模糊控制数学基础2—模糊逻辑与推理(2)
- 格式:ppt
- 大小:1.54 MB
- 文档页数:63
第二章 模糊控制理论基础知识2.1 模糊关系一、模糊关系R ~所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。
现在把它扩展到模糊集合中来,定义如下:所谓A ,B 两集合的直积A ×B={(a,b)|a ∈A ,b ∈B} 中的一个模糊关系R ~,是指以A ×B 为论域的一个模糊子集,其序偶(a,b)的隶属度为),(~b a Rμ,可见R ~是二元模糊关系。
若论域为n 个集合的直积,则A 1×A 2×A 3×……A n 称为n 元模糊关系R ~,它的隶属函数是n 个变量的函数。
例如,要求列出集合X={1,5,7,9,20}“序偶”上的“前元比后元大得多”的关系R ~。
因为直积空间R=X ×X 中有20个“序偶”,序偶(20,1)中的前元比后元大得多,可以认为它的隶属度为1,同理认为序偶(9,5)的隶属于“大得多”的程度为0.3,于是我们可以确定“大得多”的关系R ~为R ~=0.5/(5,1)+ 0.7/(7,1)+ 0.8/(9,1)+ 1/(20,1)+ 0.1/(7,5)+0.3/(9,5)+ 0.95/(20,5)+ 0.1/(9,7)+0.9/(20,7)+ 0.85/(20,9)综上所述,只要给出直积空间A ×B 中的模糊集R ~的隶属函数),(~b a Rμ,集合A 到集合B 的模糊关系R ~也就确定了。
由于模糊关系,R ~实际上是一个模糊子集,因此它们的运算完全服从第一章所述的Fuzzy 子集的运算规则,这里不一一赘述了。
一个模糊关系R ~,若对∀x ∈X ,必有),(~x x R μ=1,即每个元素X 与自身隶属于模糊关系R ~的隶属度为1。
称这样的R ~为具有自返性的模糊关系。
一个模糊R ~,若对∀x ,y ∈X ,均有),(~y x Rμ=),(~x y Rμ 即(x,y)隶属于Fuzzy 关系R ~和(y,x)隶属于Fuzzy 关系R ~的隶属度相同,则称R ~为具有对称性的Fuzzy 关系。
智能控制第二章模糊控制的数学基础模糊控制数学基础模糊概念在经典集合论中,人们对事物的描述是精确的,这种集合论要求一个事物对于一个集合要么属于,要么不属于,二者必居其一,且仅居其一,绝不允许模棱两可。
比如,一个学生要么属于“大学生”,要么不属于。
但是在现实生活中,人们对事物的描述并非都可以精确的用“属于”或“不属于”这两种截然不同的状态来进行划分。
模糊性普遍存在于人类思维和语言交流中,是一种不确定性的表现。
在实际生活中,经常听到这样的话“他很高”、“她很年轻”、“她的成绩很好”等,其中的“高”、“年轻”、“成绩好”都是模糊的概念,究竟多高才算高,究竟多少岁才算老,或者说年轻和年老的分界线是多少岁,成绩多好才算好,都没有一个十分确定的界限。
模糊概念天气冷热雨的大小风的强弱人的胖瘦年龄大小个子高低模糊概念没有明确外延的概念,即没有明确符合某概念的对象的全体,如“天气冷热”、“雨的大小”、“风的强弱”、“人的胖瘦”、“年龄的大小”、“个子高低”。
是客观事物本质属性在人们头脑中的反映。
例:高温天气的定义,按照经典集合理论的表示方式,高温={TOT36℃}。
35.9℃不属于高温35.9℃当然属于高温天气,温度已经相当高,无非属于高温天气的程度99%,不如36℃的程度高,但是比30℃的程度高。
4模糊控制模糊控制人们已经无法回避客观上存在的模糊现象。
扎德(Zadeh)教授提出的模糊集合理论,其核心是对复杂系统或过程建立一种语言分析的数学模式,使自然语言能直接转化为计算机所能接受的算法语言。
正是在这种背景下,作为智能控制的一个重要分支的模糊控制理论产生了。
模糊数学和模糊控制理论的发展虽然只有几十年的历史,但其理论和引用的研究已取得了丰硕的成果。
尤其随着模糊逻辑在自动控制领域的成功应用,模糊控制理论和方法的研究引起了学术界和工业界的广泛关注。
2.1 概述模糊控制的定义对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程,得到满意的控制效果。
数学中的模糊数学与模糊逻辑数学作为一门严谨的学科,几乎在每个人的学习生涯中都会接触到。
然而,在实际应用中,我们常常会遇到一些不确定、模糊的问题。
为了更好地解决这类问题,数学家们引入了模糊数学与模糊逻辑的概念。
本文将探讨数学中的模糊数学与模糊逻辑的基本原理和应用。
一、模糊数学的基本原理模糊数学是对现实世界中不确定性问题的数学描述与处理方法的研究。
它针对真实世界中事物属性的模糊性,引入了隶属度的概念,用来描述事物属性的模糊程度。
在模糊数学中,一个模糊数可以用一个隶属函数来表示,该函数将取值范围映射到[0,1]之间,表示某个数值与一个模糊概念之间的关联程度。
模糊数的运算是模糊数学的核心内容之一。
在模糊数学中,模糊数之间可以进行加、减、乘、除等基本运算。
这些运算的结果也是一个模糊数,用来描述事物属性的不确定性。
二、模糊数学的应用领域1. 模糊控制模糊控制是模糊数学的一种重要应用。
它通过对输入和输出之间的关系建立模糊规则,并根据规则进行推理和决策,实现对复杂系统的控制。
相比于传统的控制方法,模糊控制在处理不确定性和模糊性的问题上具有较大的优势,适用于很多实际工程项目。
2. 模糊聚类模糊聚类是一种聚类分析方法,用于将具有模糊性质的数据进行分类。
传统的聚类方法在处理模糊数据时存在局限性,而模糊聚类能够克服这些问题。
它通过计算数据点与聚类中心之间的相似性来确定聚类结果,能够更好地适应模糊性、不确定性的数据。
3. 模糊决策在实际决策中,常常会遇到多个因素相互影响、信息不完全的情况。
模糊决策方法通过引入模糊数学的概念,将各个因素的不确定性进行量化,并通过模糊推理来得出最终的决策结果。
这种方法可以有效地应对实际决策中的不确定性、模糊性问题。
三、模糊逻辑的基本原理模糊逻辑是一种扩展了传统二值逻辑的逻辑系统。
与传统二值逻辑只有真和假两种取值不同,模糊逻辑引入了隶属度的概念,使命题在真和假之间具有连续性。
在模糊逻辑中,命题的真值(隶属度)表示命题的可信度或确定程度。
模糊逻辑与模糊控制的基本原理在现代智能控制领域中,模糊逻辑与模糊控制是研究的热点之一。
模糊逻辑可以应用于形式化描述那些非常复杂,无法准确或完全定义的问题,例如语音识别、图像处理、模式识别等。
而模糊控制可以通过模糊逻辑的方法来设计控制系统,对那些难以表达精确数学模型的问题进行控制,主要用于不确定的、非线性的、运动系统模型的控制。
本文主要介绍模糊逻辑和模糊控制的基本原理。
一、模糊逻辑的基本原理模糊逻辑是对布尔逻辑的延伸,在模糊逻辑中,各种概念之间的相互关系不再是严格的,而是模糊的。
模糊逻辑的基本要素是模糊集合,模糊集合是一个值域在0和1之间的函数,它描述了一个物体属于某个事物的程度。
以温度为例,一般人将15℃以下的温度视为冷,20至30℃为暖,30℃以上为热。
但是在模糊逻辑中,这些概念并不是非黑即白,而可能有一些模糊的层次,如18℃可能既不是冷又不是暖,但是更接近于暖。
因此,设180℃该点的温度为x,则可以用一个图形来描述该温度与“暖”这个概念之间的关系,这个图形称为“隶属函数”或者“成员函数”图。
一个隶属函数是一个可数的、从0到1变化的单峰实函数。
它描述了一个物体与一类对象之间的相似程度。
对于温度为18℃的这个例子,可以用一个隶属函数来表示其与“暖”这一概念之间的关系。
这个隶属函数,可以用三角形或者梯形函数来表示。
模糊逻辑还引入了模糊关系和模糊推理的概念。
模糊关系是对不确定或模糊概念间关系的粗略表示,模糊推理是指通过推理机来对模糊逻辑问题进行判断和决策。
二、模糊控制的基本原理在控制系统中,通常采用PID控制或者其他经典控制方法来控制系统,但对于一些非线性控制系统,这些方法越发显得力不从心。
模糊控制是一种强大的、在处理非线性系统方面表现出色的控制方法。
它通过对遥测信号进行模糊化处理,并将模糊集合控制规则与一系列的控制规则相关联起来以实现控制。
模糊控制的基本组成部分主要包括模糊化、模糊推理、去模糊化等三个步骤。