传动系统的传动简图
- 格式:ppt
- 大小:3.18 MB
- 文档页数:41
汽车传动系统——变速器和同步器图解三轴五当变速器传动简图1-输入轴2-轴承3-接合齿圈4-同步环5-输出轴6-中间轴7-接合套8-中间轴常啮合齿轮此变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输出轴)、倒档轴、各轴上齿轮、操纵机构等几部分组成。
两轴五当变速器传动简图1-输入轴2-接合套3-里程表齿轮4-同步环5-半轴6-主减速器被动齿轮7-差速器壳8-半轴齿轮9-行星齿轮10、11-输出轴12-主减速器主动齿轮13-花键毂与传统的三轴变速器相比,由于省去了中间轴,所以一般档位传动效率要高一些;但是任何一档的传动效率又都不如三轴变速器直接档的传动效率高。
同步器有常压式,惯性式和自行增力式等种类。
这里仅介绍目前广泛采用的惯性式同步器。
惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。
惯性同步器按结构又分为锁环式和锁销式两种。
其工作原理可以北京BJ212型汽车三档变速器中的二、三档同步器为例说明。
花键毂7与第二轴用花键连接,并用垫片和卡环作轴向定位。
在花键毂两端与齿轮1和4之间,各有一个青铜制成的锁环(也称同步环)9和5。
锁环上有短花键齿圈,花键齿的断面轮廓尺寸与齿轮1,4及花键毂7上的外花键齿均相同。
在两个锁环上,花键齿对着接合套8的一端都有倒角(称锁止角),且与接合套齿端的倒角相同。
锁环具有与齿轮1和4上的摩擦面锥度相同的内锥面,内锥面上制出细牙的螺旋槽,以便两锥面接触后破坏油膜,增加锥面间的摩擦。
三个滑块2分别嵌合在花键毂的三个轴向槽11内,并可沿槽轴向滑动。
在两个弹簧圈6的作用下,滑块压向接合套,使滑块中部的凸起部分正好嵌在接合套中部的凹槽10中,起到空档定位作用。
滑块2的两端伸入锁环9和5的三个缺口12中。
只有当滑块位于缺口12的中央时,接合套与锁环的齿方可能接合。
前置发动机后轮驱动汽车变速器的外操纵机构1-变速器壳体2-变速连动杆3-变速杆一般前置发动机后轮驱动汽车的变速器距离驾驶员座位较近,换档杆等外操纵机构多集中安装在变速器箱盖上,结构简单、操纵容易并且准确。
一、传动系统概述车辆的动力装置和驱动轮之间的所有传动部件总称为传动系统。
基本功用是将动力装置的动力按需传给驱动轮和其它机构由于车辆动力装置的性能不同,以及所采用传动系统类型的不同,其传动系统的组成和具体功能也有差别。
传动系统的主要类型:机械传动、液力机械传动、液压传动和电传动。
(一)机械传动机械传动系可由内燃机或电动机驱动。
对于内燃机驱动的车辆要求其传动系具有以下功能:(1)降低转速,增大转矩。
(2)实现变速,通过变速器改变传动比。
(3)内燃机不反转,通过变速箱让车辆反向行驶。
(4)必要时切断动力传递,用主离合器切断或结合动力传递,让内燃机起动、怠速、暂停车及人力换挡。
(5)实现左右驱动车轮间的差速。
内燃机驱动的机械传动系由图1.1所示机件组成。
机械式传动系各总成的基本功用分别是:(1)离合器:按照需要适时地切断或接合发动机与传动系之间的动力传递。
(2)变速器:改变发动机输出转速的高低、转矩的大小及旋转方向,也可以切断发动机向驱动轮的动力传递。
(3)万向传动装置:将变速器输出的动力传递给主减速器,并适应两者之间距离和轴线夹角的变化。
(4)主减速器:降低转速,增大转矩,改变动力的传递方向90°。
(5)差速器:将主减速器传来的动力分配给左右两半轴,并允许左右两半轴以不同速度旋转,以满足左右两驱动轮在行驶过程中差速的需要。
(6)半轴:将差速器传来的动力传给驱动轮,使驱动轮获得旋转的动力。
优点;结构简单、工作可靠、价格低廉、重量轻,效率高以及可利用发动机运行零件的惯性进行作业等缺点:内燃机容易过载熄火;人力换档时换档动力中断时间长;传动系零件及动力装置因冲击载荷大和外载荷急剧变化而降低使用寿命。
电动车辆也可采用机械传动系统。
其结构形式有集中驱动(图1.2)和分别驱动两种形式。
a)主减速器传动系统;b)具有主减速器及轮边减速器传动系统1.主减速器;2.差速器;3.半轴;4.驱动车轮;5.电动机;6.轮边减速器图1.2 集中驱动的电动车辆传动系统简图电动车辆的驱动轮为分别驱动时,不再有驱动桥及差速器等,电动机通过减速装置直接驱动一个驱动车轮,其传动简图如图1.3所示。
汽车传动系统——传动系的种类图解机械式传动系一般组成及布置示意图1-离合器2-变速器3-万向节4-驱动桥5-差速器6-半轴7-主减速器8-传动轴图为传统的发动机纵向安装在汽车前部,后桥驱动的4×2汽车布置示意图。
发动机发出的动力经离合器、变速器、万向传动装置传到驱动桥。
在驱动桥处,动力经过主减速器、差速器和半轴传给驱动车轮。
发动机前置、纵置,前轮驱动的布置示意图1-发动机2-离合器3-变速器4-变速器输入轴5-变速器输出轴6-差速器7-车速表驱动齿轮8-主减速器从动齿轮发动机前置、纵置,前桥驱动,使得变速器和主减速器连在一起,省掉了它们之间的万向传动装置。
典型液力机械传动示意图1-液力变矩器2-自动器变速器3-万向传动4-驱动桥5-主减速器6-传动轴液力传动(此处单指动液传动)是利用液体介质在主动元件和从动元件之间循环流动过程中动能的变化来传递动力。
液力传动装置串联一个有级式机械变速器,这样的传动称为液力机械传动。
静液式传动系示意图1-离合器2-油泵3-控制阀4-液压马达5-驱动桥6-油管液压传动也叫静液传动,是通过液体传动介质静压力能的变化来传递能量。
主要由发动机驱动的油泵、液压马达和控制装置等组成。
混合式电动汽车采用的电传动1-离合器2-发电机3-控制器4-电动机5-驱动桥6-导线电传动是由发动机驱动发电机发电,再由电动机驱动驱动桥或由电动机直接驱动带有减速器的驱动轮。
汽车传动系统——离合器总成结构图解机械式离合器的动作原理1-飞轮2-从动盘3-压盘4-膜片弹簧离合器的主动部分和从动部分借接触面间的摩擦作用,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又允许两部分相互转动。
液力离合器结构与动作原理1-叶轮2-输出轮3-油4-油的流向液力偶合器靠工作液(油液)传递转矩,外壳与泵轮连为一体,是主动件;涡轮与泵轮相对,是从动件。
当泵轮转速较低时,涡轮不能被带动,主动件与从动件之间处于分离状态;随着泵轮转速的提高,涡轮被带动,主动件与从动件之间处于接合状态.磁粉式电磁离合器的动作原理1-粉末2-输入侧3-输出侧4-激磁线圈5-线型粉末6-磁通电磁离合器靠线圈的通断电来控制离合器的接合与分离。
第一章轮式工程机械传动系在发动机与行走机构之间传递动力的所有构件组成传动系,所以,传动系的主要作用是将发动机的动力传递到驱动轮。
工作时发动机需要在空载情况下起动、也需要机器停止工作而发动机不熄火,因而传动系需要有接通、断开动力的功能。
负荷有大有小、设备也需要以不同的速度工作,为了充分发挥机器的工作能力,传动系也要有改变行驶速度和牵引力的能力。
机器工作中还需要后退,传动系要可以实现机器的这个功能。
机器工作时难免会超载,为了防止其损坏,传动系应有一定的过载保护能力。
许多机器(如:汽车、拖拉机、推土机等)的传动系还有动力输出功能。
第一节传动系的类型与组成一、机械传动图1-l为SDZl0型轮式装载机传动系简图。
它的传动系主要由主离合器2、变速箱3、驱动图1一1 SDZl0型轮式装载机传动系1一发动机,2一离台器,3一变速器,4一油泵。
5一驱动桥,6一传动轴,7~脱拆装置,8一手制动器桥5组成。
可以看出,在机械式传动系中,除了主离合器传动外,所有其它构件均为刚性传动。
机械式传动系有以下特点:1)优点:结构简单、便于维修、工作可靠、成本低廉、传动效率高,可以利用柴油机运动构件的惯性作业。
2)缺点:(1)发动机的振动冲击直接传到传动系,外负荷的冲击波动直接到达发动机,造成发动机功率下降.所有零部件的使用寿命降低。
(2)由于传动系没有自动适应能力,在传动系的传动比不变的条件下设备只能依靠发动机的调速特性适应外负荷的变化。
而发动机的调速特性的调整能力又十分有限,实际不可能适应工程机械的外负荷大范围变化。
为了解决这个问题,通常在传动系中设置变速箱,通过增加档位数拓宽机器的工作范围,使机械式传动系中变速箱的档位数目较多,换档过程复杂。
(3)为保证在负荷变化时机器有较高的生产率,超负荷时发动机不熄火,要求驾驶员有丰富的经验和熟练的技巧,同时频繁的换档动作会使驾驶员的劳动强度增加。
(4)换档过程中分离主离合器造成的动力中断,往往使工作中的工程机械停止前进,造成机器起步困难。
数控机床进给传动系统一.进给传动体系图纵向和横向进给传动体系图二.体系图的重要构造和功用电念头:1. 步进电念头步进电念头是一种将电脉冲旌旗灯号转换成机械角位移的驱动元件。
步进电念头是一种特别的电念头,一般电念头通电后都是持续迁移转变的,而步进电念头则有定位与运转两种状况。
当有一个电脉冲输入时,步进电念头就反转展转一个固定的角度,这角度称为步距角,一个步距角就是一步,所以这种电念头称为步进电念头。
又因为它输入的是脉冲电流,也称作脉冲电念头。
当电脉冲持续赓续地输入,步进电念头便跟随脉冲一步一步地迁移转变,步进电念头的角位移量和输入的脉冲个数严格成正比例,在时光上与输入脉冲同步。
是以,只需控制输入脉冲的数量、频率及电念头绕组的通电次序,便可获得所需转角、转速和偏向。
在无脉冲输入时,步进电念头的转子保持原有地位,处于定位状况。
步进电念头的调速范围广、惯量小、灵敏度高、输出转角可以或许控制,并且有必定的精度,常用作开环进给伺服体系的驱动元件。
与闭坏体系比拟,它没有地位速度反馈回路,控制体系简单,成本大年夜大年夜降低,与机床配接轻易,应用便利,因而在对精度、速度请求不十分高的中小型数控机床上获得了广泛地应用。
2. 直流伺服电念头因为数控机床对进给伺服驱动装配的请求较高,而直流电念头具有优胜的调速特点,是以在半闭坏、闭坏伺服控制体系中,获得较广泛地应用。
直流进给伺服电念头就其工作道理来说,固然与通俗直流电念头雷同。
然而,因为机械加工的特别请求,一般的直流电念头是不克不及知足须要的。
起首,一般直流电念头转子的迁移转变惯量过大年夜,而其输出转矩则相对较小。
如许,它的动态特点就比较差,尤其在低速运转前提下,这个缺点就更凸起。
在进给伺服机构中应用的是经由改进构造,进步其特点的大年夜功率直流伺服电念头,重要有以下两种类型:(1)小惯量直流电念头。
重要构造特点是其转子的迁移转变惯量尽可能小,是以在构造上与通俗电念头的最大年夜不合是转子做成细长形且滑腻无槽。