2(运动方程的建立)
- 格式:pdf
- 大小:600.40 KB
- 文档页数:39
动力学中的运动方程与解法在动力学中,运动方程与解法是研究物体运动的重要内容。
通过运动方程,我们可以描述物体在特定力下的运动状态,而解法则帮助我们求解出物体的具体运动轨迹和运动过程。
对于工程师和科学家来说,掌握运动方程与解法,可以帮助他们设计出更加高效和精确的运动控制系统。
一、运动方程的建立在动力学中,物体的运动可分为平动和转动。
平动是指物体整体运动,转动则是物体绕轴旋转。
对于平动的物体,其运动方程可以通过牛顿第二定律得到。
牛顿第二定律指出,物体的加速度与其受力成正比,与其质量成反比。
因此,平动物体的运动方程可以表示为:F = ma其中,F为作用在物体上的力,m为物体的质量,a为物体的加速度。
对于转动的物体,运动方程则需要考虑到物体的转动惯量和扭矩。
转动物体的运动方程可以表示为:τ = Iα其中,τ为作用在物体上的扭矩,I为物体的转动惯量,α为物体的角加速度。
二、运动方程的解法1. 利用微分方程求解对于简单的运动情况,我们可以通过求解微分方程来得到物体的运动方程解。
以平动物体的情况为例,假设已知物体的质量m、受力F 和初始条件(如起始位置和速度),我们可以根据牛顿第二定律建立微分方程:ma = F通过求解这个微分方程,可以得到物体的速度v与时间t之间的函数关系v(t),从而描述出物体的运动过程。
2. 利用数值方法求解在复杂的运动情况下,往往无法精确地求解得到解析解。
这时,我们可以利用数值方法来逼近求解物体的运动方程。
常见的数值方法包括欧拉法、龙格-库塔法等。
通过确定时间间隔,我们可以利用数值方法逐步计算物体的位置和速度,从而得到物体的运动轨迹。
三、应用举例动力学中的运动方程与解法在工程和科学研究中有着广泛的应用。
以下举例说明:1. 火箭的运动对于火箭的运动,我们可以根据火箭的质量、发动机推力和空气阻力建立运动方程。
通过解方程,我们可以分析火箭在不同推力和阻力下的运动轨迹,从而指导火箭的设计和控制。
船体振动基础1第章多自由度系统的振第2章多自由度系统的振动一、引言二、两自由度系统的振动三、多自由度系统的振动四、振动方程建立的其他方法2有阻尼的多自由度系统振动1、拉格朗日方程式1、拉格朗日方程式P38拉格朗日法是建立微分方程一种简单的方法:先求出系统的动能、势能,进而得出质量矩阵和刚度矩阵.优点:系统的动能和势能都是标量,无需考虑力的方向。
141、拉格朗日方程式P38拉格朗日第二类方程式适用于完整约束的系统。
完整约束完整约束:当约束方程本身或约束方程通过积分后可以下式所示的形式表示时,称为完整约束。
不完整约束:当约束方程本含有不能积分的速度项时,系统的约束称为不完整约束。
具有不完整约束的系统,系统的自由度不等于广义坐标数自由度数小于广义坐标数于广义坐标数,自由度数小于广义坐标数。
151、拉格朗日方程式P3811•位移方程和柔度矩阵P40对于静定结构,有时通过柔度矩阵建立位移方程比通过对于静定结构有时通过m1x1x2以准静态方式作用在梁上。
梁只产生位移(即挠度),不产生加速度。
的静平衡位置为坐标P1=1 f11 f21 f12P2=1 f22(1)P1 = 1、P2 = 0 时 m1 位移:x1 = f11 m2 位移:x2 = f 21 (3)P1、P2 同时作用 m1 位移: 位移 x1 = f11 P 1 + f12 P 2 m2 位移:x2 = f 21 P 1 + f 22 P 2(2)P1 = 0、P2 = 1 时 m1 位移:x1 = f12 m2 位移:x2 = f 22P1 m1 x1 x2 P2 m2P1=1 f11 f21 f12 P1 m1 x1P2=1 f22 P2 m2 x2P 同时作用时 1、P 2 同时作用时:x1 = f11P 1 + f12 P 2 x2 = f 21P 1 + f 22 P 2矩阵形式 X = FP 矩阵形式:⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦f ij 柔度影响系数f12 ⎤ f 22 ⎥ ⎦⎡ f11 F=⎢ ⎣ f 21⎡P 1⎤ P=⎢ ⎥ ⎣ P2 ⎦物理意义: 系统仅在第 j 个坐标受到 单位力作用时相应于第 i 个坐标上产生的位移柔度矩阵P1 m1 x1P2 m2 x2P1(t) m1 m2P2(t)&1 m1 & x&2 m2 & xX = FP⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P 1⎤ ⎢P ⎥ f 22 ⎥ ⎦⎣ 2 ⎦当P 1、P 2 是动载荷时 集中质量上有惯性力存在⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P && 1 (t ) − m1 x1 ⎤ ⎢ P (t ) − m & ⎥ f 22 ⎥ & x 2 2⎦ ⎦⎣ 2⎡ x1 ⎤ ⎡ f 11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21位移方程:f 12 ⎤⎛ ⎡ P1 (t ) ⎤ ⎡m1 ⎜⎢ −⎢ ⎥ ⎥ ⎜ f 22 ⎦⎝ ⎣ P2 (t ) ⎦ ⎣ 0&1 ⎤ ⎞ 0 ⎤⎡ & x ⎟ ⎥ ⎢ ⎥ &2 ⎦ ⎟ m2 ⎦ ⎣ & x ⎠&& ) X = F ( P − MXP1(t) m1 m2P2(t)⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦⎡P 1 (t ) ⎤ P=⎢ ⎥ P ( t ) ⎣ 2 ⎦&1 m1 & x&2 m2 & x位移方程 位移方程:&& ) X = F ( P − MX也可按作用力方程建立方程:&& + KX = P MX刚度矩阵&& + X = FP FMX柔度矩阵与刚度矩阵的关系 柔度矩阵与刚度矩阵的关系:&& KX = P − MX若K非奇异F=K−1FK = I&& ) X = K −1 ( P − MX应当注意:对于允许刚体运动产生的系统(即具有刚体自由度的系统) , 柔度矩阵不存在。