建模--图论模型解析
- 格式:ppt
- 大小:2.17 MB
- 文档页数:8
各种图论模型及其解答摘要:本文用另一种思路重新组织《图论及其应用》相关知识。
首先,用通俗化语言阐述了如何对事物间联系的问题进行图论建模;接着从现实例子出发,给出各种典型图论模型,每种图论模型对应于图论一个重要内容;再者,介绍相关知识对上述提到的图论模型涉及的问题进行解答;最后,补充一些图论其他知识,包括图论分支、易混概念。
符号约定:Q(Question)表示对问题描述,M(Modeling)表示数学建模过程,A(Answer)表示原问题转化为何种图论问题。
一、引言图论是研究点、线间关系的一门学科,属于应用数学的一部分。
现实生活中,凡是涉及到事物间的关系,都可以抽象为图论模型。
点表示事物,连线表示事物间的联系。
整个求解过程如下:原问题——>图论建模——>运用图论相关理论求解——>转化为原问题的解整个过程关键在于图论建模,所谓图论建模,就是明确点表示什么,连线表示什么,原问题转化为图论中的什么问题。
存在以下两种情况:①若事物间联系是可逆的(比如双行道,朋友),则抽象成无向图②若事物间联系是不可逆的(比如单行道,状态转化不可逆),则抽象成有向图如果需要进一步刻画事物间的联系(比如城市间的距离),就给连线赋一个权值,从而抽象成赋值图。
综上,根据实际问题,可建模成下列图论模型的一种:无向赋权图、有向赋权图、无向非赋权图、有向非赋权图。
例1.宴会定理:任何一宴会中,一定存在两个人有相同的数量朋友M:点表示人,连线表示当且仅当该两个人是朋友A:问题转化为任何一个图一定存在两个顶点的度相等二、图论模型接下来介绍若干典型的图论模型,每种模型几乎对应于图论的一个重要内容,这些内容将在第三章进行讨论,也就给出了这些模型的解答思路。
2.1 偶图模型凡涉及两类事物间的联系(即只考虑两类事物间的联系,而不考虑同类事物间的联系),均可抽象成偶图模型。
作图时,将两类事物分成两行或者两列。
这类模型通常被包含在后续的模型中,但因许多现实问题可抽象成该模型,所以单列出来讨论。
数学建模中的图论方法一、前言我们知道,数学建模比赛中有问题A和问题B。
一般而言,问题A是连续系统中的问题,问题B是失散系统中的问题。
因为我们在大学数学教育内容中,连续系统方面的知识的比率较大,而离散数学比率较小。
所以好多人有这样的感觉,A题下手快,而B题不好下手。
其他,在有限元素的失散系统中,相应的数学模型又可以区分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。
但是这种问题在MCM中特别少见,事实上,由于比赛是开卷的,参照有关文件,使用现成的算法解决一个P类问题,不可以显示参赛者的建模及解决实诘问题能力之大小;还有一类所谓的NP问题,这种问题每一个都还没有成立有效的算法,或许真的就不行能有有效算法来解决。
命题经常以这种NPC问题为数学背景,找一个详细的实质模型来考验参赛者。
这样增添了成立数学模型的难度。
但是这也其实不是说没法求解。
一般来说,因为问题是详细的实例,我们可以找到特其他解法,或许可以给出一个近似解。
图论作为失散数学的一个重要分支,在工程技术、自然科学和经济管理中的好多方面都能供给有力的数学模型来解决实诘问题,所以吸引了好多研究人员去研究图论中的方法和算法。
应当说,我们对图论中的经典例子或多或少仍是有一些认识的,比方,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。
图论方法已经成为数学模型中的重要方法。
好多灾题因为归纳为图论问题被奇妙地解决。
并且,从历年的数学建模比赛看,出现图论模型的频次极大,比方:AMCM90B-扫雪问题;AMCM91B-找寻最优Steiner树;AMCM92B-紧迫修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特点向量法)CMCM94B-锁具装箱问题(最大独立极点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。
这里面都直接或是间接用到图论方面的知识。
数学建模中的图论算法及其应用研究引言:数学建模是指利用数学方法和技巧对实际问题进行分析、抽象、描述、求解和预测的一种研究方法。
图论作为数学建模中的重要工具之一,被广泛应用于各个领域,如网络分析、交通规划、社交网络等。
本文将介绍数学建模中常用的图论算法,并探讨它们在实际问题中的应用。
一、图论基础知识1.1 图的概念图是由一些点和连接这些点的边组成的集合。
点表示图中的实体或对象,边表示实体之间的关系。
图包含了很多重要的信息,例如节点的度、连通性等。
1.2 图的表示方法图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维矩阵,其中的元素表示节点之间是否相连。
邻接表是一个由链表构成的数组,数组的每个元素表示一个节点,每个节点的链表存储了与该节点相连的节点列表。
二、图的遍历算法2.1 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法。
从一个节点出发,递归地访问它的相邻节点,直到所有可达的节点都被访问过为止。
DFS可以用于寻找连通分量、路径搜索等问题。
2.2 广度优先搜索(BFS)广度优先搜索是另一种图的遍历算法。
从一个节点出发,依次访问它的相邻节点,然后再依次访问相邻节点的相邻节点。
BFS可以用于寻找最短路径、网络分析等问题。
三、最短路径算法3.1 Dijkstra算法Dijkstra算法用于寻找图中两个节点之间的最短路径。
它基于贪心策略,从起点开始逐步扩展最短路径,直到到达终点或无法扩展为止。
Dijkstra算法在交通网络规划、电力网络优化等领域有广泛应用。
3.2 Floyd-Warshall算法Floyd-Warshall算法用于寻找图中所有节点之间的最短路径。
它通过动态规划的思想,逐步更新每对节点之间的最短路径。
Floyd-Warshall算法在地理信息系统、通信网络等领域有重要应用。
四、最小生成树算法4.1 Prim算法Prim算法用于寻找连通图的最小生成树。
它从一个起始节点开始,逐步选择与当前生成树距离最近的节点,并将其加入最小生成树中。