图论建模方法
- 格式:ppt
- 大小:789.00 KB
- 文档页数:58
数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。
它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。
数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。
下面将分别介绍这些主要建模方法。
1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。
它适用于对大量数据进行分析和归纳,提取有用的信息。
数理统计法可以通过描述统计和推断统计两种方式实现。
描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。
2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。
它可以用来寻找最大值、最小值、使一些目标函数最优等问题。
最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。
这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。
3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。
这种方法适用于可以用一些基本的方程来描述的问题。
方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。
通过求解这些方程,可以得到问题的解析解或数值解。
4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。
它可以用来处理随机变量、随机过程和随机事件等问题。
概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。
利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。
5.图论方法:图论方法是研究图结构的数学理论和应用方法。
它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。
图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。
数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模中的图论方法一、前言我们知道,数学建模比赛中有问题A和问题B。
一般而言,问题A是连续系统中的问题,问题B是失散系统中的问题。
因为我们在大学数学教育内容中,连续系统方面的知识的比率较大,而离散数学比率较小。
所以好多人有这样的感觉,A题下手快,而B题不好下手。
其他,在有限元素的失散系统中,相应的数学模型又可以区分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。
但是这种问题在MCM中特别少见,事实上,由于比赛是开卷的,参照有关文件,使用现成的算法解决一个P类问题,不可以显示参赛者的建模及解决实诘问题能力之大小;还有一类所谓的NP问题,这种问题每一个都还没有成立有效的算法,或许真的就不行能有有效算法来解决。
命题经常以这种NPC问题为数学背景,找一个详细的实质模型来考验参赛者。
这样增添了成立数学模型的难度。
但是这也其实不是说没法求解。
一般来说,因为问题是详细的实例,我们可以找到特其他解法,或许可以给出一个近似解。
图论作为失散数学的一个重要分支,在工程技术、自然科学和经济管理中的好多方面都能供给有力的数学模型来解决实诘问题,所以吸引了好多研究人员去研究图论中的方法和算法。
应当说,我们对图论中的经典例子或多或少仍是有一些认识的,比方,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。
图论方法已经成为数学模型中的重要方法。
好多灾题因为归纳为图论问题被奇妙地解决。
并且,从历年的数学建模比赛看,出现图论模型的频次极大,比方:AMCM90B-扫雪问题;AMCM91B-找寻最优Steiner树;AMCM92B-紧迫修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特点向量法)CMCM94B-锁具装箱问题(最大独立极点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。
这里面都直接或是间接用到图论方面的知识。
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数学建模中的图论算法及其应用研究引言:数学建模是指利用数学方法和技巧对实际问题进行分析、抽象、描述、求解和预测的一种研究方法。
图论作为数学建模中的重要工具之一,被广泛应用于各个领域,如网络分析、交通规划、社交网络等。
本文将介绍数学建模中常用的图论算法,并探讨它们在实际问题中的应用。
一、图论基础知识1.1 图的概念图是由一些点和连接这些点的边组成的集合。
点表示图中的实体或对象,边表示实体之间的关系。
图包含了很多重要的信息,例如节点的度、连通性等。
1.2 图的表示方法图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维矩阵,其中的元素表示节点之间是否相连。
邻接表是一个由链表构成的数组,数组的每个元素表示一个节点,每个节点的链表存储了与该节点相连的节点列表。
二、图的遍历算法2.1 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法。
从一个节点出发,递归地访问它的相邻节点,直到所有可达的节点都被访问过为止。
DFS可以用于寻找连通分量、路径搜索等问题。
2.2 广度优先搜索(BFS)广度优先搜索是另一种图的遍历算法。
从一个节点出发,依次访问它的相邻节点,然后再依次访问相邻节点的相邻节点。
BFS可以用于寻找最短路径、网络分析等问题。
三、最短路径算法3.1 Dijkstra算法Dijkstra算法用于寻找图中两个节点之间的最短路径。
它基于贪心策略,从起点开始逐步扩展最短路径,直到到达终点或无法扩展为止。
Dijkstra算法在交通网络规划、电力网络优化等领域有广泛应用。
3.2 Floyd-Warshall算法Floyd-Warshall算法用于寻找图中所有节点之间的最短路径。
它通过动态规划的思想,逐步更新每对节点之间的最短路径。
Floyd-Warshall算法在地理信息系统、通信网络等领域有重要应用。
四、最小生成树算法4.1 Prim算法Prim算法用于寻找连通图的最小生成树。
它从一个起始节点开始,逐步选择与当前生成树距离最近的节点,并将其加入最小生成树中。
数学建模方法详解数学建模是指利用数学方法来研究和分析实际问题,并通过构建数学模型来描述和解决这些问题的过程。
数学建模具有很高的理论性和广泛的应用性,可以应用于科学、工程、经济等众多领域。
下面详细介绍几种常用的数学建模方法。
一、优化建模方法优化建模方法是指在给定的约束条件下,寻求其中一种目标函数的最优解。
该方法常用于生产、运输、资源分配等问题的优化调度。
优化建模的一般步骤包括确定决策变量、建立目标函数和约束条件、制定求解算法以及分析和验证最优解。
二、动力系统建模方法动力系统建模方法是指将实际问题转化为一组微分方程或差分方程,研究系统在时间上的演化规律。
该方法可以用于描述和预测物理、生物、经济等多个领域的系统行为。
动力系统建模的关键在于建立正确的微分方程或差分方程,并选择合适的求解方法。
三、决策分析建模方法决策分析建模方法是指将决策问题转化为数学模型,并采用数学方法进行决策分析和评估。
该方法常用于风险管理、投资决策、供应链管理等领域。
决策分析建模的关键在于准确描述决策者的目标和偏好,并选择合适的决策规则进行决策分析。
四、统计建模方法统计建模方法是指利用统计学理论和方法来描述和分析实际问题。
该方法多用于数据分析、预测和模式识别等领域。
统计建模的过程包括收集数据、建立概率模型、估计模型参数以及进行模型检验和应用。
五、图论建模方法图论建模方法是指利用图论的理论和方法来描述和分析网络结构和关联关系。
该方法常用于社交网络分析、路径规划、电力网络优化等领域。
图论建模的关键在于构建网络模型,并选择适当的图算法进行分析和优化。
六、随机模型建模方法随机模型建模方法是指利用随机过程和概率论的理论和方法来描述和分析随机现象。
该方法常用于金融风险管理、信号处理、系统可靠性评估等领域。
随机模型建模的关键在于建立正确的随机过程模型,并进行概率分布和随机变量的分析。
七、模拟建模方法模拟建模方法是指利用计算机仿真技术来模拟和分析实际问题。
网络数据建模、分析与应用研究综述一、网络数据建模随着互联网的快速发展,网络数据已经成为了研究和应用的重要领域。
网络数据建模是指通过对网络结构和属性进行抽象描述,构建出能够反映网络特征的数据模型。
网络数据建模的目的是为了更好地理解网络的结构、功能和动态变化,为网络分析、管理和决策提供理论依据和技术支持。
图论建模:图论是研究图(Graph)结构及其性质的数学分支。
在网络数据建模中,图论建模主要关注如何用图的形式表示网络结构,以及如何利用图论方法对网络进行分析。
常用的图论建模方法有邻接矩阵法、邻接表法、边权法等。
社会网络建模:社会网络是一种特殊的网络结构,由具有关联关系的人或组织组成。
社会网络建模主要研究如何用图的形式表示社会网络结构,以及如何利用图论方法对社会网络进行分析。
常用的社会网络建模方法有无向图法、有向图法、贝叶斯网络法等。
复杂网络建模:复杂网络是由大量相互连接的节点和边组成的网络结构。
复杂网络建模主要研究如何用图的形式表示复杂网络结构,以及如何利用图论方法对复杂网络进行分析。
常用的复杂网络建模方法有随机游走模型、小世界模型、斑图模型等。
动态网络建模:动态网络是指网络结构和属性随时间发生变化的网络。
动态网络建模主要研究如何用图的形式表示动态网络结构,以及如何利用图论方法对动态网络进行分析。
常用的动态网络建模方法有马尔可夫链模型、随机过程模型等。
多模态网络建模:多模态网络是指具有多种不同类型的信息载体的网络。
多模态网络建模主要研究如何用图的形式表示多模态网络结构,以及如何利用图论方法对多模态网络进行分析。
常用的多模态网络建模方法有多模态图模型、多模态贝叶斯网络模型等。
网络数据建模是一个涉及多个领域的交叉学科,其研究内容和技术方法不断丰富和发展。
随着大数据时代的到来,网络数据建模将继续发挥重要作用,为网络分析、管理和决策提供更多有价值的理论和实践支持。
1. 网络数据的基本概念和特点随着互联网的普及和发展,网络数据已经成为了当今社会中不可或缺的一部分。
主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。
量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。
图论是研究由线连成的点集的理论。
一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。
图与网络模型及方法§1 概论图论起源于18世纪。
第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。
1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。
1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。
哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。
图论中所谓的“图”是指某类具体事物和这些事物之间的联系。
如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。
图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。
哥尼斯堡七桥问题就是一个典型的例子。
在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。
当然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。
欧拉为了解决这个问题,采用了建立数学模型的方法。
他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。
问题成为从任一点出发一笔画出七条线再回到起点。
欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。
图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。