全等三角形尺规作图1
- 格式:doc
- 大小:35.50 KB
- 文档页数:3
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS 专题练习1.如图,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD2.能判定△ABC ≌△A ′B ′C ′的条件是( ) A .AB=A ′B ′,AC=A ′C ′,∠C=∠C ′ B. AB=A ′B ′, ∠A=∠A ′,BC=B ′C ′ C. AC=A ′C ′, ∠A=∠A ′,BC=B ′C D. AC=A ′C ′, ∠C=∠C ′,BC=B ′C3.如图,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD= , 根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.4.如图,已知BD=CD ,要根据“SAS”判定△ABD ≌△ACD , 则还需添加的条件是 。
全等三角形尺规作图1、经历观察图形的形状和大小的活动,认识全等形的基本特征,体验全等形是两个图合。
2、通过对三角形进行平移、翻折、旋转的探索,发现全等三角形的对应边相等,对应角相等。
情感、态度与价值观:如图,△ABC≌△AEC,∠B=30°,∠ACB=85°.求出△AEC各内角的度数.(学生根据全等三角形的性质独立解决.)解:在△ABC中,已知∠ACB=85°,∠B=30°,根据三角形的内角和等于180°,可得:∠BAC=65°.因为△ABC≌△AEC,所以∠EAC=∠BAC=65°,∠E=∠B=30°,∠ACE=∠ACB=85°.答:△AEC的内角的度数分别为65°、30°、85°掌握基本作图1做一条线段等于已知线段2作一角等于已知角3已知三边作三角形,4已知两边及其夹角作三角形;5已知两角及其夹边作三角形已知:线段 a 和∠α,求作一个三角形,使其一个内角等于∠α,另一个内角等于2∠α,且这两个内角的夹边等于a。
aαM N1.已知线段MN,画一条线段AC= MN 的步骤是:第一步: _____________________________,第二步:______________________________,所以AC就是所要画的线段..已知∠AOB,画一个∠A′O′B′=∠AOB的步骤:α如图是一个等边三角形,你能利用折纸的方法把它分成两个全等的三角形吗?你能把它分成三个,四个全等的三角形吗?学生活动设计:学生小组讨论,经过讨论交流自己的方法。
可能有下列方法:。
全等三角形尺规作图xx年xx月xx日CATALOGUE目录•全等三角形基本概念•全等三角形尺规作图基本法则•尺规作图的技巧和方法•尺规作图的实例分析•尺规作图的应用和意义01全等三角形基本概念两个三角形全等是指它们能够完全重合,即三个内角相等且三条边相等。
全等三角形的记号是“≌”,读作“全等形ABCD”或“三角形ABC全等于三角形DEF”。
全等三角形的对应边相等,对应角相等。
全等三角形的对应边上的高相等,对应边上的中线相等,对应角平分线相等。
SSS(Side-Side-Side):如果三角形的三条边相等,则它们全等。
AAS(Angle-Angle-Side):如果三角形的两个角相等且这两个角的夹边相等,则它们全等。
ASA(Angle-Side-Angle):如果三角形的两个角相等且其中一个角的对边相等,则它们全等。
SAS(Side-Angle-Side):如果三角形的两条边相等且这两条边的夹角相等,则它们全等。
全等三角形的判定方法02全等三角形尺规作图基本法则无刻度直尺只限制长度测量,无法进行面积、角度等测量。
圆规可以用来画圆和圆弧,也可以用来复制图形。
尺规作图的基本概念直接法通过圆规和无刻度直尺,直接画出全等三角形。
间接法通过画出一个三角形,再使用圆规和无刻度直尺,间接画出全等三角形。
全等三角形的尺规作图方法画出三角形使用圆规,以点A为圆心,以AB为半径画圆弧,得到点C;再以点B为圆心,以AB为半径画圆弧,得到点D;连接CD得到三角形ABC。
确定两个已知点确定两个已知点A和B,并连接两点得到线段AB。
判断全等通过比较AC和BC的长度,可以判断三角形ABC和三角形DEF是否全等。
作图步骤03尺规作图的技巧和方法1作图技巧23明确要画的图形,了解所需条件和限制条件。
确定作图目标根据已知条件逐步推导,按照顺序将图形画出来。
画图步骤检查画出的图形是否符合题目要求,确保准确性。
检验作图结果根据等边三角形的性质,通过平分已知角度或边长即可得到三个等边三角形。
第7讲三角形的尺规作图一、教学目标理解尺规作图的含义,掌握尺规作图的步骤。
二、知识点梳理1、尺规作图定义:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图。
注意:尺规作图中的直尺没有刻度。
2、已知三边作三角形已知三边求作三角形是利用三角形全等的条件“边边边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,c求作:△ABC,使AB=c,BC=a,AC=b作法与示范:(1)作线段AB=c(2)以点A为圆心,b为半径画弧(3)以点B为圆心,a为半径画弧,两弧交于点C(4)连接AC,BC,△ABC即为所求3、已知两边及其夹角作三角形已知两边及其夹角作三角形是利用三角形全等的条件“边角边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,∠α求作:△ABC,使∠B=∠α,BC=a,BA=b作法与示范:(1)作∠MBN=∠α(2)在射线BM,BN上分别截取线段BC=a,BA=b(3)连接AC,则△ABC为所求作的三角形4、已知两角及其夹边作三角形已知两角及其夹边求作三角形是利用三角形全等的条件“角边角”来作图的,具体作图的方法、步骤、图形如下:已知:∠α,∠β,线段a求作:△ABC,使∠BAC=∠α,∠ABC=∠β,AB=a作法与示范:(1)作线段AB=a(2)在AB同侧,作∠DAB=∠α,∠EBA=∠β,AD与BE相交于点C,则△ABC为所求作的三角形三、典型例题例1 下列作图属于尺规作图的是()A、用量角器画出∠AOB的平分线B、用圆规和直尺作∠AOB等于已知的∠αC、用刻度尺画线段AB=3 cmD、用三角板作直线AB的平分线例2 如图13-4-1,已知:线段a、b。
求作:△ABC,使AB=2a,AC=b,BC=a。
例3 如图13-4-3,已知:线段m,n,∠α。
求作:△ABC,使AB=2m,AC=2n,∠A=∠α。
例4 如图13-4-5,已知:线段a和∠α。
尺规作图、等腰三角形、全等三角形及直角坐标教学课题尺规作图、等腰三角形、全等三角形及直角坐标教学目标1、 掌握尺规作图的方法,学会用几何语言描述作图过程2、 巩固全等三角形和等腰(等边)三角形的判定证明,加强用几何语言描述的能力3、 掌握平面直角坐标系及相关概念,类比(由数轴到平面直角坐标系)的方法、数形结合的思想. 教学重、难点灵活运用四种全等三角形判定定理;构建平面直角坐标系,掌握平面内点与坐标的对应.◆ 诊查检测:1、 选择题(1)一个正方形在平面直角坐标系中三个点的坐标为(-2,-3),(-2,-1),(2,1),则第四个顶点的坐标为( )A .(2,2) B.(3,2) C.(2,-3) D.(2,3)(2)右图中是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可以表示为( )A.(0,3)B.(2,3)C.(3,2)D.(3,0)(3)已知点A (a ,b )在第四象限,那么点B (b ,a )在( )A .第一象限B .第二象限C .第三象限 D. 第四象限(4) 过两点A (3,4),B (-2,4)作直线AB ,则直线AB( )A.经过原点B.平行于y 轴C.平行于x 轴D.以上说法都不对(5)在平面直角坐标系中,以点P(-1,2)为圆心,1为半径的圆与x 轴有( )个公共点A .0B .1C .2D .3(6) 如图,把图①中△ABC 经过一定的变换得到图②中的△A 'B 'C ',如果图①的△ABC 上点P 的坐标是),(b a ,那么这个点在图②中的对应点P '的坐标是A .)3,2(--b aB .)3,2(--b aC .)2,3(++b aD .)3,2(++b a2、填空题(1) 在平面直角坐标系中,点P)1,1(2+-m 一定在第 象限. (2)一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为 . (3)点A (2,0),B (-3,0),C (0,2),则△ABC 的面积为 .(4)将点P(-3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x,-1),则xy=_________.A B C3、在所给的图中按所给的语句画图:①连结线段BD; A②过A、C画直线AC;③延长线段AB;④反向延长线段AD. C DE4、如图,使用圆规和直尺分别画出∠AOB和∠BOC的角平分线OM和ON,并说明作图过程.如果∠MON=68º,那么∠AOC应为多少度?5、如图为风筝的图案.(1)若原点用字母O表示,写出图中点A,B,C的坐标.(2)试求(1)中风筝所覆盖的平面的面积.6、如图,在△ABC中三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移1个单位长度得到△EFG。
§1.3尺规作图
第一课时
【学习目标】
1、要掌握尺规作图的方法
及一般步骤。
2、通过“作图题”练习,
提高学生的几何语言表达能力。
3、通过画图,培养学生的作图能力及动手能力。
【学习重点】熟练掌握相等角的作图,作图时要做到规范使用尺规,规范使用作图语言,规范地按照步骤作出图形。
【学习难点】作图语言的准确应用,作图的规范与准确。
使用方法:先由学生自学课本,经历自主探索总结的过程,并独立完成学案,然后小组合作交流,让同学们进行展示,小组间点评,补充之后由老理由点拔。
最后当堂检测,巩固知识。
【学习过程】
忆一忆:
前面我们学习了用直尺和圆规作一条线段,使它与已知线段相等,那么我们来回忆一下,是怎样用不带刻度的直尺和圆规作出线段AB=a ?
作法总结:_____________________________________________________________ ________________________________________________________________ ________________________________________________________________ 学一学:
阅读教材,理解概念
学生阅读教材,并回答问题:
(1)什么是尺规作图?
(2)什么是基本作图?
一些复杂的尺规作图,都是由基本作图组成的,前面我们学过的用尺规作一条线段等于已知线段,这是一种基本作图,下面我们将再学习一种新的基本作图。
议一议:
如图,已知∠AOB,用直尺和圆规作∠A′O′B′,使∠A′O′B′=∠AOB。
作法:
(1)作射线O′A′.
(2)以点 ___为圆心,以 ____ 为半径画弧,交OA于点C,交OB于点D.
(3)以点 _____为圆心,以 ____长为半径画弧,交O′A′于点C′.
(4)以点 _____为圆心,以 _____长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线 ______∠A′O′B′就是所求作的角.
想一想:
∠A′O′B′=∠AOB吗?如何验证?(小组交流)
【当堂检测】
做一做:
1.已知:线段AB和CD,求作线段a,使a=AB-CD.
2.已知:钝角∠ABC,
求作:∠ABC′使∠ABC′=∠ABC . A B C D
C
【学后反思】
本节课你一定有很多收获,大家一起交流一下吧!。