模糊控制数学基础1
- 格式:ppt
- 大小:2.39 MB
- 文档页数:52
2. 模糊控制系统数学基础2.1 模糊集合的定义及表示方法 2.1.1 模糊集合的定义扎德(Zadeh)曾对模糊集合作如下的定义:设给定论域U,U 到[0,1]闭区间上的映射μA 都确定U 的一个模糊子集μA : U →[0,1]U →μ(u)μA 称之为 A 的隶属函数,μA (u )称之为U 对A 的隶属度。
隶属函数μA (x )表示元素x 属于A 的程度,若μA (X )=1,则表示X 完全属于A ,若μA (X )=0,则表示X 完全不属于A ,若μA (x)=0.5,则表示x 属于A 的程度只有了0.5。
2.1.2 模糊子集的表示方法 模糊子集有如下的表示方法:1)、当论域U 为离散有限集{X1,X2,...,Xn},此时,A 有两种表示方法:(1) 扎德表示法A=a1/x1+a2/x2+...+an/Xn;若有ai=0时,则可以省略。
式中“ai/Xi ”不是分数,仅表示“元素Xi属于A 的隶属度为ai ”;符号“+”也不是普通加法,仅仅是一个记号。
(2) 向量表示法A=(a1,a2,....,an);式中向量的次序是不能颠倒的,并且隶属度为零也不能省略。
2). 论域是离散无限域(1) 可数情况:扎德表示法A~∑⎰∞∞∞===111)(~)(~)(~~uiui A ui ui A ui ui A A其中U={u1,u2,…,un},μA(ui)=A(ui)。
这里“∑”,“U ”,“∫”仅仅是符号;A (ui )/ui 也不是分数。
(2)、 不可数情况:扎德表示法其中“∫”不是积分号;A(u)/u 也不是分数; μA (u )=A(u)。
3)、论域是连续域扎德表示法特别当U 是一个实数区间时,其上的模糊集可用普通的实函数表示。
[9]2.2 模糊集合的运算以及性质 2.2.1 模糊子集的运算由于模糊子集的特征函数是它的隶属函数,所以,进行两个模糊子集运算时通常都是逐点对其隶属度进行相应的运算。
模糊控制理论的基础和发展历程模糊控制理论是一种基于模糊逻辑和模糊集合的控制方法,它最早由日本学者山中伸彦于1965年提出,随后发展成熟并得到广泛应用。
模糊控制理论在现代控制领域占据重要地位,本文将探讨其基础和发展历程。
一、模糊控制理论的基础模糊控制理论的基础是模糊逻辑和模糊集合。
模糊逻辑是模糊控制理论的核心基础,它扩展了传统二进制逻辑,允许不确定性的表达和推理。
模糊逻辑中的概念和推理规则基于模糊集合的理论,模糊集合是对现实世界中模糊、不确定性和模糊性的数学上的描述。
二、模糊控制理论的发展历程1. 初期研究(1965-1980年)最早的模糊控制理论由山中伸彦提出,并于1965年发表在《计算机硬件及其应用》杂志上。
他提出了模糊集合和模糊逻辑的基本概念,并应用于水蒸气发生器的控制。
随后,日本学者田中秀夫在1969年进一步发展了模糊控制的理论框架和数学推理方法。
2. 理论完善与应用推广(1980-1990年)在上世纪八九十年代,模糊控制理论得到了进一步的完善和推广。
日本学者松井秀树于1985年提出了基于模糊推理的模糊PID控制器,极大地推动了模糊控制在实际应用中的发展。
同时,国外学者也开始关注和研究模糊控制理论,如美国学者Ebrahim Mamdani和Jerome H. Friedman等人。
3. 理论拓展与应用拓宽(1990年至今)进入21世纪,随着计算机技术和人工智能的发展,模糊控制理论得到了进一步的拓展和应用拓宽。
研究者们提出了各种新的模糊控制方法和算法,如模糊神经网络控制、模糊遗传算法控制等。
同时,模糊控制理论在各个领域得到了广泛应用,如工业控制、交通管理、机器人控制等。
总结模糊控制理论基于模糊逻辑和模糊集合,提供了一种处理不确定性和模糊性问题的有效方法。
经过多年的发展和完善,模糊控制理论在现代控制领域得到了广泛应用。
未来,随着人工智能和自动化技术的不断发展,模糊控制理论将继续发挥重要作用,并不断拓展其应用范围和理论框架。
从中可见,随着实验次数n 的增加,27岁对“青年人”的频率基本稳定在0.78附近,近似可取()78.027~=A μ。
②例证法此法是扎德教授于1972年提出的。
基本思想—从模糊子集~A的有()x A ~μ的值,估计出论域U 上~A 的隶属函数。
例如:取论域U 是实数域R 中的一部分[0,100], ~A 是U 上―较大的数‖,虽然~A 是U 上的模糊子集。
为确定()x A ~μ的分布,选定几个语言真值(即一句话为真的程度)中的一个,来回答[0,100]中的某数是否算―较大‖。
如果语言真值分为―真的‖、―大致真的‖、―半真半假‖、―大致假的‖、“假的”。
把这些语言真值分别用[0,1]之间的数字表示,即分别为1,0.75,0.5,0.25和0。
对[0,100]用的αϕ个不同的数都作为样本进行询问,就可得~A 的模糊分布()x A ~μ的离散表示法。
③专家评分法(德尔菲法)该法40年代以来就已广泛应用于经济与管理科学的各个领域,典型的例子是在体操比赛中对运动员的评分,“技术好”是运动员集上的一个模糊 ,所有评委打分的平均值(有时去掉一个最高分和一个最低分)就是运动员“技术好”的隶属度。
这种方法也可以用来求模糊分布,在应用时,为了区别专家的学术水平和经验的多少,还可以采用加权平均法。
§2—2 模糊子集的特性及运算法则前面已讨论过普通集合的基本运算,下面对模糊子集的运算另作定义。
一、 模糊子集的运算法则 ① Fuzzy 子集的包含与相等设~A 、~B 为论域U 上的两个模糊子集,对于U 中的每一个元素x ,都有()x A ~μ≥()x B ~μ,则称~A 包含~B ,记作~A ⊇~B 。
如果,~A ⊇~B 且~B ⊇~A ,则说~A 与~B 相等,记作~A =~B 。
或者,若对所有x ∈U ,都有()x A ~μ=()x B ~μ,则~A =~B 。
②模糊子集的并、交、补运算设~A 、~B 为论域U 上的两个模糊子集,规定~A ~B 、~A ~B 、~A 的隶属函数分别为~~BAμ、~BAμ、~A μ,并且对于U 的每一个元素x 都有~~BAμ()∆x ()x A ~μ∨()x B ~μ=max[()x A ~μ,()x B ~μ] —~A ,~B 的并~~BAμ()∆x ()x A ~μ∧()x B ~μ=min[()x A ~μ,()x B ~μ]— ~A ,~B 的交~Aμ()∆x 1–()x A ~μ —~A 的补eg,设论域U={}4321,,,x x x x ,~A 、~B 是论域U 上的两个模糊集。
选择题
模糊控制理论中的核心概念之一是模糊集合,它主要由谁提出?
A. 扎德(Zadeh)(正确答案)
B. 牛顿
C. 莱布尼茨
D. 欧拉
模糊集合论中,用于描述元素属于集合程度的函数是什么?
A. 隶属函数(正确答案)
B. 概率函数
C. 分布函数
D. 密度函数
在模糊逻辑中,处理不确定性和模糊性的基本工具是什么?
A. 模糊规则
B. 模糊推理系统(正确答案)
C. 模糊数
D. 模糊关系
模糊控制中,用于将模糊量转换为精确量的过程称为?
A. 模糊化
B. 清晰化(正确答案)
C. 模糊推理
D. 模糊规则生成
下列哪一项是模糊控制系统中常用的清晰化方法?
A. 最小二乘法
B. 质心法(正确答案)
C. 牛顿法
D. 拉格朗日法
模糊集合的运算中,表示两个模糊集合合并的操作是什么?
A. 模糊交
B. 模糊并(正确答案)
C. 模糊补
D. 模糊蕴含
在模糊逻辑中,用于表示模糊命题之间逻辑关系的运算是什么?
A. 模糊蕴含(正确答案)
B. 模糊加法
C. 模糊减法
D. 模糊乘法
模糊控制器的设计过程中,确定输入输出变量模糊子集及其隶属函数的过程称为?
A. 模糊规则设计
B. 模糊化设计
C. 模糊关系设计
D. 隶属函数设计(正确答案)
模糊控制系统性能的好坏很大程度上取决于什么的设计?
A. 模糊规则库(正确答案)
B. 模糊推理机
C. 模糊化接口
D. 清晰化接口。
第二章模糊控制数学基础模糊控制的应用场合:一.模糊控制的定义对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程,得到满意的控制效果。
若能将这些熟练操作员的实践经验加以总结和描述,并用语言表达出来,就会得到一种定性的、不精确的控制规则。
如果用模糊数学将其定量化就转化为模糊控制算法,形成模糊控制理论。
模糊控制是建立在人工经验(定性的、不精确的)基础之上的,模仿人类的思维方式,采用模糊数学对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制。
模糊数学是模糊控制的数学基础,二.模糊控制的特点:1.无需知道被控对象的数学模型。
模糊控制是以人对被控系统的控制经验为依据而设计的控制器,故无需知道被控系统的数学模型。
2.是一种反映人类智慧思维的智能控制。
模糊控制采用人类思维中的模糊量,如“高”、“中”、“低”、“大”、“小”等,控制量由模糊推理导出。
这些模糊量和模糊推理是人类智能活动的体现。
3.易被人们所接受。
模糊控制的核心是控制规则。
模糊控制中的知识表示、模糊规则和模糊推理是基于专家知识或熟练操作者的成熟经验。
这些规则是以人类语言表示的。
很明显这些规则易被一般人所接收和理解。
如“衣服较脏,则投入洗涤剂较多,洗涤时间较长”, “今天气温高,则今天天气暖和”.4.构造容易。
用单片机等来构造模糊控制器,其结构与一般的数字控制系统无异,模糊控制算法用软件实现,也可以用专用模糊控制芯片直接构造控制器。
5.鲁棒性好。
模糊控制系统无论被控对象是线性的还是非线性的,都能执行有效的控制,具有良好的鲁棒性和适应性。
模糊控制是基于熟练操作员的实践经验,比如智能洗衣机,能够实现以下功能:“衣服较脏,则投入洗涤剂较多,洗涤时间较长”。
这个控制规律中存在着模糊概念:“衣服较脏”。
三.模糊概念没有明确外延的概念,即没有明确符合某概念的对象的全体,如“天气冷热”、“雨的大小”、“风的强弱”、“人的胖瘦”、“年龄的大小”、“个子高低”。
第二章:模糊控制的理论基础第一节:引言模糊控制的发展传统控制方法:数学模型。
模糊控制逻辑:使计算机具有智能和活性的一种新颖的智能控制方法。
模糊控制以模糊集合论为数学基础。
模糊控制系统的应用对于那些测量数据不准确,要处理的数据量过大以致无法判断它们的兼容性以及一些复杂可变的被控对象等场合是有益的。
模糊控制器的设计依赖于操作者的经验。
模糊控制器参数或控制输出的调整是从过程函数的逻辑模型产生的规则来进行的。
改善模糊控制器性能的有效方法是优化模糊控制规则。
模糊控制的特点:一、无需知道被控对象的数学模型二、是一种反应人类智慧思维的智能控制三、易被人们所接受四、推理过程采用“不精确推理”五、构造容易六、存在的问题:1、要揭示模糊控制器的实质和工作原理,解决稳定性和鲁棒性理论问题,从理论分析和数学推导的角度揭示和证明模糊控制系统的鲁棒性优于传统控制策略;2、信息简单的模糊处理将导致系统的控制精度降低和动态品质变差;3、模糊控制的设计尚缺乏系统性,无法定义控制目标。
“模糊控制的定义”定义:模糊控制器的输出是通过观察过程的状态和一些如何控制过程的规则的推理得到的。
基于三个概念:测量信息的模糊化,推理机制,输出模糊集的精确化;测量信息的模糊化:实测物理量转换为在该语言变量相应论域内的不同语言值的模糊子集;推理机制:使用数据库和规则库,根据当前的系统状态信息决定模糊控制的输出子集;模糊集的精确化:将推理过程得到的模糊控制量转化为一个清晰,确定的输出控制量的过程。
“模糊控制技术的相关技术”模糊控制器的核心处理单元:1.传统单片机;2.模糊单片机处理芯片;3.可编程门阵列芯片。
模糊信息与精确转换技术:AD,DA,转换技术。
模糊控制的软技术:系统的仿真软件。
综述:模糊控制是一种更人性化的方法,用模糊逻辑处理和分析现实世界的问题,其结果往往更符合人的要求。
第二节:模糊集合论基础“模糊集合的概念”经典集合论所表达概念的内涵和外延都必须是明确的。
模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。
模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。
一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。
因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。
模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。
模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量)。
再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。
这样循环下去,就实现了被控对象的模糊控制。
模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。
模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。
(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。
模糊数学知识小结与模糊数学相关的问题模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系模糊层次分析法—两两比较指标的确定模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。
由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果模糊数学基础一.Fuzzy 数学诞生的背景1)一个古希腊问题:“多少粒种子算作一堆?”2)Fuzzy 概念的广泛存在性,如“找人问题”3)何谓Fuzzy 概念?,如何描述它?由集合论的要求,一个对象x,对于一个集合,要么属于A,要么不属于A,二者必居其一,且仅居其一,绝对不允许模棱两可。
这种绝对的方法,是不能处理所有科学的问题,即现实生活中的一切事物一切现象都进行绝对的精确化时行不通的,从而产生模糊概念。
二.模糊与精确的关系对立统一,相互依存,可互相转化。
- 精确的概念可表达模糊的意思:如“望庐山瀑布”“飞流直下三千尺,凝是银河落九天”- Fuzzy的概念也能表达精确的意思:模糊数学不是让数学变成模模糊糊的东西,而是让数学进入模糊现象这个禁区,即用精确的数学方法去研究处理模糊现象。
三. 模糊性与随机性的区别事物分确定性现象与非确定性现象- 确定性现象:指在一定条件下一定会发生的现象。
- 非确定性现象分随机现象与模糊现象* 随机性是对事件的发生而言,其事件本身有着明确的含义,只是由于发生的条件不充分,事件的发生与否有多种可能性。
* 模糊性是研究处理模糊现象的,它所要处理的事件本身是模糊的。
模糊数学的广泛应用性模糊技术是21世纪的核心技术模糊数学的应用几乎渗透到自然科学与社会科学的所有领域:1)软科学方面:投资决策、企业效益评估、经济宏观调控等。
2)地震科学方面:地震预报、地震危害分析。