上班、上学高峰期,车辆较多,虽然我们的实验是从10:16开始,这个时段接近学生上课时间,且学生上课的交通工具为自行车与电动车,所以没有污染物的排放,有老师的车或者校车,还有很多大型运货汽车和轿车,也会有的氮氧化物排放。