模糊控制的数学基础
- 格式:ppt
- 大小:5.06 MB
- 文档页数:40
第二章 模糊控制理论基础知识2.1 模糊关系一、模糊关系R ~所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。
现在把它扩展到模糊集合中来,定义如下:所谓A ,B 两集合的直积A ×B={(a,b)|a ∈A ,b ∈B} 中的一个模糊关系R ~,是指以A ×B 为论域的一个模糊子集,其序偶(a,b)的隶属度为),(~b a Rμ,可见R ~是二元模糊关系。
若论域为n 个集合的直积,则A 1×A 2×A 3×……A n 称为n 元模糊关系R ~,它的隶属函数是n 个变量的函数。
例如,要求列出集合X={1,5,7,9,20}“序偶”上的“前元比后元大得多”的关系R ~。
因为直积空间R=X ×X 中有20个“序偶”,序偶(20,1)中的前元比后元大得多,可以认为它的隶属度为1,同理认为序偶(9,5)的隶属于“大得多”的程度为0.3,于是我们可以确定“大得多”的关系R ~为R ~=0.5/(5,1)+ 0.7/(7,1)+ 0.8/(9,1)+ 1/(20,1)+ 0.1/(7,5)+0.3/(9,5)+ 0.95/(20,5)+ 0.1/(9,7)+0.9/(20,7)+ 0.85/(20,9)综上所述,只要给出直积空间A ×B 中的模糊集R ~的隶属函数),(~b a Rμ,集合A 到集合B 的模糊关系R ~也就确定了。
由于模糊关系,R ~实际上是一个模糊子集,因此它们的运算完全服从第一章所述的Fuzzy 子集的运算规则,这里不一一赘述了。
一个模糊关系R ~,若对∀x ∈X ,必有),(~x x R μ=1,即每个元素X 与自身隶属于模糊关系R ~的隶属度为1。
称这样的R ~为具有自返性的模糊关系。
一个模糊R ~,若对∀x ,y ∈X ,均有),(~y x Rμ=),(~x y Rμ 即(x,y)隶属于Fuzzy 关系R ~和(y,x)隶属于Fuzzy 关系R ~的隶属度相同,则称R ~为具有对称性的Fuzzy 关系。
从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。
②例证法此法是扎德教授于1972年提出的。
基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。
例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。
为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。
如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。
把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。
对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。
③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。
这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。
§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。
一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。
如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。
或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。
②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。
选择题
模糊控制理论中的核心概念之一是模糊集合,它主要由谁提出?
A. 扎德(Zadeh)(正确答案)
B. 牛顿
C. 莱布尼茨
D. 欧拉
模糊集合论中,用于描述元素属于集合程度的函数是什么?
A. 隶属函数(正确答案)
B. 概率函数
C. 分布函数
D. 密度函数
在模糊逻辑中,处理不确定性和模糊性的基本工具是什么?
A. 模糊规则
B. 模糊推理系统(正确答案)
C. 模糊数
D. 模糊关系
模糊控制中,用于将模糊量转换为精确量的过程称为?
A. 模糊化
B. 清晰化(正确答案)
C. 模糊推理
D. 模糊规则生成
下列哪一项是模糊控制系统中常用的清晰化方法?
A. 最小二乘法
B. 质心法(正确答案)
C. 牛顿法
D. 拉格朗日法
模糊集合的运算中,表示两个模糊集合合并的操作是什么?
A. 模糊交
B. 模糊并(正确答案)
C. 模糊补
D. 模糊蕴含
在模糊逻辑中,用于表示模糊命题之间逻辑关系的运算是什么?
A. 模糊蕴含(正确答案)
B. 模糊加法
C. 模糊减法
D. 模糊乘法
模糊控制器的设计过程中,确定输入输出变量模糊子集及其隶属函数的过程称为?
A. 模糊规则设计
B. 模糊化设计
C. 模糊关系设计
D. 隶属函数设计(正确答案)
模糊控制系统性能的好坏很大程度上取决于什么的设计?
A. 模糊规则库(正确答案)
B. 模糊推理机
C. 模糊化接口
D. 清晰化接口。