九年级数学中考复习专题之圆的考察:圆周角定理的运用(一)
- 格式:doc
- 大小:311.50 KB
- 文档页数:17
九年级下册数学圆周角定理一、圆周角定理的定义圆周角定理指的是,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
用数学表达式表示为:在同圆或等圆中,若弧AB与弧CD相等,则AB所对的圆周角∠ACB = CD所对的圆周角∠ADC,且∠ACB = ∠ADC = ∠AOB / 2(其中O为圆心,A、B、C、D为各点)。
二、圆周角定理的证明证明圆周角定理可以采用以下步骤:1. 根据题目给出的条件,作直径上的圆周角。
2. 连接圆心和圆周角的顶点,并将直径平分该角。
3. 由于直径平分该角,所以该角是直角的一半。
4. 由于直角的一半是45度,所以该圆周角等于45度。
5. 根据等腰三角形的性质,我们可以证明圆周角所对的弧等于半圆的弧。
6. 由此可以得出结论,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
三、圆周角定理的应用圆周角定理是解决几何问题的重要工具之一,它可以应用于以下方面:1. 确定圆的中心:通过测量同弧所对的圆周角的大小,可以确定圆的中心。
2. 计算角度:通过圆周角定理,可以计算出圆中任意角度的大小。
3. 证明等腰三角形:利用圆周角定理可以证明等腰三角形的一些性质和判定方法。
4. 解决几何问题:利用圆周角定理可以解决一些与圆有关的几何问题。
四、圆周角定理的推论1. 同弧或等弧所对的圆周角相等;反之,同弧或等弧所对的圆周角相等。
2. 在同圆或等圆中,相等的圆周角所对的弧相等;反之,在同圆或等圆中,相等的弧所对的圆周角相等。
3. 在同圆或等圆中,如果两个圆周角分别是α和β,那么它们所对的弧也满足|α - β| = |⊙o中相等的弧间的比例差|。
这些推论也可以应用于多个等圆的公共点处的情况。
第17课 圆 一⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧辅助线画法:公式:直角三角形内切圆半径三角形内切圆画法:切线长定理:直线与圆的位置关系:圆内接四边形性质:圆内接三角形画法:点与圆的位置关系:圆周角定理:垂径定理:圆中考真题练习1.如图,圆O 的直径AB 垂直于弦CD,垂足是E,∠A=22.50,OC=4,CD 的长为( ) A.22 B.4 C.24 D.8第1题图 第2题图 第3题图 第4题图2.如图,AB 是⊙O 直径,AC 是⊙O 切线,连接OC 交⊙O 于点D,连接BD,∠C=400.则∠ABD 度数是( )A.30°B.25°C.20°D.15° 3.如图,已知⊙O 的直径AB 与弦AC 的夹角为350,过点C 的切线PC 与AB 的延长线交于点P,那么∠P 等于( )A.15°B.20°C.25°D.30°4.如图PB 为⊙O 的切线,B 为切点,连结PO 交⊙O 于点A,PA=2,PO=5,则PB 的长度为( ) A.4 B.10 C.26 D.435.如图,PA ,PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA ,PB 于C ,D .若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A.13125 B.512 C.1353 D.1332第5题图 第6题图 第7题图6.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为650,那么在大量角器上对应的度数为__________0(只需写出00~900的角度).7.如图,在⊙O 中,弦CD 垂直于直径AB 于点E,若∠BAD=300,且BE=2,则CD= .8.如图,A 、B 、C 是⊙O 上的三点,∠AOB=960,则∠ACB= 度.第8题图 第9题图 第`10题图 第11题图9.如图,AB 与⊙O 切于点B,AO=6cm,AB=4cm,则tan ∠A 为10.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D,连接AD.若∠A=250,则∠C= 度.11.如图,△ABC 为⊙O 内接三角形,AB 为⊙O 直径,点D 在⊙O 上,∠ADC=540,则∠BAC 度数等于 .12.如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是 .第12题图 第13题图 第14题图 第15题图13.如图,AD 是△ABC 的高,AE 是△ABC 的外接圆⊙O 的直径,且AB=24,AC=5,AD=4,则⊙O 的直径AE= .14.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是15.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为16.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.第16题图第17题图第18题图第19题图17.如图,AB、CD是⊙O的两条直径,AE∥CD,BE与CD相交于P点,则OP:AE=.18.如图,AB是直径,AO=2.5,AC=1,CD⊥AB,则CD=_______.19.如图,⊙O是等腰三角形ABC外接圆,AB=AC,D是弧AC中点,∠EAD=114O,则∠CAD在度数=20.如图,设⊙O的半径的为R,且AB=AC=R,则∠BAC=_______.第20题图第21题图第22题图第23题图21.如图,AB为⊙O的弦,∠OAB=75O ,则此弦所对的优弧的圆周角度数为22.如图,在△ABC中,∠C是直角,A=32O18/,以点C为圆心、BC为半径作圆,交AB于点D,交AC于点E,则弧BD的度数是______.23.如图,点O是△ABC的外心,已知∠ACB=110O ,则劣弧AB所对的∠AOB=______度.24.一已知点到圆周上的点的最大距离为m ,最小距离为n .则此圆的半径_____25.有个长、宽分别为8和6的矩形ABCD,现以点A为圆心,若B、C、D至少有一个点在圆内,且至少有一个点在圆外,则⊙A半径r 的范围是________26.在直角坐标系中,⊙O的半径为5厘米,圆心O的坐标为(-1,-4),点P(3,-1)与圆O的位置关系是27.在锐角△ABC中,∠A=50O,若点O为外心,则∠BOC=_____;若点I为内心,则∠BIC=______;若点H为垂心,则∠BHC=________.28.如图,AB是⊙O的直径,C,P是弧AB中点,AB=13,AC=5.求PA的长;29.在图1和图2中,已知OA=OB,AB=24,⊙O的直径为10.(1)如图1,AB与⊙O相切于点C,试求OA的值;(2)如图2,若AB与⊙O相交于D、E两点,且D、E均为AB的三等分点,试求tanA的值.30.如图,半圆的直径AB=10,点C在半圆上,BC=6.(1)求弦AC的长;(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.31.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.32.在△ABC中,∠C=900,以BC上一点O为圆心,以OB为半径的圆交AB•于点M,交BC于点N.(1)求证:BA·BM=BC·BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.33.如图,AB是⊙O的直径,点E是弧AD上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.第17课圆测试题一日期:月日满分:100分时间:20分钟姓名:得分:1.如图,在⊙O中,弦AB=2a,点C是弧AB的中点,CD⊥AB,CD=b,则⊙O的半径R=______.第1题图第2题图第3题图2.如图,在⊙O中,AO为半径,AB为弦,BC为切线,且OA=AB=BC,则弧BD的度数为;弧DE的度数为_______.3.如图,PA、PB切⊙O于点A、B,BD⊥AP,BD交弧AB于点C,∠CAD=25O ,则∠P的度数为_______.4.如图,ABCD是⊙O1的内接矩形,边AB平行y轴,且AB:BC=3:4,已知⊙O1 的半径为5,圆心O1的坐标是(10,10),矩形四个顶点A、B、C、D的坐标是A______;B______;C______;D_______.第4题图第5题图第6题图5.如图,CD为⊙O的直径,AE切⊙O于点B,DC的延长线交AB于点A,∠DBE=620,则∠A=____度.6.如图,AD是切线,点D是切点,BC是半圆O的直径,AB=BO=2,则AD= ; DC:DB= ;DB= ,DC= ,S△ABD= .7.如图,在Rt △ABC 中,∠C=90O ,AC=3,BC=5,以点A 为圆心、1为半径作⊙A,又BD 切⊙A 于点D,则切线BD 的长是_______.第7题图 第8题图8.如图,AB 为半圆O 的直径,CB 是半圆O 的切线,B 是切点,AC •交半圆O 于点D,已知CD=1,AD=3,那么cos ∠CAB=________.9.在Rt △ABC 中,∠C=90O ,AC=5,AB=13.(1)以点A 为圆心、4为半径的圆A 与直线BC 的位置关系是_____;(2)以点B 为圆心、以AB 的长为半径的圆B 与直线AC 的位置关系是_____;(3)以点C 为圆心,当半径为______时,圆C 与直线AB 相切。
圆周角定理及其运用1、如图,抛物线过点A(2,0)、B(6,0)、C(1,3),平行于x轴的直线CD交抛物线于C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是。
2、如图,AB为⊙O的直径,点C为半圆上一点,AD平分∠CAB交⊙O于点D。
(1)求证:OD∥AC;(2)若AC=8,AB=10,求AD。
知识点一圆周角定理及其推论【知识梳理】1、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
(1)定理有三个方面的意义:A、圆心角和圆周角在同圆或等圆中;B、它们对着同一条弧或所对的弧是等弧;C、具备A、B两个条件的圆周角都是相等的,且等于圆心角的一半。
(2)因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半。
(3)定理中的“同弧或等弧”改为“同弦或等弦”结论就不成立。
因为一条弦所对的弧有两段。
2、圆周角定理的推论:推论①:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧。
推论②:半圆或直径所对的圆周角是直角;圆周角是直角(90°的圆周角)所对的弧是半圆,所对的弦是直径。
推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
【例题精讲一】 例1.1、如图,已知A (32,0)、B (0,2),点P 为△AOB 外接圆上的一点,且∠AOP =45°,则P 点坐标为 。
(第1题)(第2题)2、如图,点A 、B 、C 在⊙O 上,∠A =36°,∠C =28°,则∠B =( ) A .46°B .72°C .64°D .36°3、如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°,AO ∥DC ,则∠B 的度数为 。
(第3 题)(第4 题)4、如图,∠A 是⊙O 的圆周角,则∠A +∠OCB = 。
题型全解4 五大性质定理之圆周角定理【知识梳理】1.三个知识点(1)圆周角与圆周角关系:等弧或同弧所对的各个圆周角都相等;即:①∵BĈ=BC ̂,∴∠A=∠D ;②∵AD ̂=AD ̂,∴∠B=∠C ; 注意:不是同弦或等弦,因为一条弦所对的圆周角有两个,相等或互补即:弦BC 所对的圆周角有:∠E 、∠A 、∠D ,其中∠A=∠D ,∠A+∠E=180°(∠D+∠E=180°)(2)圆周角定理与垂径定理综合运用(3)圆周角与直径关系:直径所对的圆周角是90°(或90°的圆周角所对的弦是直径)即:BC 是直径,则∠A=90°;反之也成立:∠A=90°,则BC 是直径;注意:①熟悉两种添辅助线方法:①题中出现直径,常作直径所对的圆周角――直角;②若没有直径的,作直径、延长半径成直径;②拓展:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形D C BA OC B AO 两切线,全等两圆心;连半径证垂直;作垂直证半径321的关系:∠1+∠2=180°;∠2=∠3关系(4)圆内接四边形对角(圆周角)关系:①圆内接四边形的对角的度数和等于180°;②任何一个外角都等于它的内对角; 即:∠C+∠BAD=180°或∠C=∠DAE ;拓展1:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为"四点共圆"。
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;如∠1=∠2;(2)圆内接四边形的对角互补; 如∠DAB+∠DCB=180°;(3)圆内接四边形的外角等于内对角,如∠FBC=∠ADC;(4)△DEC ∽△AEB 、△DEA ∽△CEB;(5) 以上性质逆用,即可判定四点共圆;(6)托勒密定理若ABCD 四点共圆(ABCD 按顺序都在同一个圆上),那么AB ×DC+BC ×AD=AC ×BD即圆内接四边形中,两组对边的乘积和,会等于两条对角线的乘积.(7)相交弦定理: AE ×CE=BE ×DE;【典型例题】1.如图,A ,B ,C ,D 是⊙O 上的四个点,∠A=60°,∠B=24°,则∠C 的度数为______ED B A O F21ED CB A解析:∠C=∠B=24°̂=CD̂,∠CAD=30°,∠ACD=50°,则∠ADB= .2.如图,点A,B,C,D在⊙O上,CB解析:∵弧CB=弧CD,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.3.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A. ∠ACD=∠DABB. AD=DEC. AD2=BD•CDD. AD•AB=AC•BD解析:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.故选D.24.直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.解析:连接OA、OB,∵AB=OB=OA,∴∠AOB=60°,∴∠C=30°,∴∠D=180°﹣30°=150°,∴弦AB所对的圆周角是30°或150°.5. 已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是____解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=5√3,∴tan∠1=AD/OD=√3,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°6.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是________解析:∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°7.如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是_____解析:∵A 、B 、C 、D 是⊙O 上的四点,OA ⊥BC ,∴弧AC=弧AB ,∴∠ADC=12∠AOB (等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.8.如图,点A ,B ,C ,D 都在半径为2的⊙O 上,若OA ⊥BC ,∠CDA=30°,则弦BC=____【分析】根据垂径定理得到CH=BH ,=,根据圆周角定理求出∠AOB ,根据正弦的定义求出BH ,计算即可. 解:∵OA ⊥BC ,∴CH=BH ,=,∴∠AOB=2∠CDA=60°,∴BH=OB •sin ∠AOB=√3,∴BC=2BH=2√3,9.如图,⊙O 的半径为5,AB 为弦,点C 为的中点,若∠ABC=30°,则弦AB 的长为___5√3【分析】连接OC 、OA ,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB 即可.解:连接OC 、OA ,∵∠ABC=30°,∴∠AOC=60°,∵AB 为弦,点C 为的中点,∴OC ⊥AB , 在Rt △OAE 中,AE=,∴AB=5√3,10.如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为_______解析:连接OA 、OB 、OP ,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB ,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB ,∴OB ⊥AP ,AD=PD ,∴∠OBP=∠OBA=60°,∵OB=OA ,∴△AOB 是等边三角形,∴AB=OA=5,则Rt △PBD 中,PD=cos30°•PB=√32×5=5√32,∴AP=2PD=5√3,11.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是________解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°12.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为______解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,13.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.14.如图,⊙A 过点O (0,0),C (√3,0),D (0,1),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是__________解析:连接DC ,∵C (√3,0),D (0,1),∴∠DOC=90°,OD=1,OC=√3,∴∠DCO=30°,∴∠OBD=30°,15.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是_______解析:连接BD ,∵∠E=90°,可知BD 是直径,作OM ⊥BC 于点M ,易知∠BOM=∠A=60°,∵OB=1,∴OM=12,BM=√32,∴BC=√3,CD=2OM=1,∴S 矩形BCDE =√316.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC=24,AH=18,⊙O 的半径OC=13,则AB=______解析:求线段长,要么针勾股定理,要么相似,由图形及题目条件判断,首先考虑相似,由于求AB ,且知AH 的长,我们选△ABH 跟某个三角形相似,由于△ABH 是直角三角形,所以需构造一个直角三角形,且含AC 为边的直角三角形与△ABH 相似,所以连OA 并延长AO 交⊙O 于点M ,连MC ,由于AM 是直径,∴∠ACM=90°,∵AĈ=AC ̂,∴∠B=∠AMC ,∴△ABH ∽△AMC ,∴AB AM =AH AC ,即AB 26=1824,∴AB=392 M A B C D E OH O A B CMA B C D E O O ED C B A H H O A B C O M C B A17.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.解析:(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.18.如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=72°,则∠DCE= .解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=72°19.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD=______解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,20.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是_______解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,21.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为________解析:∵∠BOC=40°,∴∠OBC=70°,∴∠D=180°-70°=110°22. 如图,四边形ABCD 是⊙O 的内接四边形,DP//AC ,交BA 的延长线于P ,求证:AD ·DC=PA ·BC解析:连接BD ,∵DP//AC ,∴∠PDA=∠DAC ,∵∠DAC=∠DBC ,∴∠PDA=∠DBC ,∵四边形ABCD 是圆内接四边形,∴∠DAP=∠DCB ,∴△PAD ∽△DCB ,∴PA :DC=AD :BC ,即AD ·DC=PA ·BCD B。
九年级圆周角定理知识点圆周角是在数学几何中的一个重要概念,它与圆形的内角和外角有着密切的关系。
在九年级的几何学学习中,圆周角定理是一个不可或缺的内容。
在本文中,将详细介绍九年级圆周角定理的知识点。
1. 圆周角的定义在一个圆上,连接圆心和圆上两点,所对的角被称为圆周角。
圆周角的尺寸是以弧度为单位进行度量的。
一个完整的圆周角等于360°或2π弧度。
这意味着一个圆周角的度数恰好等于所对弧的弧度数。
2. 圆周角定理圆周角定理是指,在同一个圆中,对应于相同弧的圆周角相等。
换句话说,如果两个圆周角对应于同一个圆上的相同弧,那么这两个角的大小是相等的。
圆周角定理可以用数学表达式来表示:∠AOC = ∠ABC其中∠AOC和∠ABC分别表示对应于相同弧AC的两个圆周角的度数。
3. 圆周角的相关性质除了圆周角定理,还有一些与圆周角相关的性质需要了解。
(1)圆周角定理的逆定理:如果两个角对应于同一个圆上的不同弧,那么这两个角的度数是不等的。
(2)圆周角等于直径角:一个圆上的直径所对应的圆周角恰好等于180°或π弧度。
(3)圆周角的其他性质:圆周角与圆上的弧长有关,根据圆周角的度数可以计算对应的弧长。
4. 圆周角定理的应用圆周角定理是解决各种几何问题的重要工具。
通过应用圆周角定理,我们可以求解关于弧长、角度和半径之间的问题。
例如,可以通过已知弧长计算对应的圆周角,或者通过已知角度计算对应的弧长。
在现实生活中,圆周角定理也有一些实际应用。
例如,在建筑工程中,可以利用圆周角定理来测量圆形表面的角度和长度。
在天文学中,圆周角定理也被广泛用于计算天体的运动轨迹和距离。
总结:本文详细介绍了九年级圆周角定理的知识点。
圆周角的定义和圆周角定理是理解和应用圆周角的基础。
此外,我们还学习了圆周角的其他性质和一些实际应用。
通过掌握这些知识,我们能够更好地理解和解决与圆周角相关的几何问题。
2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(一)一.选择题1.如图,⨀O的两条弦AB、CD相交于点E,AC和DB的延长线交于点P,下列结论中成立的是()A.PC•CA=PB•BD B.CE•AE=BE•EDC.CE•CD=BE•BA D.PB•PD=PC•PA2.如图,在⊙O中,弦AC,BD交于点E,连结AB、CD,在图中的“蝴蝶”形中,若AE=,AC=5,BE=3,则BD的长为()A.B.C.5 D.3.如图,⊙O的弦AB、CD相交于点P,若AP=6,BP=8,CP=4,则CD长为()A.16 B.24 C.12 D.不能确定4.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.5.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.B.5 C.+1 D.6.如图,⊙O的弦AB、CD相交于点P,若AP=3,BP=4,CP=2,则CD长为()A.6 B.12 C.8 D.不能确定7.如图,⊙O的直径AB与弦CD交于点E,AE=6,BE=2,CD=2,则∠AED的度数是()A.30°B.60°C.45°D.36°8.如图,点P为弦AB上的一点,连接OP,过点P作PC⊥OP,PC交⊙O于C,且⊙O的半径为3.若AP=4,PB=1,则OP的长是()A.2 B.2C.D.9.在⊙O中,弦AB和CD相交于P,且AB⊥CD,如果AP=4,PB=4,CP=2,那么⊙O的直径为()A.4 B.5 C.8 D.1010.如图,圆中两条弦AC,BD相交于点P.点D是的中点,连结AB,BC,CD,若BP=,AP=1,PC=3.则线段CD的长为()A.B.2 C.D.二.填空题11.如图,⊙O中,弦AB、CD相交于点P,若AP=5,BP=4,CP=3,则DP为.12.如图,已知⊙O的两条弦AB、CD相交于点E,且E分AB所得线段比为1:3,若AB=4,DE﹣CE=2,则CD的长为.13.如图,⊙O的弦AB、CD相交于点E,若AE:DE=3:5,则AC:BD=.14.如图,在⊙O中,弦BC,DE交于点P,延长BD,EC交于点A,BC=10,BP=2CP,若=,则DP的长为.15.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=.三.解答题16.如图,弦AB与CD相交于⊙O内一点P,PC>PD.(1)试说明:△PAC∽△PDB;(2)设PA=4,PB=3,CD=8,求PC、PD的长.17.如图,在⊙O中,弦AD,BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的直径为10,DE=1,求AE的长.18.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是⊙O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求⊙O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.19.如图,(1)已知:P为半径为5的⊙O内一点,过P点最短的弦长为8,则OP=(2)在(1)的条件下,若⊙O内有一异于P点的Q点,过Q点的最短弦长为6,且这两条弦平行,求PQ的长.(3)在(1)的条件下,过P点任作弦MN、AB,试比较PM•PN与PA•PB的大小关系,且写出比较过程.你能用一句话归纳你的发现吗?(4)在(1)的条件下,过P点的弦CD=,求PC、PD的长.20.请阅读下列材料:圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作﹣弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:的值;(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:的值;(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:的值,并给出证明.参考答案一.选择题1.解:∵∠P=∠P,∠A=∠D,∴△PAB∽△PDC,∴=,∴PB•PD=PC•PA,故选:D.2.解:EC=AC﹣AE=,由相交弦定理得,AE•EC=DE•BE,则DE==,∴BD=DE+BE=,故选:B.3.解:∵AP•BP=CP•DP,∴PD=,∵AP=6,BP=8,CP=4,∴PD=12,∴CD=PC+PD=12+4=16.故选:A.4.解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.5.解:∵四边形ABCD是矩形,∴∠B=90°,∴AE===,∵BC=3,BE=1,∴CE=2,由相交弦定理得:AE•EF=BE•CE,∴EF==,∴AF=AE+EF=;故选:A.6.解:∵AP•BP=CP•DP,∴PD=,∵AP=3,BP=4,CP=2,∴PD=6,∴CD=PC+PD=2+6=8.故选:C.7.解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH=CD(垂径定理);∵CD=2,∴DH=.又∵AE=6,BE=2,∴AB=8,∴OA=OD=4(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH===(勾股定理);在Rt△OEH中,sin∠OEH==,∴∠OEH=45°,即∠AED=45°.8.解:延长CP交圆于一点D,连接OC,∵PC⊥OP,∴PC=PD,∴PC2=PA•PB,∵AP=4,PB=1,∴PC2=4×1,∴PC=2,∴OP===.故选:C.9.解:∵AB⊥CD,AP=PB=4,∴CD为⊙O的直径,由相交弦定理得,PA•PB=PC•PD,即2PD=16,解得,PD=8,故选:D.10.解:连接OD交AC于H,如图,∵点D是的中点,∴OD⊥AC,AH=CH=2,∴PH=1,∵AP•PC=BP•PD,∴PD==,在Rt△PDH中,DH==,在Rt△DCH中,CD==.故选:A.二.填空题(共5小题)11.解:由相交弦定理得,PA•PB=PC•PD,∴5×4=3×DP,解得,DP=,故答案为:.12.解:∵E分AB所得线段比为1:3,AB=4,∴AE=1,EB=3,由相交弦定理得,AE•EB=CE•ED,∴1×3=CE×(CE+2),解得,CE1=1,CE2=﹣3(舍去),则CE=1,DE=2,∴CD=1+3=4,故答案为:4.13.解:∵弦AB、CD相交于点E,∴∴∠C=∠B,∠A=∠D,∴△ACE∽△DBE,∴==,故答案为:3:5.14.解:如图,作CH∥DE交AB于H.设DP=2a.∵PD∥CH,∴===,∴CH=3a,∵BD:AD=2:3,∴BD:AD=BD:BH,∴AD=BH,∴BD=AH,∴AH:AD=2:3,∴CH∥DE,∴==,∴DE=a,∴PE=a﹣2a=a,∵BC=10,BP:PC=2:1,∴PB=,PC=,∵PB•PC=PD•PE,∴5a2=,∴a=(负根已经舍弃),∴PD=2a=.故答案为.15.解:∵⊙O的弦AB、CD相交于点E,∴AE•BE=CE•DE,∴AE:DE=CE:BE=2:3,故答案为:2:3.三.解答题(共5小题)16.(1)证明:由圆周角定理得,∠A=∠D,∠C=∠B,∴△PAC∽△PDB;(2)解:由相交弦定理得到,PA•PB=PC•PD,即3×4=PC×(8﹣PC),解得,PC=2或6,则PD=6或2,∵PC>PD,∴PC=6,PD=2.17.(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=5.则AF=3+1=4,即AE=AF+3=7.18.解:(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,⊙O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∵∠C=∠B,∠A=∠D,∴△APC∽△DPB,∴AP:DP=CP:BP,∴AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∵AB=10,PA=4,OP=5,∴PB=10﹣4=6,PC=OC+OP=R+5,PD=OD﹣OP=R﹣5,由(1)中结论得,PA•PB=PC•PD,∴4×6=(R+5)×(R﹣5),解得R=7(R=﹣7舍去).所以⊙O的半径R=7cm.19.解:(1)连接OP,过点P作CD⊥OP于点P,连接OD.根据题意,得CD=8,OD=5.根据垂径定理,得PD=4,根据勾股定理,得OP=3;(2)根据平行线的性质和垂线的性质,知O、P、Q三点共线.根据(1)的求解方法,得OQ=4,则PQ=1或7;(3)连接AM、BN.∵∠A=∠N,∠M=∠B,∴△APM∽△NPB,∴,即PM•PN=PA•PB;(4)作直径AB,根据相交弦定理,得PC•PD=PA•PB=(5﹣3)(5+3)=16,又CD=,设PC=x,则PD=﹣x,则有x(﹣x)=16,解得x=3或x=.即PC=3或,PD=或3.20.解:(1)AC过圆心O,且m,n分别切⊙O于点A,C,∴AC⊥m于点A,AC⊥n于点C.∵PQ⊥m于点Q,PR⊥n于点R,∴Q与A重合,R与C重合.∵OP=1,AC=4,∴PQ=1,PR=3,∴+=1+=.(2)连接OA,∵OP⊥AC于点P,且OP=1,OA=2,∴∠OAP=30°.∴AP=.∵OA⊥直线m,PQ⊥直线m,∴OA∥PQ,∠PQA=90°.∴∠APQ=∠OAP=30°.在Rt△AQP中,PQ=,同理,PR=,∴.(3)猜想.证明:过点A作直径交⊙O于点E,连接EC,∴∠ECA=90°.∵AE⊥直线m,PQ⊥直线m,∴AE∥PQ且∠PQA=90°.∴∠EAC=∠APQ.∴△AEC∽△PAQ.∴①同理可得:②①+②,得:+=+∴=()=•=.过P作直径交⊙O于M,N,根据阅读材料可知:AP•PC=PM•PN=3,∴=.。
中考数学之圆的公式定理整理初中数学学习中,大家首先必须搞懂的就是公式定理,只有先记住了公式,才有可能在运算中活学活用。
下面是小编给大家带来的中考数学复习资料之圆的公式定理,欢迎大家阅读参考,我们一起来看看吧!中考数学复习资料之圆的基本性质与定理1。
点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2。
圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4。
在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5。
一条弧所对的圆周角等于它所对的圆心角的一半。
6。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
7。
不在同一直线上的3个点确定一个圆。
8。
一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9。
直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO10。
圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11。
圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R-r中考数学复习资料之圆的定义1。
平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2。
圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
2021年九年级数学中考复习专题之圆的考察:圆周角定理的运用(一)一.选择题1.如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°2.如图,在⊙O中,AB为直径,C,E在圆周上,若∠COB=100°,则∠AEC的度数为()A.30°B.20°C.40°D.50°3.如图,AB是⊙O的直径,C,D为⊙O上的点,弧AD=弧CD,若∠DAC=25°,则∠CAB的度数为()A.30°B.40°C.50°D.60°4.如图,AB是⊙O的直径,点C是圆上一点,连结AC和BC,过点C作CD⊥AB于点D,且CD=4,BD=3,则⊙O的周长是()A.πB.πC.πD.π5.如图,E,F,G为圆上的三点,∠FEG=50°,P点可能是圆心的是()A.B.C.D.6.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB =40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°7.如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°8.如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.9.如图,A是⊙O上一点,BC是直径,AC=2,AB=4,点D在⊙O上且平分,则DC的长为()A.2B.C.2D.10.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=8,则半径OB等于()A.B.C.4 D.5二.填空题11.如图,⊙O的半径为2.弦AB=2,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是.12.如图,圆O的直径AB过弦CD的中点E,若∠C=24°,则∠D=.13.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O 上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O 夹角为60°的方向运动到⊙O上的点A4处.……按此规律运动到点A2020处,则点A2020与点A0间的距离是.14.如图,⊙O的直径AB过弦CD的中点E,若∠C=26°,则∠D=.15.如图,AB为⊙O的直径,C,D为⊙O上的点,=.若∠CAB=50°,则∠CAD =°.三.解答题16.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,连接CD;(1)若∠CAD=23°,求∠BAC的度数;(2)若∠ACD=45°,AC=13,求CD的长.17.如图,点D在以AB为直径的⊙O上,延长BD到点C,使得CD=BD.点E为AC 上的动点,射线ED与射线AB交于点F.(1)求证:∠C=∠ABD;(2)若ED是⊙O的切线,且CE=2,OD=5,求BF的长.18.如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.19.如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.20.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.参考答案一.选择题1.解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.2.解:∵OC=OB,∠COB=100°,∴∠B=∠BCO=(180°﹣100°)=40°,∴∠AEC=∠B=40°,故选:C.3.解:∵弧AD=弧CD,∴∠ABD=∠DAC=25°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°,∴∠CAB=∠DAB﹣∠DAC=65°﹣25°=40°.故选:B.4.解:∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴Rt△ABC∽Rt△CBD,∴,∵CD=4,BD=3,∴BC===5∴,∴AB=,∴⊙O的周长是π,故选:A.5.解:∵∠FEG=50°,若P点圆心,∴∠FPG=2∠FEG=100°.故选:C.6.解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.故选:B.7.解:∵在⊙O中,OC⊥AB,∴=,∵∠APC=28°,∴∠BOC=2∠APC=56°,故选:D.8.解:如图,连接AC、BC.∵∠ADC和∠ABC所对的弧长都是,∴根据圆周角定理知,∠ADC=∠ABC.在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABC=,∵AC=2,BC=3,∴AB==,∴sin∠ABC==,∴sin∠ADC=.故选:A.9.解:∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴BC===2,∵点D在⊙O上,且平分,∴DC=BD.Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=,故选:D.10.解:∵半径OC⊥弦AB于点D,∴=,AD=BD,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=8,∴DB=OD=4,则半径OB等于:=4.故选:B.二.填空题(共5小题)11.解:连结OA、OB,作△ABC的外接圆D,如图1,∵OA=OB=2,AB=2,∴△OAB为等边三角形,∴∠AOB=60°,∴∠APB=∠AOB=30°,∵AC⊥AP,∴∠C=60°,∵AB=2,要使△ABC的最大面积,则点C到AB的距离最大,∵∠ACB=60°,点C在⊙D上,∴∠ADB=120°,如图2,当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC为等边三角形,且面积为AB2=,∴△ABC的最大面积为.故答案为:.12.解:∵圆O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∵∠A=∠C=24°,∴∠D=90°﹣24°=66°.故答案为66°.13.解:如图,∵⊙O的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2020÷6=336…4,∴按此规律运动到点A2020处,A2020与A4重合,∴A0A2020=A0A4=2.14.解:由圆周角的定律可知:∠D=∠ABC,∵AB是直径,∵E点是CD的中点,∴∠CEB=90°,∴∠ABC=90°﹣∠C=90°﹣26°=64°,∴∠D=64°,故答案为:64°15.解:连接OC,OD,如图所示:∵∠CAB=50°,∴∠COB=2∠AB=100°.∵=,∴∠AOD=∠COD=(180°﹣∠COB)=40°,∴∠CAD=∠COD=20°.故答案为:20.三.解答题(共5小题)16.解:(1)∵AC⊥BD,∴∠BEC=90°,∵∠CAD=∠CBE=23°,∴∠ACB=90°﹣23°=67°,∵AB=AC,∴∠ABC=∠ACB=67°,∴∠BAC=180°﹣67°﹣67°=46°.(2)∵AC⊥BD,∴∠AEB=∠CED=90°,∵∠ACD=∠ABD=45°,∴△ABE,△CED都是等腰直角三角形,∵AC=AB=13,∴AE=AB=,∴EC=AC﹣AE=13﹣,∴CD=EC=13﹣13.17.解:(1)证明:∵CD=BD,OA=OB,∴OD∥AC,∴∠C=∠ODB,∵OD=OB,∴∠ODB=∠ABD,∴∠C=∠ABD;(2)由(1)可知:OD∥AC,OD=AC,∴=,∵OD=OA=OB=5,∴AC=10,∴AE=AC﹣CE=10﹣2=8,OF=OB+BF=5+BF,AF=AB+BF=10+BF,∴=,解得BF=答:BF的长为18.(1)证明:如图①中,延长DE交⊙O于G,连接AG.∵AB⊥DG,AB是直径,∴=,DE=EG,∵AD平分∠CAB,∴∠CAD=∠DAB,∴=,∴=,∴BC=DG=2DE.(2)解:如图②中,作FR⊥AB于R,OS⊥AD于S.∵AD平分∠CAB,FC⊥AC,FR⊥AB,∴∠CAD=∠BAD=x,FC=FR,∴∠FBO=90°﹣2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB=∠OFB∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴==,∴AC=2FR=2FC,∴tan∠FAR=tan∠FAC=,设SO=t,AS=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=,∴AF=3t=,设CF=m,则AC=2m,则有5m2=,∵m>0,∴m=,∴AC=2m=.19.(1)证明:∵AB是圆的直径,∴∠ADB=90°,∵OC∥BD,∴∠AFO=∠ADB=90°,∴OC⊥AD∴=.(2)解:连接AC,如图,∵=,∴∠CAD=∠ABC,∵∠ECA=∠ACB,∴△ACE∽△BCA,∴,∴AC2=CE•CB,即AC2=1×(1+3),∴AC=2,∵AB是圆的直径,∴∠ACB=90°,∴AB===2,∴⊙O的半径为.20.证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.。