模糊控制数学基础2—模糊逻辑与推理(2)
- 格式:ppt
- 大小:1.54 MB
- 文档页数:63
第二章 模糊控制理论基础知识2.1 模糊关系一、模糊关系R ~所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。
现在把它扩展到模糊集合中来,定义如下:所谓A ,B 两集合的直积A ×B={(a,b)|a ∈A ,b ∈B} 中的一个模糊关系R ~,是指以A ×B 为论域的一个模糊子集,其序偶(a,b)的隶属度为),(~b a Rμ,可见R ~是二元模糊关系。
若论域为n 个集合的直积,则A 1×A 2×A 3×……A n 称为n 元模糊关系R ~,它的隶属函数是n 个变量的函数。
例如,要求列出集合X={1,5,7,9,20}“序偶”上的“前元比后元大得多”的关系R ~。
因为直积空间R=X ×X 中有20个“序偶”,序偶(20,1)中的前元比后元大得多,可以认为它的隶属度为1,同理认为序偶(9,5)的隶属于“大得多”的程度为0.3,于是我们可以确定“大得多”的关系R ~为R ~=0.5/(5,1)+ 0.7/(7,1)+ 0.8/(9,1)+ 1/(20,1)+ 0.1/(7,5)+0.3/(9,5)+ 0.95/(20,5)+ 0.1/(9,7)+0.9/(20,7)+ 0.85/(20,9)综上所述,只要给出直积空间A ×B 中的模糊集R ~的隶属函数),(~b a Rμ,集合A 到集合B 的模糊关系R ~也就确定了。
由于模糊关系,R ~实际上是一个模糊子集,因此它们的运算完全服从第一章所述的Fuzzy 子集的运算规则,这里不一一赘述了。
一个模糊关系R ~,若对∀x ∈X ,必有),(~x x R μ=1,即每个元素X 与自身隶属于模糊关系R ~的隶属度为1。
称这样的R ~为具有自返性的模糊关系。
一个模糊R ~,若对∀x ,y ∈X ,均有),(~y x Rμ=),(~x y Rμ 即(x,y)隶属于Fuzzy 关系R ~和(y,x)隶属于Fuzzy 关系R ~的隶属度相同,则称R ~为具有对称性的Fuzzy 关系。
智能控制第二章模糊控制的数学基础模糊控制数学基础模糊概念在经典集合论中,人们对事物的描述是精确的,这种集合论要求一个事物对于一个集合要么属于,要么不属于,二者必居其一,且仅居其一,绝不允许模棱两可。
比如,一个学生要么属于“大学生”,要么不属于。
但是在现实生活中,人们对事物的描述并非都可以精确的用“属于”或“不属于”这两种截然不同的状态来进行划分。
模糊性普遍存在于人类思维和语言交流中,是一种不确定性的表现。
在实际生活中,经常听到这样的话“他很高”、“她很年轻”、“她的成绩很好”等,其中的“高”、“年轻”、“成绩好”都是模糊的概念,究竟多高才算高,究竟多少岁才算老,或者说年轻和年老的分界线是多少岁,成绩多好才算好,都没有一个十分确定的界限。
模糊概念天气冷热雨的大小风的强弱人的胖瘦年龄大小个子高低模糊概念没有明确外延的概念,即没有明确符合某概念的对象的全体,如“天气冷热”、“雨的大小”、“风的强弱”、“人的胖瘦”、“年龄的大小”、“个子高低”。
是客观事物本质属性在人们头脑中的反映。
例:高温天气的定义,按照经典集合理论的表示方式,高温={TOT36℃}。
35.9℃不属于高温35.9℃当然属于高温天气,温度已经相当高,无非属于高温天气的程度99%,不如36℃的程度高,但是比30℃的程度高。
4模糊控制模糊控制人们已经无法回避客观上存在的模糊现象。
扎德(Zadeh)教授提出的模糊集合理论,其核心是对复杂系统或过程建立一种语言分析的数学模式,使自然语言能直接转化为计算机所能接受的算法语言。
正是在这种背景下,作为智能控制的一个重要分支的模糊控制理论产生了。
模糊数学和模糊控制理论的发展虽然只有几十年的历史,但其理论和引用的研究已取得了丰硕的成果。
尤其随着模糊逻辑在自动控制领域的成功应用,模糊控制理论和方法的研究引起了学术界和工业界的广泛关注。
2.1 概述模糊控制的定义对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程,得到满意的控制效果。
数学中的模糊数学与模糊逻辑数学作为一门严谨的学科,几乎在每个人的学习生涯中都会接触到。
然而,在实际应用中,我们常常会遇到一些不确定、模糊的问题。
为了更好地解决这类问题,数学家们引入了模糊数学与模糊逻辑的概念。
本文将探讨数学中的模糊数学与模糊逻辑的基本原理和应用。
一、模糊数学的基本原理模糊数学是对现实世界中不确定性问题的数学描述与处理方法的研究。
它针对真实世界中事物属性的模糊性,引入了隶属度的概念,用来描述事物属性的模糊程度。
在模糊数学中,一个模糊数可以用一个隶属函数来表示,该函数将取值范围映射到[0,1]之间,表示某个数值与一个模糊概念之间的关联程度。
模糊数的运算是模糊数学的核心内容之一。
在模糊数学中,模糊数之间可以进行加、减、乘、除等基本运算。
这些运算的结果也是一个模糊数,用来描述事物属性的不确定性。
二、模糊数学的应用领域1. 模糊控制模糊控制是模糊数学的一种重要应用。
它通过对输入和输出之间的关系建立模糊规则,并根据规则进行推理和决策,实现对复杂系统的控制。
相比于传统的控制方法,模糊控制在处理不确定性和模糊性的问题上具有较大的优势,适用于很多实际工程项目。
2. 模糊聚类模糊聚类是一种聚类分析方法,用于将具有模糊性质的数据进行分类。
传统的聚类方法在处理模糊数据时存在局限性,而模糊聚类能够克服这些问题。
它通过计算数据点与聚类中心之间的相似性来确定聚类结果,能够更好地适应模糊性、不确定性的数据。
3. 模糊决策在实际决策中,常常会遇到多个因素相互影响、信息不完全的情况。
模糊决策方法通过引入模糊数学的概念,将各个因素的不确定性进行量化,并通过模糊推理来得出最终的决策结果。
这种方法可以有效地应对实际决策中的不确定性、模糊性问题。
三、模糊逻辑的基本原理模糊逻辑是一种扩展了传统二值逻辑的逻辑系统。
与传统二值逻辑只有真和假两种取值不同,模糊逻辑引入了隶属度的概念,使命题在真和假之间具有连续性。
在模糊逻辑中,命题的真值(隶属度)表示命题的可信度或确定程度。
模糊逻辑与模糊控制的基本原理在现代智能控制领域中,模糊逻辑与模糊控制是研究的热点之一。
模糊逻辑可以应用于形式化描述那些非常复杂,无法准确或完全定义的问题,例如语音识别、图像处理、模式识别等。
而模糊控制可以通过模糊逻辑的方法来设计控制系统,对那些难以表达精确数学模型的问题进行控制,主要用于不确定的、非线性的、运动系统模型的控制。
本文主要介绍模糊逻辑和模糊控制的基本原理。
一、模糊逻辑的基本原理模糊逻辑是对布尔逻辑的延伸,在模糊逻辑中,各种概念之间的相互关系不再是严格的,而是模糊的。
模糊逻辑的基本要素是模糊集合,模糊集合是一个值域在0和1之间的函数,它描述了一个物体属于某个事物的程度。
以温度为例,一般人将15℃以下的温度视为冷,20至30℃为暖,30℃以上为热。
但是在模糊逻辑中,这些概念并不是非黑即白,而可能有一些模糊的层次,如18℃可能既不是冷又不是暖,但是更接近于暖。
因此,设180℃该点的温度为x,则可以用一个图形来描述该温度与“暖”这个概念之间的关系,这个图形称为“隶属函数”或者“成员函数”图。
一个隶属函数是一个可数的、从0到1变化的单峰实函数。
它描述了一个物体与一类对象之间的相似程度。
对于温度为18℃的这个例子,可以用一个隶属函数来表示其与“暖”这一概念之间的关系。
这个隶属函数,可以用三角形或者梯形函数来表示。
模糊逻辑还引入了模糊关系和模糊推理的概念。
模糊关系是对不确定或模糊概念间关系的粗略表示,模糊推理是指通过推理机来对模糊逻辑问题进行判断和决策。
二、模糊控制的基本原理在控制系统中,通常采用PID控制或者其他经典控制方法来控制系统,但对于一些非线性控制系统,这些方法越发显得力不从心。
模糊控制是一种强大的、在处理非线性系统方面表现出色的控制方法。
它通过对遥测信号进行模糊化处理,并将模糊集合控制规则与一系列的控制规则相关联起来以实现控制。
模糊控制的基本组成部分主要包括模糊化、模糊推理、去模糊化等三个步骤。
1模糊控制1.1 概述基于解析模型的控制方法有着较长的发展历史,经过许多学者的不懈努力已经建立了一套完善的理论体系,并且非常成功地解决了许多问题。
但是,当人们将这种控制方法应用于具有非线性动力学特征的复杂系统时,受到了严峻的挑战。
特别是,面对无法精确解析建模的物理对象和信息不足的病态过程,基于解析模型的控制理论更显得束手无策。
这就迫使人们去探索新的控制方法和途径去解决这类问题,在这样一个背景下诞生了基于模糊逻辑的控制方法,并且今天它已成为最活跃和最为有效的一种智能控制技术。
一些学者对人类处理复杂对象的行为进行了长期的观察,进而发现人们控制一个对象的过程与基于解析模型的控制机理完全不同,即不是首先建立被控对象的数学模型,然后根据这一模型去精确地计算出系统所需要的控制量,而是完全在模糊概念的基础上利用模糊的量完成对系统的合理控制。
让我们简单地回顾一下:一个优秀的杂技演员在表演走钢丝时事如何保持他身体的平衡呢?当他的身体向一个方向倾斜时,他是通过身体的重心去感觉其倾斜程度,然后根据倾斜程度产生一个相反的力去恢复平衡的过程,我们可以意识到一个重要的事实:杂技演员是无法准确地感知出身体的倾斜角为多大,并且也无法精确地计算出恢复平衡的力要多大,但是他确实能够有效地保持身体的平衡。
显然,杂技演员走钢丝的这种平衡能力是很难用解析的方式来描述的。
相反,这种能力是来源于杂技演员多年的训练经验和积累的专业知识。
为了有效地描述这种经验和知识,一些从事智能技术的专家一直在探索表达经验和知识的有效方法,在这其中,以查德(Zadeh)教授1965年提出基于模糊集合论的模糊逻辑(Fuzzy Logic),是一种表达具有不确定性经验和知识的有效工具。
1974年马达尼(Mamdani)教授在他的博士论文中首次论述了如何将模糊逻辑应用于过程控制,从而开创了模糊控制的先河。
1.2模糊逻辑的基本概念既然模糊控制的基础是模糊逻辑,那么什么是模糊逻辑呢?模糊逻辑可以说是一种逻辑的形式化。
模糊控制算法原理一、概述模糊控制算法是一种基于模糊逻辑的控制方法,相对于传统的精确控制方法,具有更好的适应性和鲁棒性。
其基本思想是将输入变量和输出变量映射到模糊集合上,并通过模糊推理实现对输出变量的控制。
二、模糊集合1. 模糊集合的定义模糊集合是指在某个特定的论域上,每个元素都有一个隶属度值,表示该元素属于该模糊集合的程度。
与经典集合不同,经典集合中每个元素只能完全属于或完全不属于该集合。
2. 模糊集合的运算与经典集合类似,模糊集合也可以进行交、并、补等运算,但其结果仍然是一个模糊集合。
三、模糊推理1. 模糊规则在模糊控制中,通常使用若干个模糊规则来描述输入变量和输出变量之间的关系。
每个规则由若干前提条件和一个结论组成,其中前提条件和结论都是由若干个隶属度函数组成的。
2. 模糊推理过程模糊推理的过程包括模糊化、规则匹配、聚合和去模糊化四个步骤。
首先将输入变量通过隶属度函数映射到对应的模糊集合上,然后对每个规则进行匹配,计算出每个规则的激活度。
接着将所有激活度进行聚合,得到一个综合的隶属度函数。
最后将该隶属度函数通过去模糊化方法转换为实际输出值。
四、模糊控制器1. 模糊控制器的结构模糊控制器通常由三部分组成:模糊化单元、推理单元和去模糊化单元。
其中,模糊化单元用于将输入变量映射到对应的模糊集合上,推理单元用于执行模糊推理算法,去模糊化单元用于将输出结果转换为实际控制信号。
2. 模糊控制器设计在设计一个模糊控制器时,需要确定论域、隶属度函数和规则库等参数。
其中论域是指输入变量和输出变量所在的范围,隶属度函数是指将输入变量和输出变量映射到对应模糊集合的函数,规则库是指描述输入变量和输出变量之间关系的一组模糊规则。
五、模糊控制算法的优缺点1. 优点相对于传统的精确控制方法,模糊控制算法具有更好的适应性和鲁棒性,能够处理非线性、时变和不确定性等问题。
同时,模糊控制器设计简单,易于实现。
2. 缺点由于模糊推理过程中需要进行大量的数学计算,因此计算复杂度较高。