(结构动力学讲义)运动方程的建立
- 格式:ppt
- 大小:1.66 MB
- 文档页数:35
结构动力学运动控制方程分段解析法1. 引言1.1 概述在工程领域中,结构动力学是研究结构物体受外界力或激励下的响应和振动特性的一门学科。
结构动力学广泛应用于建筑、桥梁、飞机等领域,对于确保结构物的安全性和稳定性具有重要意义。
随着现代科技的发展,运动控制方程在结构动力学中扮演着至关重要的角色。
通过运动控制方程,我们可以深入理解和预测结构物运动的规律,并为其设计合适的控制策略。
因此,研究和解析这些方程是结构动力学研究中必不可少的一部分。
1.2 文章结构本文将按照以下顺序进行组织和阐述:首先,在第二部分中,我们将简要介绍结构动力学的定义和原理,以及涉及到的动力学方程。
接着,在第三部分中,我们将详细介绍分段解析法作为一种常见的求解方法,包括其基本原理、算法步骤以及相关应用案例。
在第四部分中,我们将描述所设计实验的参数设置,并对实验结果进行分析和讨论。
最后,在第五部分中,我们将总结本文的主要结论,并展望未来研究方向。
1.3 目的本文的主要目的是通过对结构动力学和运动控制方程的介绍,以及分段解析法的应用案例分析,进一步加深对相关理论和方法的理解。
同时,希望为研究者提供一个清晰、系统的框架,以便于更好地理解和应用这些内容。
鉴于分段解析法在结构动力学领域具有广泛应用和良好效果,本文还旨在为读者提供相关方法在实际工程问题中的指导参考。
2. 结构动力学2.1 定义和原理结构动力学是一门研究物体在受到外部力作用下的运动规律的领域。
它主要涉及质点的运动学和动力学,以及刚体与弹性体的运动特性。
在结构工程中,结构动力学用于分析和预测建筑物、桥梁、飞机等工程结构在自然环境或人为作用下的响应情况,并提供相应的设计依据。
2.2 动力学方程结构动力学理论通过牛顿定律和哈密顿原理等基本原理推导出结构系统的运动方程。
这些方程描述了结构物各个部分之间的相互关系,并包括质量、刚度、阻尼等参数。
根据实际工程问题,可以选择合适的数值解法求解这些方程,从而得到结构系统随时间变化的运动状态。
结构动力学填空简答一、填空题1、消能减震技术包括:速度相关型消能减震装置,位移相关型消能减震装置,其他相关型消能减震装置2、调频减震技术包括:有调谐质量阻尼器(TMD)和调谐液体阻尼器(TLD) 、调谐液柱式阻尼器(TLCD) 振动控制系统3、地震动三要素:振幅、频谱、持时4、结构的固有特性:频率、振型,阻尼5、实验测量阻尼比的方法:对数衰减率法、共振放大法、半功率法6、逐步积分法的四个标准:收敛性、计算精度、稳定性、计算效率7、结构离散化方法:集中质量法、广义坐标法、有限元法8、基本力学原理及运动方程的建立:D’Alembert原理、虚功原理、哈密顿原理、拉格朗日方程、牛顿定理9、结构抗震试验方法:伪静力试验方法或低周反复加载、地震模拟振动台试验方法、伪动力试验方法或计算机联机试验10、等效阻尼比用在:等效线性化分析过程中11、常用的阻尼有:粘性阻尼、摩擦阻尼、滞变阻尼、流体阻尼12、测量振动量的仪器:加速度计、位移计、速度计13、单自由度体系对任意荷载的反应分析方法:时域分析法(杜哈梅积分计算)、频域分析法(傅里叶变换法计算)——适用于处理线弹性结构的动力反应问题14、常用的时域逐步积分法有:分段解析法、中心差分法、平均常加速度法、线性加速度法、Newmark-β法、Wilson-θ法15、常用的恢复力模型:当伯格-奥斯左德模型、克拉夫退化双线性模型、武田模型16、振型的归一化方法:特定坐标的归一化方法、最大位移的归一化方法、正交归一法17、恢复力曲线模型三个组成部分:骨架曲线、滞回特性、刚度退化规律18、确定恢复力曲线的方法:试验拟合法、系统识别法、理论计算法二、简答题1.结构动力学的广义研究内容、目的是什么?内容:结构动力学是研究结构体系的动力特性几起在动力荷载作用下的动力反应分析原理和方法的一门理论和技术学科目的:是确定动力荷载作用下结构的内力和变形,并通过动力分析确定结构的动力特性,为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
刚度法是一种用于建立结构动力学运动方程的方法,它基于力的平衡条件来建立运动微分方程。
以下是使用刚度法求解结构运动方程的基本步骤:
1. 确定自由度:需要确定结构的独立位移数目,即自由度。
每个自由度对应一个广义坐标。
2. 列出平衡方程:对于每个自由度,根据达朗贝尔原理列出力的平衡方程。
这包括惯性力、弹性恢复力和阻尼力等。
3. 计算刚度系数:刚度系数是指结构在单位位移下产生的力。
对于多自由度体系,需要计算刚度矩阵,其中每个元素代表结构在某一点单位位移引起的力的变化。
4. 建立运动方程:将刚度系数与质量、阻尼系数结合,得到运动方程。
对于单自由度体系,运动方程通常形式为( m\ddot{y}(t) + c\dot{y}(t) + ky(t) = P(t) \),其中\( m \) 是质量,\( c \) 是阻尼系数,\( k ) 是刚度系数,( P(t) \) 是外部荷载。
5. 求解方程:最后,通过适当的数学方法求解运动方程,得到结构响应的时间历程。