模糊控制数学基础
- 格式:pdf
- 大小:484.91 KB
- 文档页数:23
2. 模糊控制系统数学基础2.1 模糊集合的定义及表示方法 2.1.1 模糊集合的定义扎德(Zadeh)曾对模糊集合作如下的定义:设给定论域U,U 到[0,1]闭区间上的映射μA 都确定U 的一个模糊子集μA : U →[0,1]U →μ(u)μA 称之为 A 的隶属函数,μA (u )称之为U 对A 的隶属度。
隶属函数μA (x )表示元素x 属于A 的程度,若μA (X )=1,则表示X 完全属于A ,若μA (X )=0,则表示X 完全不属于A ,若μA (x)=0.5,则表示x 属于A 的程度只有了0.5。
2.1.2 模糊子集的表示方法 模糊子集有如下的表示方法:1)、当论域U 为离散有限集{X1,X2,...,Xn},此时,A 有两种表示方法:(1) 扎德表示法A=a1/x1+a2/x2+...+an/Xn;若有ai=0时,则可以省略。
式中“ai/Xi ”不是分数,仅表示“元素Xi属于A 的隶属度为ai ”;符号“+”也不是普通加法,仅仅是一个记号。
(2) 向量表示法A=(a1,a2,....,an);式中向量的次序是不能颠倒的,并且隶属度为零也不能省略。
2). 论域是离散无限域(1) 可数情况:扎德表示法A~∑⎰∞∞∞===111)(~)(~)(~~uiui A ui ui A ui ui A A其中U={u1,u2,…,un},μA(ui)=A(ui)。
这里“∑”,“U ”,“∫”仅仅是符号;A (ui )/ui 也不是分数。
(2)、 不可数情况:扎德表示法其中“∫”不是积分号;A(u)/u 也不是分数; μA (u )=A(u)。
3)、论域是连续域扎德表示法特别当U 是一个实数区间时,其上的模糊集可用普通的实函数表示。
[9]2.2 模糊集合的运算以及性质 2.2.1 模糊子集的运算由于模糊子集的特征函数是它的隶属函数,所以,进行两个模糊子集运算时通常都是逐点对其隶属度进行相应的运算。
模糊控制理论模糊控制理论是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制与神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。
实质上模糊控制是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
本文简单介绍了模糊控制的概念及应用,详细介绍了模糊控制器的设计,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。
“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。
“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。
模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量与模糊逻辑推理为基础的一种计算机数字控制技术。
模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
在1968~1973年期间Zadeh·L·A先后提出语言变量、模糊条件语句与模糊算法等概念与方法,使得某些以往只能用自然语言的条件语句形式描述的手动控制规则可采用模糊条件语句形式来描述,从而使这些规则成为在计算机上可以实现的算法。
1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器, 并把它应用于锅炉与蒸汽机的控制,在实验室获得成功。
这一开拓性的工作标志着模糊控制论的诞生并充分展示了模糊技术的应用前景。
模糊控制实质上是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。
②例证法此法是扎德教授于1972年提出的。
基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。
例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。
为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。
如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。
把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。
对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。
③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。
这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。
§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。
一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。
如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。
或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。
②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。
选择题
模糊控制理论中的核心概念之一是模糊集合,它主要由谁提出?
A. 扎德(Zadeh)(正确答案)
B. 牛顿
C. 莱布尼茨
D. 欧拉
模糊集合论中,用于描述元素属于集合程度的函数是什么?
A. 隶属函数(正确答案)
B. 概率函数
C. 分布函数
D. 密度函数
在模糊逻辑中,处理不确定性和模糊性的基本工具是什么?
A. 模糊规则
B. 模糊推理系统(正确答案)
C. 模糊数
D. 模糊关系
模糊控制中,用于将模糊量转换为精确量的过程称为?
A. 模糊化
B. 清晰化(正确答案)
C. 模糊推理
D. 模糊规则生成
下列哪一项是模糊控制系统中常用的清晰化方法?
A. 最小二乘法
B. 质心法(正确答案)
C. 牛顿法
D. 拉格朗日法
模糊集合的运算中,表示两个模糊集合合并的操作是什么?
A. 模糊交
B. 模糊并(正确答案)
C. 模糊补
D. 模糊蕴含
在模糊逻辑中,用于表示模糊命题之间逻辑关系的运算是什么?
A. 模糊蕴含(正确答案)
B. 模糊加法
C. 模糊减法
D. 模糊乘法
模糊控制器的设计过程中,确定输入输出变量模糊子集及其隶属函数的过程称为?
A. 模糊规则设计
B. 模糊化设计
C. 模糊关系设计
D. 隶属函数设计(正确答案)
模糊控制系统性能的好坏很大程度上取决于什么的设计?
A. 模糊规则库(正确答案)
B. 模糊推理机
C. 模糊化接口
D. 清晰化接口。
第二章模糊控制数学基础模糊控制的应用场合:一.模糊控制的定义对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程,得到满意的控制效果。
若能将这些熟练操作员的实践经验加以总结和描述,并用语言表达出来,就会得到一种定性的、不精确的控制规则。
如果用模糊数学将其定量化就转化为模糊控制算法,形成模糊控制理论。
模糊控制是建立在人工经验(定性的、不精确的)基础之上的,模仿人类的思维方式,采用模糊数学对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制。
模糊数学是模糊控制的数学基础,二.模糊控制的特点:1.无需知道被控对象的数学模型。
模糊控制是以人对被控系统的控制经验为依据而设计的控制器,故无需知道被控系统的数学模型。
2.是一种反映人类智慧思维的智能控制。
模糊控制采用人类思维中的模糊量,如“高”、“中”、“低”、“大”、“小”等,控制量由模糊推理导出。
这些模糊量和模糊推理是人类智能活动的体现。
3.易被人们所接受。
模糊控制的核心是控制规则。
模糊控制中的知识表示、模糊规则和模糊推理是基于专家知识或熟练操作者的成熟经验。
这些规则是以人类语言表示的。
很明显这些规则易被一般人所接收和理解。
如“衣服较脏,则投入洗涤剂较多,洗涤时间较长”, “今天气温高,则今天天气暖和”.4.构造容易。
用单片机等来构造模糊控制器,其结构与一般的数字控制系统无异,模糊控制算法用软件实现,也可以用专用模糊控制芯片直接构造控制器。
5.鲁棒性好。
模糊控制系统无论被控对象是线性的还是非线性的,都能执行有效的控制,具有良好的鲁棒性和适应性。
模糊控制是基于熟练操作员的实践经验,比如智能洗衣机,能够实现以下功能:“衣服较脏,则投入洗涤剂较多,洗涤时间较长”。
这个控制规律中存在着模糊概念:“衣服较脏”。
三.模糊概念没有明确外延的概念,即没有明确符合某概念的对象的全体,如“天气冷热”、“雨的大小”、“风的强弱”、“人的胖瘦”、“年龄的大小”、“个子高低”。
第二章:模糊控制的理论基础第一节:引言模糊控制的发展传统控制方法:数学模型。
模糊控制逻辑:使计算机具有智能和活性的一种新颖的智能控制方法。
模糊控制以模糊集合论为数学基础。
模糊控制系统的应用对于那些测量数据不准确,要处理的数据量过大以致无法判断它们的兼容性以及一些复杂可变的被控对象等场合是有益的。
模糊控制器的设计依赖于操作者的经验。
模糊控制器参数或控制输出的调整是从过程函数的逻辑模型产生的规则来进行的。
改善模糊控制器性能的有效方法是优化模糊控制规则。
模糊控制的特点:一、无需知道被控对象的数学模型二、是一种反应人类智慧思维的智能控制三、易被人们所接受四、推理过程采用“不精确推理”五、构造容易六、存在的问题:1、要揭示模糊控制器的实质和工作原理,解决稳定性和鲁棒性理论问题,从理论分析和数学推导的角度揭示和证明模糊控制系统的鲁棒性优于传统控制策略;2、信息简单的模糊处理将导致系统的控制精度降低和动态品质变差;3、模糊控制的设计尚缺乏系统性,无法定义控制目标。
“模糊控制的定义”定义:模糊控制器的输出是通过观察过程的状态和一些如何控制过程的规则的推理得到的。
基于三个概念:测量信息的模糊化,推理机制,输出模糊集的精确化;测量信息的模糊化:实测物理量转换为在该语言变量相应论域内的不同语言值的模糊子集;推理机制:使用数据库和规则库,根据当前的系统状态信息决定模糊控制的输出子集;模糊集的精确化:将推理过程得到的模糊控制量转化为一个清晰,确定的输出控制量的过程。
“模糊控制技术的相关技术”模糊控制器的核心处理单元:1.传统单片机;2.模糊单片机处理芯片;3.可编程门阵列芯片。
模糊信息与精确转换技术:AD,DA,转换技术。
模糊控制的软技术:系统的仿真软件。
综述:模糊控制是一种更人性化的方法,用模糊逻辑处理和分析现实世界的问题,其结果往往更符合人的要求。
第二节:模糊集合论基础“模糊集合的概念”经典集合论所表达概念的内涵和外延都必须是明确的。
模糊数学基础练习题模糊数学基础练习题在现代数学中,模糊数学是一门研究不确定性和模糊性的数学分支。
它通过引入模糊集合和模糊逻辑,为处理现实世界中模糊和不确定的问题提供了一种有效的工具。
为了更好地理解和应用模糊数学,下面将给出一些模糊数学基础练习题。
1. 模糊集合:给定一个模糊集合A = {(x, μA(x))},其中x是集合的元素,μA(x)是元素x的隶属度。
请计算集合A的支持度和核。
2. 模糊逻辑运算:假设有两个模糊集合A = {(x, μA(x))}和B = {(x, μB(x))},请计算它们的模糊交、模糊并和模糊补运算。
3. 模糊关系:考虑一个模糊关系R = {(x, y, μR(x, y))},其中x和y是集合的元素,μR(x, y)是元素x和y之间的关系强度。
请计算关系R的模糊合成和模糊反关系。
4. 模糊推理:假设有一个模糊规则库,包含多个模糊规则,如“If x is A and y is B, then z is C”,其中A、B和C分别是模糊集合。
请利用模糊推理方法,根据给定的输入模糊集合,推导出输出模糊集合。
通过解答以上练习题,我们可以更好地理解和应用模糊数学。
模糊数学的应用领域广泛,包括模糊控制、模糊决策、模糊优化等。
它在处理不确定性和模糊性问题时具有很强的适应性和灵活性,能够更好地反映现实世界中的复杂性和模糊性。
总之,模糊数学是一门重要的数学分支,它为处理现实世界中模糊和不确定的问题提供了一种有效的工具。
通过不断练习和应用,我们能够更好地掌握模糊数学的基础知识和技巧,为解决实际问题提供更准确和可靠的方法。
模糊数学知识小结与模糊数学相关的问题模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系模糊层次分析法—两两比较指标的确定模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。
由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果模糊数学基础一.Fuzzy 数学诞生的背景1)一个古希腊问题:“多少粒种子算作一堆?”2)Fuzzy 概念的广泛存在性,如“找人问题”3)何谓Fuzzy 概念?,如何描述它?由集合论的要求,一个对象x,对于一个集合,要么属于A,要么不属于A,二者必居其一,且仅居其一,绝对不允许模棱两可。
这种绝对的方法,是不能处理所有科学的问题,即现实生活中的一切事物一切现象都进行绝对的精确化时行不通的,从而产生模糊概念。
二.模糊与精确的关系对立统一,相互依存,可互相转化。
- 精确的概念可表达模糊的意思:如“望庐山瀑布”“飞流直下三千尺,凝是银河落九天”- Fuzzy的概念也能表达精确的意思:模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象。
三. 模糊性与随机性的区别事物分确定性现象与非确定性现象- 确定性现象:指在一定条件下一定会发生的现象。
- 非确定性现象分随机现象与模糊现象* 随机性是对事件的发生而言,其事件本身有着明确的含义,只是由于发生的条件不充分,事件的发生与否有多种可能性。
* 模糊性是研究处理模糊现象的,它所要处理的事件本身是模糊的。
模糊数学的广泛应用性模糊技术是21世纪的核心技术模糊数学的应用几乎渗透到自然科学与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控等。
2)地震科学方面:地震预报、地震危害分析。